化工进展 ›› 2024, Vol. 43 ›› Issue (9): 5309-5319.DOI: 10.16085/j.issn.1000-6613.2023-1350
孙燕1(), 谢晓阳1, 冯倩颖1, 郑璐1, 何皎洁1, 杨利伟1, 白波2
收稿日期:
2023-08-07
修回日期:
2023-09-07
出版日期:
2024-09-15
发布日期:
2024-10-08
通讯作者:
孙燕
作者简介:
孙燕(1991—),女,博士,讲师,研究方向为膜法水处理理论与技术。E-mail:sunyan2021@chd.edu.cn。
基金资助:
SUN Yan1(), XIE Xiaoyang1, FENG Qianying1, ZHENG Lu1, HE Jiaojie1, YANG Liwei1, BAI Bo2
Received:
2023-08-07
Revised:
2023-09-07
Online:
2024-09-15
Published:
2024-10-08
Contact:
SUN Yan
摘要:
采用表面涂覆的方法对三醋酸纤维素(CTA)正渗透膜的活性层进行改性,首先利用单宁酸(TA)与铁离子(Fe3+)在膜表面以自组装的形式构建金属-多酚前体层,在此基础上进一步涂覆单宁酸/二乙烯三胺(TA/DETA)亲水功能层,最后借助TA的还原性在膜表面原位形成Ag/聚乙烯吡咯烷酮(PVP)抗菌功能层,制备了TA/Fe3+-TA/DETA-Ag/PVP改性膜。利用错流式正渗透装置探究动态污染实验中膜通量的变化情况,通过扫描电子显微镜(SEM)和红外光谱(FTIR)分析膜污染前后表面形貌和组成,使用激光共聚焦显微镜(CLSM)对膜表面污染物微观分布进行表征,并对比CTA原膜和改性膜的清洗效能。结果表明:TA/Fe3+-TA/DETA-Ag/PVP改性膜的水接触角由78.79°下降至33.05°,亲水性显著提升。在15天的动态污染实验结束后,CTA膜和TA/Fe3+-TA/DETA-Ag/PVP改性膜的通量分别衰减为各自初始通量的52.14%和72.81%,且与CTA原膜相比,TA/Fe3+-TA/DETA-Ag/PVP改性膜表面的活细菌数量和有机污染物量大幅减少。经过水力清洗和渗透反洗后,TA/Fe3+-TA/DETA-Ag/PVP改性膜的通量恢复率可达80.37%,远高于CTA原膜的49.88%,具有较强的抗污染性。
中图分类号:
孙燕, 谢晓阳, 冯倩颖, 郑璐, 何皎洁, 杨利伟, 白波. 基于单宁酸-铁(Ⅲ)改性正渗透膜制备及抗污染性能[J]. 化工进展, 2024, 43(9): 5309-5319.
SUN Yan, XIE Xiaoyang, FENG Qianying, ZHENG Lu, HE Jiaojie, YANG Liwei, BAI Bo. Preparation of forward osmosis membrane modified by tannic acid-iron (Ⅲ) and its antifouling performance[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5309-5319.
水质指标 | 浓度/mg·L-1 |
---|---|
COD | 340~380 |
BOD5 | 170~190 |
NH4+-N | 29~33 |
TN | 45~50 |
PO43--P | 4~5 |
表1 城市污水的水质指标
水质指标 | 浓度/mg·L-1 |
---|---|
COD | 340~380 |
BOD5 | 170~190 |
NH4+-N | 29~33 |
TN | 45~50 |
PO43--P | 4~5 |
实验类型 | 运行模式 | 运行时长 | 原料液(0.5L) | 汲取液(1L) | 错流 速率 /cm·s-1 |
---|---|---|---|---|---|
基线实验 | AL-FS模式 | 24h | 去离子水 | 0.5mol/L NaCl溶液 | 8 |
污染实验 | AL-FS模式 | 15d | 城市污水 | 0.5mol/L NaCl溶液 | 8 |
表2 动态污染实验运行条件
实验类型 | 运行模式 | 运行时长 | 原料液(0.5L) | 汲取液(1L) | 错流 速率 /cm·s-1 |
---|---|---|---|---|---|
基线实验 | AL-FS模式 | 24h | 去离子水 | 0.5mol/L NaCl溶液 | 8 |
污染实验 | AL-FS模式 | 15d | 城市污水 | 0.5mol/L NaCl溶液 | 8 |
染色剂 | 染色标记物 | 激发光源 | 激发波长 /nm | 收光波长 /nm | 荧光颜色 |
---|---|---|---|---|---|
SYTO 63 | 微生物总细胞 | Ar | 640 | 650~700 | 红色 |
FITC | 蛋白质 | Ar | 488 | 520~530 | 绿色 |
Con A | α-D-吡喃多糖 | He-Ne | 561 | 550~590 | 紫色 |
CW | β-D-吡喃多糖 | UV | 405 | 440~450 | 蓝色 |
表3 CLSM观测条件[24-25]
染色剂 | 染色标记物 | 激发光源 | 激发波长 /nm | 收光波长 /nm | 荧光颜色 |
---|---|---|---|---|---|
SYTO 63 | 微生物总细胞 | Ar | 640 | 650~700 | 红色 |
FITC | 蛋白质 | Ar | 488 | 520~530 | 绿色 |
Con A | α-D-吡喃多糖 | He-Ne | 561 | 550~590 | 紫色 |
CW | β-D-吡喃多糖 | UV | 405 | 440~450 | 蓝色 |
实验类型 | 运行模式 | 运行 时长/h | 原料液(0.5L) | 汲取液(1L) | 错流速率 /cm·s-1 |
---|---|---|---|---|---|
水力清洗 | AL-FS | 1 | 去离子水 | 去离子水 | 16 |
基线实验 | AL-FS | 2 | 去离子水 | 0.5mol/L NaCl溶液 | 8 |
渗透反洗 | AL-FS | 1 | 0.5mol/L NaCl溶液 | 去离子水 | 8 |
基线实验 | AL-FS | 2 | 去离子水 | 0.5mol/L NaCl溶液 | 8 |
表4 清洗实验运行条件
实验类型 | 运行模式 | 运行 时长/h | 原料液(0.5L) | 汲取液(1L) | 错流速率 /cm·s-1 |
---|---|---|---|---|---|
水力清洗 | AL-FS | 1 | 去离子水 | 去离子水 | 16 |
基线实验 | AL-FS | 2 | 去离子水 | 0.5mol/L NaCl溶液 | 8 |
渗透反洗 | AL-FS | 1 | 0.5mol/L NaCl溶液 | 去离子水 | 8 |
基线实验 | AL-FS | 2 | 去离子水 | 0.5mol/L NaCl溶液 | 8 |
膜类型 | 水通量/L·m-2·h-1 | 通量恢复率/% | |||||
---|---|---|---|---|---|---|---|
基线实验 | 污染实验 | 水力清洗 | 渗透反洗 | 水力清洗 | 渗透反洗 | ||
CTA原膜 | 5.89 | 3.00 | 4.19 | 4.44 | 41.25 | 49.88 | |
TA/Fe3+-TA/DETA改性膜 | 5.76 | 3.16 | 4.48 | 4.73 | 50.83 | 60.45 | |
TA/Fe3+-TA/DETA-Ag/PVP改性膜 | 5.82 | 4.04 | 5.20 | 5.47 | 65.25 | 80.37 |
表5 清洗实验后膜的水通量恢复率分析
膜类型 | 水通量/L·m-2·h-1 | 通量恢复率/% | |||||
---|---|---|---|---|---|---|---|
基线实验 | 污染实验 | 水力清洗 | 渗透反洗 | 水力清洗 | 渗透反洗 | ||
CTA原膜 | 5.89 | 3.00 | 4.19 | 4.44 | 41.25 | 49.88 | |
TA/Fe3+-TA/DETA改性膜 | 5.76 | 3.16 | 4.48 | 4.73 | 50.83 | 60.45 | |
TA/Fe3+-TA/DETA-Ag/PVP改性膜 | 5.82 | 4.04 | 5.20 | 5.47 | 65.25 | 80.37 |
1 | WANG Jianlong, LIU Xiaojing. Forward osmosis technology for water treatment: Recent advances and future perspectives[J]. Journal of Cleaner Production, 2021, 280: 124354. |
2 | ALTAEE Ali, ZARAGOZA Guillermo, TONNINGEN H Rost VAN. Comparison between forward osmosis-reverse osmosis and reverse osmosis processes for seawater desalination[J]. Desalination, 2014, 336: 50-57. |
3 | ALMOALIMI Khaled, LIU Yongqiang. Fouling and cleaning of thin film composite forward osmosis membrane treating municipal wastewater for resource recovery[J]. Chemosphere, 2022, 288: 132507. |
4 | AENDE Aondohemba, GARDY Jabbar, HASSANPOUR Ali. Seawater desalination: A review of forward osmosis technique, its challenges, and future prospects[J]. Processes, 2020, 8(8): 901. |
5 | IBRAR Ibrar, ALTAEE Ali, ZHOU John L, et al. Challenges and potentials of forward osmosis process in the treatment of wastewater[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(13): 1339-1383. |
6 | 朱腾义, 曹再植. 正渗透-膜蒸馏耦合工艺在高难度废水处理中的应用研究进展[J]. 化工进展, 2021, 40(11): 5894-5906. |
ZHU Tengyi, CAO Zaizhi. Application research progress of forward osmosis-membrane distillation coupling process in the treatment of highly difficult wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 5894-5906. | |
7 | RAHMAN Sumaita Nawar, SALEEM Haleema, ZAIDI Syed Javaid. Progress in membranes for pressure retarded osmosis application[J]. Desalination, 2023, 549: 116347. |
8 | BLANDIN Gaetan, FERRARI Federico, LESAGE Geoffroy, et al. Forward osmosis as concentration process: Review of opportunities and challenges[J]. Membranes, 2020, 10(10): 284. |
9 | Keng Siang GOH, CHEN Yunfeng, Daniel Yee Fan NG, et al. Organic solvent forward osmosis membranes for pharmaceutical concentration[J]. Journal of Membrane Science, 2022, 642: 119965. |
10 | 王涛, 王宁, 陆金仁, 等. 正渗透膜污染特征及抗污染正渗透膜研究进展[J]. 膜科学与技术, 2017, 37(1): 125-132. |
WANG Tao, WANG Ning, LU Jinren, et al. Fouling characteristics of forward osmosis membrane and recent development of antifouling forward osmosis membrane[J]. Membrane Science and Technology, 2017, 37(1): 125-132. | |
11 | IBRAHEEM Bakr M, AANI Saif AL, ALSARAYREH Alanood A, et al. Forward osmosis membrane: Review of fabrication, modification, challenges and potential[J]. Membranes, 2023, 13(4): 379. |
12 | SUN Yan, TIAN Jiayu, SONG Liming, et al. Dynamic changes of the fouling layer in forward osmosis based membrane processes for municipal wastewater treatment[J]. Journal of Membrane Science, 2018, 549: 523-532. |
13 | SUN Yan, TIAN Jiayu, ZHAO Zhiwei, et al. Membrane fouling of forward osmosis (FO) membrane for municipal wastewater treatment: A comparison between direct FO and OMBR[J]. Water Research, 2016, 104: 330-339. |
14 | SHE Qianhong, WANG Rong, FANE Anthony G, et al. Membrane fouling in osmotically driven membrane processes: A review[J]. Journal of Membrane Science, 2016, 499: 201-233. |
15 | 杨景. 基于主动杀菌/被动抗粘附策略制备抗微生物污染微滤膜[D]. 天津: 天津工业大学, 2019. |
YANG Jing. Preparation of anti-microbial microfiltration membrane based on active sterilization/passive anti-adhesion strategy[D]. Tianjin: Tianjin Polytechnic University, 2019. | |
16 | WANG Yao, WANG Zhi, WANG Jixiao, et al. Triple antifouling strategies for reverse osmosis membrane biofouling control[J]. Journal of Membrane Science, 2018, 549: 495-506. |
17 | XU Xiaotong, ZHANG Hanmin, GAO Tianyu, et al. Antibacterial thin film nanocomposite forward osmosis membranes produced by in situ reduction of selenium nanoparticles[J]. Process Safety and Environmental Protection, 2021, 153: 403-412. |
18 | ZHOU Shiyu, QU Yang, YANG Bowen, et al. Bio-based tannic acid as a raw material for membrane surface modification[J]. Desalination, 2023, 555: 116535. |
19 | GAO Chunmei, CHEN Hongyu, LIU Shenghui, et al. Preparing hydrophilic and antifouling polyethersulfone membrane with metal-polyphenol networks based on reverse thermally induced phase separation method[J]. Surfaces and Interfaces, 2021, 25: 101301. |
20 | 宋思青, 罗建泉, 万印华. 基于贻贝仿生化学的催化膜制备和功能探索研究进展[J]. 膜科学与技术, 2021, 41(2): 127-133. |
SONG Siqing, LUO Jianquan, WAN Yinhua. Research progress on preparation and functions of catalytic membranes based on mussel-inspired chemistry[J]. Membrane Science and Technology, 2021, 41(2): 127-133. | |
21 | MECHA Achisa C, CHOLLOM Martha N, BABATUNDE Bakare F, et al. Versatile silver-nanoparticle-impregnated membranes for water treatment: A review[J]. Membranes, 2023, 13(4): 432. |
22 | 秦龙鑫, 潘国元, 张杨, 等. 纳米银在水处理膜中的应用进展[J]. 化工进展, 2016, 35(7): 2114-2120. |
QIN Longxin, PAN Guoyuan, ZHANG Yang, et al. Progress of application of silver nanoparticles in water treatment membranes[J]. Chemical Industry and Engineering Progress, 2016, 35(7): 2114-2120. | |
23 | ZHAO Afang, ZHANG Na, LI Qiang, et al. Incorporation of silver-embedded carbon nanotubes coated with tannic acid into polyamide reverse osmosis membranes toward high permeability, antifouling, and antibacterial properties[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(34): 11388-11402. |
24 | 孙燕. 正渗透处理城市污水的膜污染特性及控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
SUN Yan. Study on membrane fouling characteristics and control of municipal wastewater treatment by forward osmosis[D]. Harbin: Harbin Institute of Technology, 2019. | |
25 | 袁博. 正渗透膜-生物反应器膜污染机理的解析研究[D]. 无锡: 江南大学, 2015. |
YUAN Bo. Analytical study on membrane fouling mechanism of forward osmosis membrane-bioreactor[D]. Wuxi: Jiangnan University, 2015. | |
26 | 成丽娟. 基于金属-多酚配位作用的超浸润油水分离膜设计与制备[D]. 杭州: 浙江工业大学, 2020. |
CHENG Lijuan. Design and preparation of super-wetting oil-water separation membrane based on metal-polyphenol coordination[D]. Hangzhou: Zhejiang University of Technology, 2020. | |
27 | ZHU Runliang, ZHU Yanping, XIAN Haiyang, et al. CNTs/ferrihydrite as a highly efficient heterogeneous Fenton catalyst for the degradation of bisphenol A: The important role of CNTs in accelerating Fe(Ⅲ)/Fe(Ⅱ) cycling[J]. Applied Catalysis B: Environmental, 2020, 270: 118891. |
28 | ZHU Xiaowei, LI Yijiang, WEI Tianchen, et al. TA-Fe(Ⅲ) complex coated PS nanospheres for non-iridescent structural coloration of cotton fabric[J]. Journal of Materials Chemistry C, 2022, 10(46): 17472-17480. |
29 | YAN Wentao, SHI Mengqi, DONG Chenxi, et al. Applications of tannic acid in membrane technologies: A review[J]. Advances in Colloid and Interface Science, 2020, 284: 102267. |
30 | XU Yanchao, GUO Dongxue, LI Tong, et al. Manipulating the mussel-inspired co-deposition of tannic acid and amine for fabrication of nanofiltration membranes with an enhanced separation performance[J]. Journal of Colloid and Interface Science, 2020, 565: 23-34. |
31 | WU Junhui, WANG Zhi, YAN Wentao, et al. Improving the hydrophilicity and fouling resistance of RO membranes by surface immobilization of PVP based on a metal-polyphenol precursor layer[J]. Journal of Membrane Science, 2015, 496: 58-69. |
32 | SUN Yan, ZHENG Lu, FENG Qianying, et al. In situ surface modification of forward osmosis membrane by polydopamine/polyethyleneimine-silver nanoparticle for anti-fouling improvement in municipal wastewater treatment[J]. Water Science and Technology, 2023, 87(9): 2195-209. |
33 | 雍子昕. 基于活性层表面功能化的改性正渗透膜制备及其抗污染机理研究[D]. 西安: 长安大学, 2022. |
YONG Zixin. Research on preparation and antifouling mechanism of modified forward osmosis membrane based on surface functionalization of active layer[D]. Xi’an: Chang’an University, 2022. | |
34 | SHEN Heng, DUAN Chunting, GUO Jing, et al. Facile in situ synthesis of silver nanoparticles on boron nitride nanosheets with enhanced catalytic performance[J]. Journal of Materials Chemistry A, 2015, 3(32): 16663-16669. |
35 | HUANG Lichuan, ZHAO Song, WANG Zhi, et al. In situ immobilization of silver nanoparticles for improving permeability, antifouling and anti-bacterial properties of ultrafiltration membrane[J]. Journal of Membrane Science, 2016, 499: 269-281. |
36 | CHENG Yanfang, PRANANTYO Dicky, KASI Gopinath, et al. Amino-containing tannic acid derivative-mediated universal coatings for multifunctional surface modification[J]. Biomaterials Science, 2020, 8(8): 2120-2128. |
[1] | 耿秀梅, 张逢, 张翔, 单美霞, 张亚涛. 用于CO2分离的Pebax基混合基质膜稳定性研究进展[J]. 化工进展, 2024, 43(9): 4996-5012. |
[2] | 梁宏成, 赵冬妮, 权银, 李敬妮, 胡欣怡. SEI膜形貌与结构对锂离子电池性能的影响[J]. 化工进展, 2024, 43(9): 5049-5062. |
[3] | 阳梦萍, 孙军军, 张晨曦, 薛昊龙, 肖长发. 聚丙烯/聚硅氧烷-二氧化硅中空纤维膜的制备与性能分析[J]. 化工进展, 2024, 43(9): 5106-5112. |
[4] | 王文刚, 钱裕洁, 皮秋月, 王艳红, 侯秀良, 徐荷澜. 聚合松香辅助制备聚丙烯熔喷纤维膜及耐久超疏水改性[J]. 化工进展, 2024, 43(9): 5123-5132. |
[5] | 赵星程, 贾方旭, 刘晨雨, 韩宝红, 梅宁, 姚宏. 实际规模PN/A工艺载体挂膜性能与微生物群落[J]. 化工进展, 2024, 43(9): 5242-5249. |
[6] | 张巍, 宋权斌, 周运河, 董梦瑶, 李婕, 伍乔, 付业昊, 梁垚城, 尹艳山, 成珊, 宋健. 全钒液流电池离子导电膜的选择性[J]. 化工进展, 2024, 43(9): 4859-4870. |
[7] | 宋家恺, 孔令真, 陈家庆, 孙欢, 李奇, 李长河, 王思诚, 孔标. 脱液型管式气液分离器旋流分离段内液膜流动和分离特性[J]. 化工进展, 2024, 43(8): 4297-4306. |
[8] | 孙燕, 冯倩颖, 谢晓阳, 何皎洁, 杨利伟, 白波. 基于环糊精构筑薄膜复合膜的研究进展[J]. 化工进展, 2024, 43(8): 4464-4476. |
[9] | 李莉, 蔡鑫宇, 陈寅杰, 张文启, 李光辉, 饶品华. 超疏水-高疏油SiC膜的制备及性能[J]. 化工进展, 2024, 43(8): 4516-4522. |
[10] | 徐冰, 杨晓蓉, 刘月华, 何峰, 周兴, 王志, 公旭中. 天然鳞片石墨球形尾料制备柔性电热膜[J]. 化工进展, 2024, 43(8): 4534-4541. |
[11] | 张锐, 江静, 徐鸿飞, 杨盛凯, 李亚红, 周靖原, 曾坚贤, 黄小平, 刘鹏飞, 张明明, 李志强. 陶瓷膜分离技术及其在生物制造领域的应用进展[J]. 化工进展, 2024, 43(8): 4550-4561. |
[12] | 唐安琪, 魏昕, 丁黎明, 王玉杰, 徐一潇, 刘轶群. 聚酰亚胺气体分离膜的物理老化现象浅析[J]. 化工进展, 2024, 43(7): 3923-3933. |
[13] | 李妍, 吴芹, 陈康成, 张耀远, 史大昕, 黎汉生. 聚酰亚胺渗透汽化膜用于有机溶剂脱水的改性研究进展[J]. 化工进展, 2024, 43(6): 2915-2927. |
[14] | 王涛, 高翔, 高继峰, 邓海全, 余显涌, 周振华, 唐玲, 吕航. 改性Cu-BTC基混合基质膜在CO2分离中的应用[J]. 化工进展, 2024, 43(6): 3240-3246. |
[15] | 王宝山, 陈晓杰, 赵培宇, 张许. 基于三维生物膜电极的难生化有机化工废水处理研究进展[J]. 化工进展, 2024, 43(6): 3359-3373. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |