化工进展 ›› 2024, Vol. 43 ›› Issue (8): 4550-4561.DOI: 10.16085/j.issn.1000-6613.2023-1042
• 生物与医药化工 • 上一篇
张锐1(), 江静1, 徐鸿飞1, 杨盛凯1, 李亚红1, 周靖原1, 曾坚贤1(), 黄小平1, 刘鹏飞1, 张明明2, 李志强3
收稿日期:
2023-06-25
修回日期:
2023-12-11
出版日期:
2024-08-15
发布日期:
2024-09-02
通讯作者:
曾坚贤
作者简介:
张锐(1987—),男,博士,研究方向为生物化工及膜分离技术。E-mail: 245945581@qq.com。
基金资助:
ZHANG Rui1(), JIANG Jing1, XU Hongfei1, YANG Shengkai1, LI Yahong1, ZHOU Jingyuan1, ZENG Jianxian1(), HUANG Xiaoping1, LIU Pengfei1, ZHANG Mingming2, LI Zhiqiang3
Received:
2023-06-25
Revised:
2023-12-11
Online:
2024-08-15
Published:
2024-09-02
Contact:
ZENG Jianxian
摘要:
陶瓷膜分离技术因具有高通量、抗污性能好、易清洗、生命周期长等优点而得到广泛应用。然而,受限于对陶瓷膜的特点、优势和用途等方面的认知,该技术在飞速发展的生物制造领域应用相对有限。本文首先介绍了陶瓷膜分离技术及分类,简述了陶瓷膜的优势以及陶瓷膜组件和国内外生产厂家。此外,重点综述了生物制药、生物基材料、生物能源、大宗发酵产品和发酵食品饮料等生物制造领域的产品特点以及陶瓷膜的应用实例,并根据发酵液的分离目的,从膜的材料、结构、孔径、操作和清洗方法等方面分析了陶瓷膜的选择策略。最后,指出了低成本和高分离精度的陶瓷膜研发是拓宽其在生物制造领域应用的重要方向,同时,进一步积累陶瓷膜在生物制造领域的应用案例和数据,提高产品质量和膜的使用寿命,降低成本,将促进陶瓷膜技术在快速发展的生物制造领域更加广泛的应用,落实“双碳”战略目标。
中图分类号:
张锐, 江静, 徐鸿飞, 杨盛凯, 李亚红, 周靖原, 曾坚贤, 黄小平, 刘鹏飞, 张明明, 李志强. 陶瓷膜分离技术及其在生物制造领域的应用进展[J]. 化工进展, 2024, 43(8): 4550-4561.
ZHANG Rui, JIANG Jing, XU Hongfei, YANG Shengkai, LI Yahong, ZHOU Jingyuan, ZENG Jianxian, HUANG Xiaoping, LIU Pengfei, ZHANG Mingming, LI Zhiqiang. Progress of ceramic membrane separation technology and its application in bio-manufacturing field[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4550-4561.
材料 | 亲水性 | 渗透性 | 抗污性 | 耐化学腐蚀性 | 机械强度 | 经济性 |
---|---|---|---|---|---|---|
Al2O3 | + | ++ | +++++ | +++ | ++++ | +++++ |
TiO2 | ++ | ++ | +++ | +++ | ++++ | ++++ |
ZrO2 | ++++ | +++ | ++ | ++++ | +++++ | +++ |
SiC | +++++ | +++++ | + | +++++ | +++++ | ++ |
表1 Al2O3、TiO2、ZrO2和SiC陶瓷膜的相对性能[12]
材料 | 亲水性 | 渗透性 | 抗污性 | 耐化学腐蚀性 | 机械强度 | 经济性 |
---|---|---|---|---|---|---|
Al2O3 | + | ++ | +++++ | +++ | ++++ | +++++ |
TiO2 | ++ | ++ | +++ | +++ | ++++ | ++++ |
ZrO2 | ++++ | +++ | ++ | ++++ | +++++ | +++ |
SiC | +++++ | +++++ | + | +++++ | +++++ | ++ |
参数 | 微滤(MF) | 超滤(UF) | 纳滤(NF) |
---|---|---|---|
孔径类型 | 大孔 | 介孔 | 微孔 |
过滤精度 | >50nm | 2~50nm/1~500kDa | <2nm/200~800Da |
操作压力/MPa | <0.2 | 0.1~1 | 0.5~3.5 |
典型应用 | 微生物分离或细胞碎片过滤;多聚体净化;酶制剂澄清;RO/NF预处理 | 细菌病毒截留;抗生素澄清;酶制剂浓缩;蛋白质浓缩;糖类色素去除;蛋白质、肽的分离、分级与浓缩;酱油过滤 | 抗生素浓缩;脱色;BOD/COD脱除;有机酸的回收和浓缩;脱盐 |
表2 膜孔径分类及其基本参数
参数 | 微滤(MF) | 超滤(UF) | 纳滤(NF) |
---|---|---|---|
孔径类型 | 大孔 | 介孔 | 微孔 |
过滤精度 | >50nm | 2~50nm/1~500kDa | <2nm/200~800Da |
操作压力/MPa | <0.2 | 0.1~1 | 0.5~3.5 |
典型应用 | 微生物分离或细胞碎片过滤;多聚体净化;酶制剂澄清;RO/NF预处理 | 细菌病毒截留;抗生素澄清;酶制剂浓缩;蛋白质浓缩;糖类色素去除;蛋白质、肽的分离、分级与浓缩;酱油过滤 | 抗生素浓缩;脱色;BOD/COD脱除;有机酸的回收和浓缩;脱盐 |
膜类型 | 聚合物膜 | 陶瓷膜 |
---|---|---|
优点 | 成本低(约100元/平米);选择性好;容易制备 | 耐酸、耐碱、耐高温、耐有机溶剂;机械强度大、稳定性好、通量大、占用空间小、能耗低;抗污染性能好;孔径分布窄,分离时无须相变,分离效率高;可靠性高和生命周期长(15~20年) |
缺点 | 抗污染性能低;不耐强化学腐蚀;有限的“工作温度和压力”;生命周期短暂(1~3年) | 生产工艺复杂,烧结后产品性能差异化大;价格较高(450~600CNY/m2);产品脆性大 |
表3 聚合物膜和陶瓷膜优缺点比较
膜类型 | 聚合物膜 | 陶瓷膜 |
---|---|---|
优点 | 成本低(约100元/平米);选择性好;容易制备 | 耐酸、耐碱、耐高温、耐有机溶剂;机械强度大、稳定性好、通量大、占用空间小、能耗低;抗污染性能好;孔径分布窄,分离时无须相变,分离效率高;可靠性高和生命周期长(15~20年) |
缺点 | 抗污染性能低;不耐强化学腐蚀;有限的“工作温度和压力”;生命周期短暂(1~3年) | 生产工艺复杂,烧结后产品性能差异化大;价格较高(450~600CNY/m2);产品脆性大 |
构型 | 污染趋势 | 装填密度 | 滞留体积 | 易于清洗 | 能源消耗 |
---|---|---|---|---|---|
平板 | 中 | 中 | 低 | 好 | 中 |
管式 | 低 | 低 | 高 | 优秀 | 高 |
中空纤维 | 高 | 高 | 低 | 一般 | 低 |
板框式 | 中 | 中 | 低 | 好 | 中 |
卷式 | 中/高 | 中/高 | 低 | 一般 | 低 |
表4 不同膜组件构型的比较[24]
构型 | 污染趋势 | 装填密度 | 滞留体积 | 易于清洗 | 能源消耗 |
---|---|---|---|---|---|
平板 | 中 | 中 | 低 | 好 | 中 |
管式 | 低 | 低 | 高 | 优秀 | 高 |
中空纤维 | 高 | 高 | 低 | 一般 | 低 |
板框式 | 中 | 中 | 低 | 好 | 中 |
卷式 | 中/高 | 中/高 | 低 | 一般 | 低 |
公司 | 国家 | 膜材料 | 膜元件 | 公司网站 |
---|---|---|---|---|
久吾高科 | 中国 | Al2O3、ZrO2 | 管式 | http://www.jiuwu.com/ |
山东工业陶瓷研究设计院 | 中国 | Al2O3、SiC | 管式,平板 | http://www.zcfilter.com/ |
国初科技 | 中国 | Al2O3、TiO2、ZrO2 | 管式 | http://www.guochukeji.com/ |
合肥世杰 | 中国 | Al2O3、ZrO2、TiO2 | 管式 | http://www.sjm-filter.com.cn/ |
TAMI | 法国 | ZrO2、TiO2 | 管式 | https://www.tami-industries.com/ |
Pall | 美国 | Al2O3 、ZrO2、TiO2 | 管式 | https://www.pall.com/ |
Inopor | 德国 | Al2O3、ZrO2、TiO2、SiO2 | 管式,平板 | https://www.inopor.com/de/ |
Hydroair | 意大利 | Al2O3 | 管式 | https://www.gmmpfaudler.com/ |
Mantec | 意大利 | ceramic membrane (NA) | 管式,平板 | https://mantectechnicalceramics.com/ |
Delemil | 美国 | ceramic membrane (NA) | 管式 | http://cn.delemil.cn/ |
Meidensha | 日本 | α-Al2O3、ZrO2 | 平板 | https://www.meidensha.co.jp/ |
NGK Insulators,Ltd. | 日本 | Al2O3、TiO2 | 管式 | https://www.ngk.co.jp/ |
Delemil | 美国 | ceramic membrane (NA) | 管式 | http://cn.delemil.cn/ |
Ceraflo | 新加坡 | Al2O3、ZrO2、TiO2 | 平板 | http://www.ceraflo.cn/ |
Tritech | 新加坡 | Al2O3、ZrO2、TiO2 | 中空纤维 | http://www.tritechgrp.cn/ |
LiqTech | 丹麦 | SiC | 管式,平板 | https://liqtech.com/ |
Cembrane | 丹麦 | SiC | 平板 | https://www.cembrane.com/ |
Novasep | 法国 | ceramic membrane (NA) | 管式 | http://www.novasep.com.cn/ |
PWNT | 荷兰 | ceramic membrane (NA) | 管状 | https://pwntechnologies.com/ |
ItN-Nanovation | 德国 | Al2O3 | 平板 | http://www.itn-nanovation.com/ |
表5 膜的类型和配置的商业陶瓷膜的代表性制造商
公司 | 国家 | 膜材料 | 膜元件 | 公司网站 |
---|---|---|---|---|
久吾高科 | 中国 | Al2O3、ZrO2 | 管式 | http://www.jiuwu.com/ |
山东工业陶瓷研究设计院 | 中国 | Al2O3、SiC | 管式,平板 | http://www.zcfilter.com/ |
国初科技 | 中国 | Al2O3、TiO2、ZrO2 | 管式 | http://www.guochukeji.com/ |
合肥世杰 | 中国 | Al2O3、ZrO2、TiO2 | 管式 | http://www.sjm-filter.com.cn/ |
TAMI | 法国 | ZrO2、TiO2 | 管式 | https://www.tami-industries.com/ |
Pall | 美国 | Al2O3 、ZrO2、TiO2 | 管式 | https://www.pall.com/ |
Inopor | 德国 | Al2O3、ZrO2、TiO2、SiO2 | 管式,平板 | https://www.inopor.com/de/ |
Hydroair | 意大利 | Al2O3 | 管式 | https://www.gmmpfaudler.com/ |
Mantec | 意大利 | ceramic membrane (NA) | 管式,平板 | https://mantectechnicalceramics.com/ |
Delemil | 美国 | ceramic membrane (NA) | 管式 | http://cn.delemil.cn/ |
Meidensha | 日本 | α-Al2O3、ZrO2 | 平板 | https://www.meidensha.co.jp/ |
NGK Insulators,Ltd. | 日本 | Al2O3、TiO2 | 管式 | https://www.ngk.co.jp/ |
Delemil | 美国 | ceramic membrane (NA) | 管式 | http://cn.delemil.cn/ |
Ceraflo | 新加坡 | Al2O3、ZrO2、TiO2 | 平板 | http://www.ceraflo.cn/ |
Tritech | 新加坡 | Al2O3、ZrO2、TiO2 | 中空纤维 | http://www.tritechgrp.cn/ |
LiqTech | 丹麦 | SiC | 管式,平板 | https://liqtech.com/ |
Cembrane | 丹麦 | SiC | 平板 | https://www.cembrane.com/ |
Novasep | 法国 | ceramic membrane (NA) | 管式 | http://www.novasep.com.cn/ |
PWNT | 荷兰 | ceramic membrane (NA) | 管状 | https://pwntechnologies.com/ |
ItN-Nanovation | 德国 | Al2O3 | 平板 | http://www.itn-nanovation.com/ |
组分 | 分子量/Da | 尺寸/nm |
---|---|---|
酵母和真菌 | — | 103~104 |
细菌 | — | 300~104 |
胶体 | — | 100~103 |
病毒 | — | 30~300 |
蛋白质、多糖、酶 | 104~106 | 2~10 |
抗体 | 300~103 | 0.6~1.2 |
抗生素 | 300~1200 | 0.6~1.3 |
单糖 | 200~400 | 0.8~1.0 |
有机酸 | 100~500 | 0.4~0.8 |
氨基酸 | 70~200 | 0.3~0.8 |
无机离子 | 10~100 | 0.2~0.4 |
表6 发酵液中可能存在的主要成分
组分 | 分子量/Da | 尺寸/nm |
---|---|---|
酵母和真菌 | — | 103~104 |
细菌 | — | 300~104 |
胶体 | — | 100~103 |
病毒 | — | 30~300 |
蛋白质、多糖、酶 | 104~106 | 2~10 |
抗体 | 300~103 | 0.6~1.2 |
抗生素 | 300~1200 | 0.6~1.3 |
单糖 | 200~400 | 0.8~1.0 |
有机酸 | 100~500 | 0.4~0.8 |
氨基酸 | 70~200 | 0.3~0.8 |
无机离子 | 10~100 | 0.2~0.4 |
1 | 谭天伟, 陈必强, 张会丽, 等. 加快推进绿色生物制造助力实现“碳中和”[J]. 化工进展, 2021, 40(3): 1137-1141. |
TAN Tianwei, CHEN Biqiang, ZHANG Huili, et al. Accelerate promotion of green bio-manufacturing to help achieve “carbon neutrality”[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1137-1141. | |
2 | 毕浩然, 张洋, 王凯, 等. 微生物制造绿色化学品研究进展[J]. 化工学报, 2023, 74(1): 1-13. |
BI Haoran, ZHANG Yang, WANG Kai, et al. Progress for green chemicals production by microbial manufacturing[J]. CIESC Journal, 2023, 74(1): 1-13. | |
3 | ZHANG Yi-Heng Percival, SUN Jibin, MA Yanhe. Biomanufacturing: History and perspective[J]. Journal of Industrial Microbiology & Biotechnology, 2017, 44(4/5): 773-784. |
4 | DATTA Shuvo Jit, MAYORAL Alvaro, BETTAHALLI Narasimha Murthy Srivatsa, et al. Rational design of mixed-matrix metal-organic framework membranes for molecular separations[J]. Science, 2022, 376(6597): 1080-1087. |
5 | LI Yahong, ZHANG Rui, ZENG Jianxian, et al. Highly efficient one-step selective separation of heparin via multi-functional adsorptive membranes[J]. Separation and Purification Technology, 2023, 317: 123862. |
6 | SHOLL David S, LIVELY Ryan P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
7 | JEON Mi Young, KIM Donghun, KUMAR Prashant, et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets[J]. Nature, 2017, 543(7647): 690-694. |
8 | ZHU Ziming, ZHOU Xuan, ZHANG Rui, et al. Antifouling modification of PVDF membranes via incorporating positive-charge tuned quaternized chitosan magnetic particles[J]. Journal of Environmental Chemical Engineering, 2023, 11(1): 109192. |
9 | ARUMUGHAM Thanigaivelan, KALEEKKAL Noel Jacob, GOPAL Sruthi, et al. Recent developments in porous ceramic membranes for wastewater treatment and desalination: A review[J]. Journal of Environmental Management, 2021, 293: 112925. |
10 | WANG Yan, MA Baiwen, ULBRICHT Mathias, et al. Progress in alumina ceramic membranes for water purification: Status and prospects[J]. Water Research, 2022, 226: 119173. |
11 | WANG Xueling, SUN Kuo, ZHANG Guoquan, et al. Robust zirconia ceramic membrane with exceptional performance for purifying nano-emulsion oily wastewater[J]. Water Research, 2022, 208: 117859. |
12 | SAMAEI Seyed Mohsen, Shirley GATO-TRINIDAD, ALTAEE Ali. The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters—A review[J]. Separation and Purification Technology, 2018, 200: 198-220. |
13 | BORTOT COELHO Fabricio Eduardo, MAGNACCA Giuliana, BOFFA Vittorio, et al. From ultra to nanofiltration: A review on the fabrication of ZrO2 membranes[J]. Ceramics International, 2023, 49(6): 8683-8708. |
14 | ASIF Muhammad Bilal, ZHANG Zhenghua. Ceramic membrane technology for water and wastewater treatment: A critical review of performance, full-scale applications, membrane fouling and prospects[J]. Chemical Engineering Journal, 2021, 418: 129481. |
15 | SMART S, LIN C X C, DING L, et al. Ceramic membranes for gas processing in coal gasification[J]. Energy & Environmental Science, 2010, 3(3): 268-278. |
16 | MEULENBERG Wilhelm A, Falk SCHULZE-KÜPPERS, DEIBERT Wendelin, et al. Ceramic membranes: Materials-components-potential applications[J]. ChemBioEng Reviews, 2019, 6(6): 198-208. |
17 | GUERRA Katie, PELLEGRINO John. Development of a techno-economic model to compare ceramic and polymeric membranes[J]. Separation Science and Technology, 2013, 48(1): 51-65. |
18 | ALRESHEEDI Mohammad T, BARBEAU Benoit, BASU Onita D. Comparisons of NOM fouling and cleaning of ceramic and polymeric membranes during water treatment[J]. Separation and Purification Technology, 2019, 209: 452-460. |
19 | LEE Seung-Jin, KIM Jae-Hong. Differential natural organic matter fouling of ceramic versus polymeric ultrafiltration membranes[J]. Water Research, 2014, 48: 43-51. |
20 | LI Wen, LING Guoqing, HUANG Pin, et al. Performance of ceramic microfiltration membranes for treating carbonated and filtered remelt syrup in sugar refinery[J]. Journal of Food Engineering, 2016, 170: 41-49. |
21 | SHI Changrong, XIE Caifeng, ZHANG Zhanying, et al. Sugar and value-added products derived from retentate concentrate of sugarcane juice[J]. Journal of Cleaner Production, 2021, 278: 123915. |
22 | 刘露露, 罗建泉, 张昊, 等. 膜法制糖技术研究现状、挑战与展望[J]. 膜科学与技术, 2021, 41(2): 140-146. |
LIU Lulu, LUO Jianquan, ZHANG Hao, et al. Sugar production by membrane technology: Research progress, challenges and perspectives[J]. Membrane Science and Technology, 2021, 41(2): 140-146. | |
23 | DUSCHER Stefan. Ceramic membranes in chemical and pharmaceutical applications[J]. Ceramic Applications, 2013, 1(1): 19-23. |
24 | LU Cheng, BAO Yiwen, HUANG Jen-Yi. Fouling in membrane filtration for juice processing[J]. Current Opinion in Food Science, 2021, 42: 76-85. |
25 | 久吾高科. 久吾产品—材料-陶瓷膜[EB/OL]. [2023-06-20]. . |
JIUWU HI-TECH. Jiuwu products—Materials-ceramic membranes[EB/OL]. [2023-06-20]. . | |
26 | DONG Yingchao, WU Hui, YANG Fenglin, et al. Cost and efficiency perspectives of ceramic membranes for water treatment[J]. Water Research, 2022, 220: 118629. |
27 | JAGAN MOHAN RAO L. Handbook of membrane separations: Chemical, pharmaceutical, food, and biotechnological applications[J]. International Journal of Food Science & Technology, 2009, 44(7): 1464-1466. |
28 | TAMI Industries. Application: Biopharma[EB/OL]. [2023-11-08]. . |
29 | Hydro Air Research. HydroAir: Membrane separation systems|industries & sectors|pharmaceutical & biotechnology[EB/OL]. [2023-11-08]. . |
30 | Filtration Mantec. Case study star-sep ceramic membranes|mantec filtration[EB/OL]. (2020-03-18) [2023-11-08]. . |
31 | WANG Meng, WANG Guoqing, ZHANG Ting, et al. Multi-modular engineering of 1,3-propanediol biosynthesis system in Klebsiella pneumoniae from co-substrate[J]. Applied Microbiology and Biotechnology, 2017, 101(2): 647-657. |
32 | 彭文博, 朱传柳, 王道龙, 等. 膜集成技术在1,3-丙二醇精制中的应用[J]. 膜科学与技术, 2019, 39(6): 119-123. |
PENG Wenbo, ZHU Chuanliu, WANG Daolong, et al. Application of membrane integration technology in the purification of 1,3-propanediol[J]. Membrane Science and Technology, 2019, 39(6): 119-123. | |
33 | PHANTHUMCHINDA Natnirin, THITIPRASERT Sitanan, TANASUPAWAT Somboon, et al. Process and cost modeling of lactic acid recovery from fermentation broths by membrane-based process[J]. Process Biochemistry, 2018, 68: 205-213. |
34 | DEY P, PAL P. Direct production of L (+) lactic acid in a continuous and fully membrane-integrated hybrid reactor system under non-neutralizing conditions[J]. Journal of Membrane Science, 2012, 389: 355-362. |
35 | ANDRZEJEWSKI Adam, Mateusz SZCZYGIEŁDA, PROCHASKA Krystyna. Optimization of lactic bio-acid separation from actual post-fermentation broth using nanofiltration process and fouling analysis[J]. Desalination and Water Treatment, 2021, 214: 203-213. |
36 | Mateusz SZCZYGIEŁDA, PROCHASKA Krystyna. Downstream separation and purification of bio-based alpha-ketoglutaric acid from post-fermentation broth using a multi-stage membrane process[J]. Process Biochemistry, 2020, 96: 38-48. |
37 | ZHAO Yangying, WANG Xiaomao, YANG Hongwei, et al. Effects of organic fouling and cleaning on the retention of pharmaceutically active compounds by ceramic nanofiltration membranes[J]. Journal of Membrane Science, 2018, 563: 734-742. |
38 | WADEKAR Shardul S, VIDIC Radisav D. Comparison of ceramic and polymeric nanofiltration membranes for treatment of abandoned coal mine drainage[J]. Desalination, 2018, 440: 135-145. |
39 | ÁRKI P, HECKER C, TOMANDL G, et al. Streaming potential properties of ceramic nanofiltration membranes—Importance of surface charge on the ion rejection[J]. Separation and Purification Technology, 2019, 212: 660-669. |
40 | LIU Quan, LI Yukai, LI Qianqian, et al. Mixed-matrix hollow fiber composite membranes comprising of PEBA and MOF for pervaporation separation of ethanol/water mixtures[J]. Separation and Purification Technology, 2019, 214: 2-10. |
41 | DI BITONTO Luigi, PASTORE Carlo. Metal hydrated-salts as efficient and reusable catalysts for pre-treating waste cooking oils and animal fats for an effective production of biodiesel[J]. Renewable Energy, 2019, 143: 1193-1200. |
42 | ROCHA Pablo D, OLIVEIRA Leandro S, FRANCA Adriana S. Sulfonated activated carbon from corn cobs as heterogeneous catalysts for biodiesel production using microwave-assisted transesterification[J]. Renewable Energy, 2019, 143: 1710-1716. |
43 | GOMES Maria Carolina Sérgi, MOREIRA Wardleison Martins, PASCHOAL Sirlei Marques, et al. Modeling of fouling mechanisms in the biodiesel purification using ceramic membranes[J]. Separation and Purification Technology, 2021, 269: 118595. |
44 | BANSOD Praful, KODAPE Shyam, BHASARKAR Jaykumar, et al. Ceramic membranes (Al2O3/TiO2) used for separation glycerol from biodiesel using response surface methodology[J]. Materials Today: Proceedings, 2022, 57(3): 1101-1107. |
45 | PANG Siyu, SI Zhihao, ZHUANG Yan, et al. Photo-cured fabrication of PDMS hollow fiber membrane for the pervaporative separation of 1-butanol from water[J]. Separation and Purification Technology, 2023, 319: 123978. |
46 | CAI Di, WEN Jieyi, ZHUANG Yan, et al. Review of alternative technologies for acetone-butanol-ethanol separation: Principles, state-of-the-art, and development trends[J]. Separation and Purification Technology, 2022, 298: 121244. |
47 | LIU Gongping, GAN Lin, LIU Sainan, et al. PDMS/ceramic composite membrane for pervaporation separation of acetone-butanol-ethanol (ABE) aqueous solutions and its application in intensification of ABE fermentation process[J]. Chemical Engineering and Processing: Process Intensification, 2014, 86: 162-172. |
48 | JANG Nulee, LEE Mungyu, YASIN Muhammad, et al. Behavior of CO-water mass transfer coefficient in membrane sparger-integrated bubble column for synthesis gas fermentation[J]. Bioresource Technology, 2020, 311: 123594. |
49 | SUN Li, GONG Mengyue, LV Xueqin, et al. Current advance in biological production of short-chain organic acid[J]. Applied Microbiology and Biotechnology, 2020, 104(21): 9109-9124. |
50 | KHAIRUL ZAMAN Nadiah, LAW Jeng Yih, CHAI Pui Vun, et al. Recovery of organic acids from fermentation broth using nanofiltration technologies: A review[J]. Journal of Physical Science, 2017, 28(S1): 85-109. |
51 | NIE Chengyu, LUAN Wei, CHEN Xianfu, et al. Comparison of ceramic microfiltration and ultrafiltration membranes for the clarification of simulated sebacic acid fermentation broth[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109820. |
52 | ANTCZAK Jerzy, Mateusz SZCZYGIEŁDA, PROCHASKA Krystyna. Nanofiltration separation of succinic acid from post-fermentation broth: Impact of process conditions and fouling analysis[J]. Journal of Industrial and Engineering Chemistry, 2019, 77: 253-261. |
53 | STASZAK Katarzyna, WOŹNIAK Marta Joanna, Zofia KARAŚ, et al. Application of nanofiltration in the process of the separation of model fermentation broths components[J]. Polish Journal of Chemical Technology, 2013, 15(4): 1-4. |
54 | 丘福华. 陶瓷膜在赖氨酸提取中的应用价值研究[J]. 中国新技术新产品, 2020(18): 9-10. |
QIU Fuhua. Study on the application value of ceramic membrane in lysine extraction[J]. New Technology & New Products of China, 2020(18): 9-10. | |
55 | 姬慧军, 韩隽. 谷氨酸发酵液预处理新工艺[J]. 广州化工, 2017, 45(13): 91-93. |
JI Huijun, HAN Jun. Membrane combination processing system in application of glutamic acid extraction[J]. Guangzhou Chemical Industry, 2017, 45(13): 91-93. | |
56 | KANG Qian, FANG Huan, XIANG Mengjie, et al. A synthetic cell-free 36-enzyme reaction system for vitamin B12 production[J]. Nature Communications, 2023, 14: 5177. |
57 | WANG Ziqiang, XU Guoxia, DU Wei, et al. Efficient ex-situ biosynthesis of vitamin B12 by Propionibacterium freudenreichii using membrane separation coupling technology[J]. Biochemical Engineering Journal, 2020, 161: 107688. |
58 | SUN Pengjie, LI Changgeng, GONG Yu, et al. Process study of ceramic membrane-coupled mixed-cell fermentation for the production of adenine[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 969668. |
59 | GITIS Vitaly, ROTHENBERG Gadi. Ceramic membranes: New opportunities and practical applications[M]. Weinheim: Wiley-VCH, 2016. |
60 | Martin SLABÝ, Karel ŠTĚRBA, Jana OLŠOVSKÁ. Fitration of beer—A review[J]. Kvasny Prumysl, 2018, 64(4): 173-184. |
61 | Frank RÖGENER. Filtration technology for beer and beer yeast treatment[J]. IOP Conference Series: Earth and Environmental Science, 2021, 941(1): 012016. |
62 | SASSI Soumaya, AL QADR IMAD WAN-MOHTAR Wan Abd, JAMALUDIN Nazzatush Shimar, et al. Recent progress and advances in soy sauce production technologies: A review[J]. Journal of Food Processing and Preservation, 2021, 45(10): e15799. |
63 | GUO Hao, HUANG Jun, ZHOU Rongqing, et al. Microfiltration of raw soy sauce: Membrane fouling mechanisms and characterization of physicochemical, aroma and shelf-life properties[J]. RSC Advances, 2019, 9(6): 2928-2940. |
64 | LI Meisheng, ZHAO Yijiang, ZHOU Shouyong, et al. Resistance analysis for ceramic membrane microfiltration of raw soy sauce[J]. Journal of Membrane Science, 2007, 299(1/2): 122-129. |
[1] | 宋家恺, 孔令真, 陈家庆, 孙欢, 李奇, 李长河, 王思诚, 孔标. 脱液型管式气液分离器旋流分离段内液膜流动和分离特性[J]. 化工进展, 2024, 43(8): 4297-4306. |
[2] | 孙燕, 冯倩颖, 谢晓阳, 何皎洁, 杨利伟, 白波. 基于环糊精构筑薄膜复合膜的研究进展[J]. 化工进展, 2024, 43(8): 4464-4476. |
[3] | 李莉, 蔡鑫宇, 陈寅杰, 张文启, 李光辉, 饶品华. 超疏水-高疏油SiC膜的制备及性能[J]. 化工进展, 2024, 43(8): 4516-4522. |
[4] | 徐冰, 杨晓蓉, 刘月华, 何峰, 周兴, 王志, 公旭中. 天然鳞片石墨球形尾料制备柔性电热膜[J]. 化工进展, 2024, 43(8): 4534-4541. |
[5] | 韩丹, 章健, 罗皓鸣, 刘鹏, 王士维. 反应烧结制备镁铝尖晶石透明陶瓷研究新进展[J]. 化工进展, 2024, 43(7): 3637-3646. |
[6] | 唐安琪, 魏昕, 丁黎明, 王玉杰, 徐一潇, 刘轶群. 聚酰亚胺气体分离膜的物理老化现象浅析[J]. 化工进展, 2024, 43(7): 3923-3933. |
[7] | 黄思晗, 凌玲, 李佳彬, 李秀芬. 菌剂添加条件下通风量对食品废弃物好氧发酵过程的影响[J]. 化工进展, 2024, 43(7): 4128-4137. |
[8] | 李妍, 吴芹, 陈康成, 张耀远, 史大昕, 黎汉生. 聚酰亚胺渗透汽化膜用于有机溶剂脱水的改性研究进展[J]. 化工进展, 2024, 43(6): 2915-2927. |
[9] | 王涛, 高翔, 高继峰, 邓海全, 余显涌, 周振华, 唐玲, 吕航. 改性Cu-BTC基混合基质膜在CO2分离中的应用[J]. 化工进展, 2024, 43(6): 3240-3246. |
[10] | 王宝山, 陈晓杰, 赵培宇, 张许. 基于三维生物膜电极的难生化有机化工废水处理研究进展[J]. 化工进展, 2024, 43(6): 3359-3373. |
[11] | 周秋明, 牛丛丛, 吕帅帅, 李红伟, 文富利, 徐润, 李明丰. 通过产物转化分离推动CO2加氢制甲醇过程的研究进展[J]. 化工进展, 2024, 43(5): 2776-2785. |
[12] | 李海鹏, 吴桐, 王琪, 郜时旺, 王晓龙, 李旭, 高新华, 年佩, 魏逸彬. 透水NaA分子筛膜强化的CO2加氢高效制甲醇[J]. 化工进展, 2024, 43(5): 2834-2842. |
[13] | 张宝, 王鹏, 安勇攀, 吕平, 蒋建良. 船舶应用燃料电池系统的设计与试验[J]. 化工进展, 2024, 43(5): 2554-2567. |
[14] | 范文轩, 徐双平, 贾宏葛, 张明宇, 蘧延庆. 芴基、酰亚胺基和萘基聚合物气体分离膜的研究进展[J]. 化工进展, 2024, 43(4): 1897-1911. |
[15] | 朱泰忠, 张良, 黄泽权, 罗伶萍, 黄菲, 薛立新. 具有烷基磺酸侧链的凝胶型聚苯并咪唑质子交换膜的制备与表征[J]. 化工进展, 2024, 43(4): 1962-1971. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |