化工进展 ›› 2025, Vol. 44 ›› Issue (5): 2846-2855.DOI: 10.16085/j.issn.1000-6613.2024-1854
• CO2减排利用 • 上一篇
收稿日期:2024-11-12
修回日期:2025-01-29
出版日期:2025-05-25
发布日期:2025-05-20
通讯作者:
钟璟
作者简介:顾晟燊(1989—),男,博士,讲师,研究方向为二氧化碳分离与转化技术开发。E-mail:gushengshen@cczu.edu.cn。
基金资助:
GU Shengshen(
), GUO Meng, REN Xiuxiu, PAN Yang, JIN Dongliang, ZHONG Jing(
)
Received:2024-11-12
Revised:2025-01-29
Online:2025-05-25
Published:2025-05-20
Contact:
ZHONG Jing
摘要:
有机硅膜具有可控的微孔结构、优异的稳定性以及丰富的有机官能团,在CO2高效分离领域具有良好的应用前景。本文综述了有机硅膜的前体类型、制备方法和孔径调控机理,归纳了有机硅膜的制备优化策略,梳理了有机硅膜在CO2/N2、CO2/CH4、H2/CO2分离领域中的应用,并对比了不同结构的有机硅膜在上述领域的分离性能,总结了有机硅膜性能提升的可行方法。最后对有机硅膜的发展进行了展望。
中图分类号:
顾晟燊, 郭猛, 任秀秀, 潘阳, 靳栋梁, 钟璟. 微孔有机硅膜在CO2分离中的研究进展[J]. 化工进展, 2025, 44(5): 2846-2855.
GU Shengshen, GUO Meng, REN Xiuxiu, PAN Yang, JIN Dongliang, ZHONG Jing. Research progress of microporous organosilica membranes in CO2 separation[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2846-2855.
| 有机硅膜 | 测试温度/℃ | 进气组成(体积比) | CO2渗透率/GPU | CO2/N2选择性 | 参考文献 |
|---|---|---|---|---|---|
| BTESA-APTES | 25 | CO2/N2(15/85) | 3230 | 31 | [ |
| BTESE-BPh | 25 | 纯气 | 7437 | 22.2 | [ |
| PhTES | 25 | CO2/N2(15/85) | 1087 | 30 | [ |
| BTESB | 25 | CO2/N2(15/85) | 2600 | 34 | [ |
| BTESBPh | 25 | CO2/N2(15/85) | 5465 | 13 | [ |
| BTESA-B | 25 | 纯气 | 5495 | 25 | [ |
| BTESA-BPh | 25 | 纯气 | 9716 | 12 | [ |
| BTESA-P30 | 25 | CO2/N2(14/86) | 3807 | 40 | [ |
表1 用于CO2/N2分离的有机硅膜性能对比
| 有机硅膜 | 测试温度/℃ | 进气组成(体积比) | CO2渗透率/GPU | CO2/N2选择性 | 参考文献 |
|---|---|---|---|---|---|
| BTESA-APTES | 25 | CO2/N2(15/85) | 3230 | 31 | [ |
| BTESE-BPh | 25 | 纯气 | 7437 | 22.2 | [ |
| PhTES | 25 | CO2/N2(15/85) | 1087 | 30 | [ |
| BTESB | 25 | CO2/N2(15/85) | 2600 | 34 | [ |
| BTESBPh | 25 | CO2/N2(15/85) | 5465 | 13 | [ |
| BTESA-B | 25 | 纯气 | 5495 | 25 | [ |
| BTESA-BPh | 25 | 纯气 | 9716 | 12 | [ |
| BTESA-P30 | 25 | CO2/N2(14/86) | 3807 | 40 | [ |
| 有机硅膜 | 测试温度/℃ | 进气组成(体积比) | CO2渗透率/GPU | CO2/CH4选择性 | 参考文献 |
|---|---|---|---|---|---|
| APTES-20% | 120 | 纯气 | 687 | 40 | [ |
| AP-PECVD silica | 50 | CO2/CH4(50/50) | 568 | 166 | [ |
| BTESE | 50 | 纯气 | 1613 | 90 | [ |
| MIL-53-NH2/organosilica | 25 | CO2/CH4(50/50) | 430 | 18.2 | [ |
表2 用于CO2/CH4分离的有机硅膜性能对比
| 有机硅膜 | 测试温度/℃ | 进气组成(体积比) | CO2渗透率/GPU | CO2/CH4选择性 | 参考文献 |
|---|---|---|---|---|---|
| APTES-20% | 120 | 纯气 | 687 | 40 | [ |
| AP-PECVD silica | 50 | CO2/CH4(50/50) | 568 | 166 | [ |
| BTESE | 50 | 纯气 | 1613 | 90 | [ |
| MIL-53-NH2/organosilica | 25 | CO2/CH4(50/50) | 430 | 18.2 | [ |
| 有机硅膜 | 测试 温度/℃ | 进气组成 | H2渗透率 /GPU | H2/CO2 选择性 | 参考文献 |
|---|---|---|---|---|---|
| Si600 | 200 | 纯气 | 1493 | 70 | [ |
| BTESE | 200 | 纯气 | 138 | 36 | [ |
| VTES | 600 | 纯气 | 1613 | 95 | [ |
| Pd/SiO2 | 200 | 纯气 | 31661 | 11.12 | [ |
| POS | 200 | 纯气 | 2168 | 4.3 | [ |
| POS-1 | 200 | 纯气 | 484 | 13.6 | [ |
| Pd-Nb-BTESE | 300 | 纯气 | 335 | 107 | [ |
| PNB-Pd | 200 | 纯气 | 2986 | 17.2 | [ |
表3 用于H2/CO2分离的有机硅膜性能对比
| 有机硅膜 | 测试 温度/℃ | 进气组成 | H2渗透率 /GPU | H2/CO2 选择性 | 参考文献 |
|---|---|---|---|---|---|
| Si600 | 200 | 纯气 | 1493 | 70 | [ |
| BTESE | 200 | 纯气 | 138 | 36 | [ |
| VTES | 600 | 纯气 | 1613 | 95 | [ |
| Pd/SiO2 | 200 | 纯气 | 31661 | 11.12 | [ |
| POS | 200 | 纯气 | 2168 | 4.3 | [ |
| POS-1 | 200 | 纯气 | 484 | 13.6 | [ |
| Pd-Nb-BTESE | 300 | 纯气 | 335 | 107 | [ |
| PNB-Pd | 200 | 纯气 | 2986 | 17.2 | [ |
| 1 | 张九天, 张璐. 面向碳中和目标的碳捕集、利用与封存发展初步探讨[J]. 热力发电, 2021, 50(1): 1-6. |
| ZHANG Jiutian, ZHANG Lu. Preliminary discussion on development of carbon capture,utilization and storage for carbon neutralization[J]. Thermal Power Generation, 2021, 50(1): 1-6. | |
| 2 | 王志, 原野, 生梦龙, 等. 膜法碳捕集技术——研究现状及展望[J]. 化工进展, 2022, 41(3): 1097-1101. |
| WANG Zhi, YUAN Ye, SHENG Menglong, et al. Membrane technology for carbon capture—Research status and prospects[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1097-1101. | |
| 3 | 陈久弘, 王毅, 王恺华, 等. 二氧化碳捕集用吸附分离技术及其吸附材料研究进展[J]. 低碳化学与化工, 2023, 48(5): 62-70. |
| CHEN Jiuhong, WANG Yi, WANG Kaihua, et al. Research progress on adsorption and separation technologies and adsorption materials for carbon dioxide capture[J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(5): 62-70. | |
| 4 | 刘克峰, 刘陶然, 蔡勇, 等. 二氧化碳捕集技术研究和工程示范进展[J]. 化工进展, 2024, 43(6): 2901-2914. |
| LIU Kefeng, LIU Taoran, CAI Yong, et al. Progress in research and engineering demonstration of CO2 capture technology[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2901-2914. | |
| 5 | 谭先先, 余亮, 冯霄, 等. 多孔配位有机硅在膜分离领域中的应用[J]. 膜科学与技术, 2023, 43(5): 159-167. |
| TAN Xianxian, YU Liang, FENG Xiao, et al. Application of porous coordination organosilica in membrane separations[J]. Membrane Science and Technology, 2023, 43(5): 159-167. | |
| 6 | Vinh BUI, TANDEL Ameya Manoj, SATTI Varun Reddy, et al. Engineering silica membranes for separation performance, hydrothermal stability, and production scalability[J]. Advanced Membranes, 2023, 3: 100064. |
| 7 | 廖明佳, 朱韵, 任秀秀, 等. 微孔桥联有机硅杂化膜的制备方法及影响因素研究进展[J]. 膜科学与技术, 2021, 41(2): 147-156. |
| LIAO Mingjia, ZHU Yun, REN Xiuxiu, et a1. Progress in preparation methods and influencing factors of microporous bridged organosilica hybrid membranes[J]. Membrane Science and Technology, 2021, 41(2): 147-156. | |
| 8 | REN Xiuxiu, TSURU Toshinori. Organosilica-based membranes in gas and liquid-phase separation[J]. Membranes, 2019, 9(9): 107. |
| 9 | 宋双双, 宋华庭, 王晨颖, 等. 以烷基桥联倍半硅氧烷为前驱体制备有机无机杂化SiO2气体分离膜[J]. 硅酸盐学报, 2016, 44(12): 1760-1767. |
| SONG Shuangshuang, SONG Huating, WANG Chenying, et al. Fabrication of organic-inorganic hybrid silica membranes for gas separation by alkane-bridged silsesquioxanes as precursors[J]. Journal of the Chinese Ceramic Society, 2016, 44(12): 1760-1767. | |
| 10 | 吴晓娴, 刘浩月, 漆虹. 以倍半硅氧烷为前驱体的管式有机-无机杂化SiO2纳滤膜的制备[J]. 南京工业大学学报(自然科学版), 2020, 42 (1): 94-100. |
| WU Xiaoxian, LIU Haoyue, QI Hong. Fabrication of tubular organic-inorganic hybrid SiO2 nanofiltration membrane derived from silsesquioxane[J]. Journal of Nanjing Tech University (Natural Science Edition), 2020, 42(1): 94-100. | |
| 11 | 徐荣, 程旭, 邓松, 等. 乙烯基桥联有机硅膜的羧基化改性及反渗透性能研究[J]. 化工学报, 2019, 70(7): 2766-2774. |
| XU Rong, CHENG Xu, DENG Song, et al. Carboxyl functionalization and reverse osmosis performance of ethenylene-bridged organosilica membranes[J]. CIESC Journal, 2019, 70(7): 2766-2774. | |
| 12 | MIZOSHITA Norihiro, TANI Takao, INAGAKI Shinji. Syntheses, properties and applications of periodic mesoporous organosilicas prepared from bridged organosilane precursors[J]. Chemical Society Reviews, 2011, 40(2): 789-800. |
| 13 | GRAHAM Thomas. On the properties of silicic acid and other analogous colloidal substances[J]. Journal of the Chemical Society, 1864, 17: 318-327. |
| 14 | TSURU Toshinori. Silica-based membranes with molecular-net-sieving properties: Development and applications[J]. Journal of Chemical Engineering of Japan, 2018, 51(9): 713-725. |
| 15 | YU Liang, KANEZASHI Masakoto, NAGASAWA Hiroki, et al. Role of amine type in CO2 separation performance within amine functionalized silica/organosilica membranes: A review[J]. Applied Sciences, 2018, 8(7): 1032. |
| 16 | NIIMI Takuya, NAGASAWA Hiroki, KANEZASHI Masakoto, et al. Preparation of BTESE-derived organosilica membranes for catalytic membrane reactors of methylcyclohexane dehydrogenation[J]. Journal of Membrane Science, 2014, 455: 375-383. |
| 17 | AGIRRE Ion, ARIAS Pedro L, CASTRICUM Hessel L, et al. Hybrid organosilica membranes and processes: Status and outlook[J]. Separation and Purification Technology, 2014, 121: 2-12. |
| 18 | AKAMATSU Kazuki, SUZUKI Masato, NAKAO Aiko, et al. Development of hydrogen-selective dimethoxydimethylsilane-derived silica membranes with thin active separation layer by chemical vapor deposition[J]. Journal of Membrane Science, 2019, 580: 268-274. |
| 19 | SEA B. K, KUSAKABE K, MOROOKA S. Pore size control and gas permeation kinetics of silica membranes by pyrolysis of phenyl-substituted ethoxysilanes with cross-flow through a porous support wall[J]. Journal of Membrane Science, 1997, 130(1/2): 41-52. |
| 20 | KHATIB Sheima J, Ted OYAMA S. Silica membranes for hydrogen separation prepared by chemical vapor deposition (CVD)[J]. Separation and Purification Technology, 2013, 111: 20-42. |
| 21 | NAGASAWA Hiroki, SHIGEMOTO Hironobu, KANEZASHI Masakoto, et al. Characterization and gas permeation properties of amorphous silica membranes prepared via plasma enhanced chemical vapor deposition[J]. Journal of Membrane Science, 2013, 441: 45-53. |
| 22 | NAGASAWA Hiroki, YAMAMOTO Yuta, TSUDA Nobukazu, et al. Atmospheric-pressure plasma-enhanced chemical vapor deposition of microporous silica membranes for gas separation[J]. Journal of Membrane Science, 2017, 524: 644-651. |
| 23 | NAGASAWA Hiroki, MINAMIZAWA Toshihiro, KANEZASHI Masakoto, et al. Microporous organosilica membranes for gas separation prepared via PECVD using different O/Si ratio precursors[J]. Journal of Membrane Science, 2015, 489: 11-19. |
| 24 | NGAMOU Patrick H T, OVERBEEK Johan P, KREITER Robert, et al. Plasma-deposited hybrid silica membranes with a controlled retention of organic bridges[J]. Journal of Materials Chemistry A, 2013, 1 (18): 5567-5576. |
| 25 | NAGASAWA Hiroki, KAGAWA Takahiko, NOBORIO Takuji, et al. Ultrafast synthesis of silica-based molecular sieve membranes in dielectric barrier discharge at low temperature and atmospheric pressure[J]. Journal of the American Chemical Society, 2021, 143(1): 35-40. |
| 26 | KAWASAKI Mitsugu, NAGASAWA Hiroki, KANEZASHI Masakoto, et al. Open-air plasma deposition of polymer-supported silica-based membranes for gas separation[J]. Separation and Purification Technology, 2022, 291: 120908. |
| 27 | 严硕, 于海斌, 陈赞. 膜法脱除天然气中二氧化碳的工艺技术发展现状[J]. 无机盐工业, 2022, 54 (5): 38-46. |
| YAN Shuo, YU Haibin, CHEN Zan. Technology development status of carbon dioxide removal from natural gas by membrane process[J]. Inorganic Chemicals Industry, 2022, 54(5): 38-46. | |
| 28 | 樊江, 汪唯, 蔡佳浩, 等. 二维膜的精密构筑和结构调控策略综述[J]. 化工进展, 2020, 39(12): 4823-4836. |
| FAN Jiang, WANG Wei, CAI Jiahao, et al. A review of structural design and tuning methods of two-dimensional membranes[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4823-4836. | |
| 29 | 王佳铭, 阮雪华, 贺高红. 面向不同工业二氧化碳分离体系的膜材料研究进展[J]. 化工学报, 2022, 73(8): 3417-3432. |
| WANG Jiaming, RUAN Xuehua, HE Gaohong. Research progress of membrane separation materials for different industrial CO2-containing mixtures[J]. CIESC Journal, 2022, 73(8): 3417-3432. | |
| 30 | GUO Meng, KANEZASHI Masakoto, NAGASAWA Hiroki, et al. Amino-decorated organosilica membranes for highly permeable CO2 capture[J]. Journal of Membrane Science, 2020, 611: 118328. |
| 31 | 郭猛, 钱俊明, 徐荣, 等. 二氧化碳捕集用桥架有机硅复合膜的制备[J]. 常州大学学报, 2022, 34(3): 47-53. |
| GUO Meng, QIAN Junming, XU Rong, et al. Preparation of bridged composite organosilica membrane for CO2 capture[J]. Journal of Changzhou University (Natural Science Edition), 2022, 34(3): 47-53. | |
| 32 | GUO Meng, QIAN Junming, XU Rong, et al. Boosting the CO2 capture efficiency through aromatic bridged organosilica membranes[J]. Journal of Membrane Science, 2022, 643: 120018. |
| 33 | GUO Meng, ZHANG Yanwen, XU Rong, et al. Ultrahigh permeation of CO2 capture using composite organosilica membranes[J]. Separation and Purification Technology, 2022, 282: 120061. |
| 34 | GUO Meng, CHENG Linglin, REN Xiuxiu, et al. Rigid-flexible coupled organosilica membranes toward high-efficiency molecules separation[J]. Journal of Membrane Science, 2024, 701: 122723. |
| 35 | GUO Meng, KANEZASHI Masakoto. Recent progress in a membrane-based technique for propylene/propane separation[J]. Membranes, 2021, 11(5): 310. |
| 36 | CHAWLA Muhammad, SAULAT Hammad, KHAN Muhammad Masood, et al. Membranes for CO2/CH4 and CO2/N2 gas separation[J]. Chemical Engineering & Technology, 2020, 43(2): 184-199. |
| 37 | SUZUKI Shunsuke, MESSAOUD Souha Belhaj, TAKAGAKI Atsushi, et al. Development of inorganic-organic hybrid membranes for carbon dioxide/methane separation[J]. Journal of Membrane Science, 2014, 471: 402-411. |
| 38 | YU Xin, MENG Lie, NIIMI Takuya, et al. Network engineering of a BTESE membrane for improved gas performance via a novel pH-swing method[J]. Journal of Membrane Science, 2016, 511: 219-227. |
| 39 | KONG Chunlong, DU Hongbing, CHEN Liang, et al. Nanoscale MOF/organosilica membranes on tubular ceramic substrates for highly selective gas separation[J]. Energy & Environmental Science, 2017, 10(8): 1812-1819. |
| 40 | SUN Shiyin, LI Shuangde, WANG Shikun, et al. Design and development of highly selective and permeable membranes for H2/CO2 separation—A review[J]. Chemical Engineering Journal, 2024, 494: 152972. |
| 41 | SONG Huating, ZHAO Shuaifei, CHEN Jiawei, et al. Hydrothermally stable Zr-doped organosilica membranes for H2/CO2 separation[J]. Microporous and Mesoporous Materials, 2016, 224: 277-284. |
| 42 | KANEZASHI Masakoto, SASAKI Takanori, TAWARAYAMA Hiromasa, et al. Hydrogen permeation properties and hydrothermal stability of sol-gel-derived amorphous silica membranes fabricated at high temperatures[J]. Journal of the American Ceramic Society, 2013, 96(9): 2950-2957. |
| 43 | DE VOS Renate M, VERWEIJ Henk. High-selectivity, high-flux silica membranes for gas separation[J]. Science, 1998, 279(5357): 1710-1711. |
| 44 | SONG Huating, WEI Yibin, QI Hong. Tailoring pore structures to improve the permselectivity of organosilica membranes by tuning calcination parameters[J]. Journal of Materials Chemistry A, 2017, 5 (47): 24657-24666. |
| 45 | So-Jin AHN, YUN Gwang-Nam, TAKAGAKI Atsushi, et al. Synthesis and characterization of hydrogen selective silica membranes prepared by chemical vapor deposition of vinyltriethoxysilane[J]. Journal of Membrane Science, 2018, 550: 1-8. |
| 46 | YANG Jing, FAN Wangqing, BELL Carl-Martin. Effect of calcination atmosphere on microstructure and H2/CO2 separation of palladium-doped silica membranes[J]. Separation and Purification Technology, 2019, 210: 659-669. |
| 47 | KANEZASHI Masakoto, FUCHIGAMI Daisuke, YOSHIOKA Tomohisa, et al. Control of Pd dispersion in sol-gel-derived amorphous silica membranes for hydrogen separation at high temperatures[J]. Journal of Membrane Science, 2013, 439: 78-86. |
| 48 | SONG Huating, ZHAO Shuaifei, LEI Jiaojiao, et al. Pd-doped organosilica membrane with enhanced gas permeability and hydrothermal stability for gas separation[J]. Journal of Materials Science, 2016, 51(13): 6275-6286. |
| 49 | 张恒飞, 刘为, 雷姣姣, 等. Pd掺杂量对有机无机杂化SiO2膜H2/CO2分离性能和水热稳定性能的影响[J]. 无机材料学报, 2018, 33(12): 1316-1322. |
| ZHANG Hengfei, LIU Wei, LEI Jiaojiao, et al. Effect of Pd doping on H2/CO2 separation performance and hydrothermal stability of organic-inorganic hybrid SiO2 membranes[J]. Journal of Inorganic Materials, 2018, 33(12): 1316-1322. | |
| 50 | ZHANG Hengfei, WEI Yibin, QI Hong. Palladium-niobium bimetallic doped organosilica membranes for H2/CO2 separation[J]. Microporous and Mesoporous Materials, 2020, 305: 110279. |
| 51 | ZHANG Hengfei, WEI Yibin, NIU Shufeng, et al. Fabrication of Pd-Nb bimetallic doped organosilica membranes by different metal doping routes for H2/CO2 separation[J]. Chinese Journal of Chemical Engineering, 2021, 36: 67-75. |
| [1] | 陈彦君, 戴杰, 单军强, 张思欣, 计磊, 朱晨杰, 应汉杰. 我国纤维素乙醇的研究进展和发展趋势[J]. 化工进展, 2025, 44(5): 2541-2562. |
| [2] | 朱俊英, 荣峻峰, 宗保宁. 螺旋藻固碳和作为饲用蛋白原料可行性分析[J]. 化工进展, 2025, 44(5): 2705-2715. |
| [3] | 丁阿静, 周巧巧, 顾学红. 膜反应器中杨木催化气化制清洁合成气[J]. 化工进展, 2025, 44(5): 2716-2723. |
| [4] | 乔金樑. 原料替代助力我国石化产业高质量发展[J]. 化工进展, 2025, 44(5): 2803-2805. |
| [5] | 陈奥辉, 宋艳芳, 陈为, 魏伟. 多孔自支撑电极电催化还原二氧化碳[J]. 化工进展, 2025, 44(5): 2806-2810. |
| [6] | 夏猛, 赵雪冰, 蒋国强, 卢滇楠, 刘铮. 电-酶催化CO2转化生产化学品的研究展望[J]. 化工进展, 2025, 44(5): 2825-2833. |
| [7] | 郑业, 何永清, 焦凤, 李欢. 倾斜壁面上液膜的流动不稳定性与烧干机制探究[J]. 化工进展, 2025, 44(4): 1876-1887. |
| [8] | 丁红兵, 柴旭天, 王世伟, 宋鑫宇, 孙宏军. 单液滴与多液滴撞击流动液膜的实验探究[J]. 化工进展, 2025, 44(4): 1888-1897. |
| [9] | 蔡瑞芸, 焦芮, 孙寒雪, 李安. 不对称浸润性Janus有机多孔膜的设计、制备及应用[J]. 化工进展, 2025, 44(4): 2057-2067. |
| [10] | 朱方龙, 冯倩倩. 红外透过型尼龙多孔膜的制备及光热性能[J]. 化工进展, 2025, 44(4): 2215-2224. |
| [11] | 薛立新, 董永平, 陈梦瑶, 高从堦. 十二烷基硫酸钠(SDS)和强碱(NaOH)对聚酰胺复合纳滤膜的协同调控机理[J]. 化工进展, 2025, 44(4): 2225-2237. |
| [12] | 窦玉, 王文选, 范春雷, 马吉亮, 梁财, 陈晓平. 脱硫石膏矿化CO2制备球霰石碳酸钙[J]. 化工进展, 2025, 44(4): 2328-2337. |
| [13] | 谢鑫瑶, 万芬, 伏炫羽, 范雨婷, 陈令修, 李鹏. Cu-Ag纳米团簇CO2电催化还原性能和机理[J]. 化工进展, 2025, 44(3): 1387-1395. |
| [14] | 曹俊雅, 宋恕哲, 贺鹏, 王利国, 赵雪锋, 曹妍, 李会泉. 顺序式模拟移动床分离煤基混合醇的Aspen色谱动态模拟[J]. 化工进展, 2025, 44(3): 1228-1242. |
| [15] | 刘江涛, 彭冲, 张永春. Zn调控Fe基催化剂催化CO2加氢制低碳烯烃[J]. 化工进展, 2025, 44(3): 1396-1405. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |