化工进展 ›› 2025, Vol. 44 ›› Issue (5): 2733-2745.DOI: 10.16085/j.issn.1000-6613.2024-1942
• 合成材料利用 • 上一篇
收稿日期:2024-11-26
修回日期:2025-01-25
出版日期:2025-05-25
发布日期:2025-05-20
通讯作者:
邱学青
作者简介:刘启予(1993—),男,副教授,硕士生导师,研究方向为木质素分子间作用力解析及微结构调控。E-mail:liuqiyu@gdut.edu.cn。
基金资助:
LIU Qiyu1,3(
), LIU Weifeng2, QIU Xueqing1,3(
)
Received:2024-11-26
Revised:2025-01-25
Online:2025-05-25
Published:2025-05-20
Contact:
QIU Xueqing
摘要:
木质素是自然界中储量最高的芳香类聚合物,造纸制浆工业每年会产生数千万吨工业木质素,但高值化利用率不足。高分子材料量大面广,但通常来自于不可再生的化石资源,且难以降解。开发高性能木质素/高分子复合材料对实现工业木质素大批量、高值化利用,缓解对化石资源的依赖,降低环境污染等问题具有现实意义。然而,工业木质素存在分子间作用力过强、分子间易聚集的问题,导致其在高分子材料中分散性能差、复合材料性能低。本文回顾了近年来的木质素/高分子复合材料界面相容性提升策略,从微观界面作用角度将其划分为了高应力粉碎、相容剂添加、化学改性、聚集态调控和界面动态键构建五类。文章详细评述了木质素微观结构及其与高分子的结合方式对复合材料强度和韧性的影响,指出界面相容性强化是构筑高性能木质素/高分子复合材料的核心,强化策略的经济性和绿色性是制备复合材料需要重点考虑的因素。今后的研究需要从机理层面进一步剖析木质素/高分子界面作用本质,针对高分子材料结构特征选择性调控木质素微结构和聚集态,制备高性能复合材料,同时拓宽工业木质素在智能材料、医用材料等新兴领域的利用途径。本文对高性能木质素/高分子复合材料的设计与构筑进行了系统性总结和归纳,对于指导该领域材料的开发与应用提供了理论依据和研究思路。
中图分类号:
刘启予, 刘伟峰, 邱学青. 基于界面相容性强化的木质素/高分子复合材料构筑策略[J]. 化工进展, 2025, 44(5): 2733-2745.
LIU Qiyu, LIU Weifeng, QIU Xueqing. Construction strategies of lignin/polymer composite based on interface compatibility strengthening[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2733-2745.
| 1 | Monika ÖSTERBERG, Alexander HENN K, FAROOQ Muhammad, et al. Biobased Nanomaterials─The role of interfacial interactions for advanced materials[J]. Chemical Reviews, 2023, 123(5): 2200-2241. |
| 2 | CHEN Jing, FAN Xiaolin, ZHANG Lidan, et al. Research progress in lignin-based slow/controlled release fertilizer[J]. ChemSusChem, 2020, 13(17): 4356-4366. |
| 3 | 蒋挺大. 木质素[M]. 2版. 北京: 化学工业出版社, 2009. |
| JIANG Tingda. Lignin[M]. 2nd ed. Beijing: Chemical Industry Press, 2009. | |
| 4 | 王欢, 杨东杰, 钱勇, 等. 木质素基功能材料的制备与应用研究进展[J]. 化工进展, 2019, 38(1): 434-448. |
| WANG Huan, YANG Dongjie, QIAN Yong, et al. Recent progress in the preparation and application of lignin-based functional materials[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 434-448. | |
| 5 | ZHANG Wenli, QIU Xueqing, WANG Caiwei, et al. Lignin derived carbon materials: Current status and future trends[J]. Carbon Research, 2022, 1(1): 14. |
| 6 | Charlotte K, Marc A. Polymers from renewable resources: A perspective for a special issue of polymer reviews[J]. Polymer Reviews, 2008, 48(1): 1-10. |
| 7 | ZHU Yunqing, ROMAIN Charles, WILLIAMS Charlotte K. Sustainable polymers from renewable resources[J]. Nature, 2016, 540(7633): 354-362. |
| 8 | MO Jianbin, WANG Haixu, YAN Mengzhen, et al. Construction of interfacial dynamic bonds for high performance lignin/polymer biocomposites[J]. Frontiers of Chemical Science and Engineering, 2023, 17(10): 1372-1388. |
| 9 | BASS Garrett F, EPPS Thomas H. Recent developments towards performance-enhancing lignin-based polymers[J]. Polymer Chemistry, 2021, 12(29): 4130-4158. |
| 10 | AGUSTIANY Erika Ayu, RIDHO Muhammad Rasyidur, Muslimatul Rahmi D N, et al. Recent developments in lignin modification and its application in lignin-based green composites: A review[J]. Polymer Composites, 2022, 43(8): 4848-4865. |
| 11 | SPIRIDON Iuliana, LELUK Karol, RESMERITA Ana Maria, et al. Evaluation of PLA-lignin bioplastics properties before and after accelerated weathering[J]. Composites B: Engineering, 2015, 69: 342-349. |
| 12 | COLLINS Maurice N, Mărioara NECHIFOR, Fulga TANASĂ, et al. Valorization of lignin in polymer and composite systems for advanced engineering applications—A review[J]. International Journal of Biological Macromolecules, 2019, 131: 828-849. |
| 13 | LIU Hai, GUAN Yanhua, YAN Li, et al. The development of lignin towards a natural and sustainable platform for optical materials[J]. Green Chemistry, 2024, 26, 9281-9294. |
| 14 | KADLA John F, KUBO Satoshi. Lignin-based polymer blends: Analysis of intermolecular interactions in lignin-synthetic polymer blends[J]. Composites A: Applied Science and Manufacturing, 2004, 35(3): 395-400. |
| 15 | RIDHO Muhammad Rasyidur, AGUSTIANY Erika Ayu, Muslimatul Rahmi DN, et al. Lignin as green filler in polymer composites: Development methods, characteristics, and potential applications[J]. Advances in Materials Science and Engineering, 2022, 2022(1): 1363481. |
| 16 | MIAO Chuanwei, HAMAD Wadood Y. Controlling lignin particle size for polymer blend applications[J]. Journal of Applied Polymer Science, 2017, 134(14): 44669. doi:10.1002/app.44669 . |
| 17 | IYER Krishnan A, TORKELSON John M. Sustainable green hybrids of polyolefins and lignin yield major improvements in mechanical properties when prepared via solid-state shear pulverization[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(5): 959-968. |
| 18 | ABDELWAHAB Mohamed A, MISRA Manjusri, MOHANTY Amar K. Injection molded biocomposites from polypropylene and lignin: Effect of compatibilizers on interfacial adhesion and performance[J]. Industrial Crops and Products, 2019, 132: 497-510. |
| 19 | VACHON Jérôme, Derar ASSAD-ALKHATEB, DE ARAUJO HSIA Laura, et al. Effect of compatibilizers on polyethylene-eucalyptus lignin blends[J]. Journal of Applied Polymer Science, 2023, 140(14): e53695. |
| 20 | MONDAL Sanchit, JATRANA Anushree, MAAN Sheetal, et al. Lignin modification and valorization in medicine, cosmetics, environmental remediation and agriculture: A review[J]. Environmental Chemistry Letters, 2023, 21(4): 2171-2197. |
| 21 | JIANG Lu, WANG Chengang, CHEE Peilin, et al. Strategies for lignin depolymerization and reconstruction towards functional polymers[J]. Sustainable Energy & Fuels, 2023, 7(13): 2953-2973. |
| 22 | WANG Xiu, BIAN Huiyang, NI Shuzhen, et al. BNNS/PVA bilayer composite film with multiple-improved properties by the synergistic actions of cellulose nanofibrils and lignin nanoparticles[J]. International Journal of Biological Macromolecules, 2020, 157: 259-266. |
| 23 | YANG Weijun, ZHU Yanlin, HE Yongbin, et al. Preparation of toughened poly(lactic acid)-poly(ε-caprolactone)-lignin nanocomposites with good heat- and UV-resistance[J]. Industrial Crops and Products, 2022, 183: 114965. |
| 24 | FENG Pingxian, LEI Junjie, MEI Jie, et al. Effect of lignin on the structure-property behavior of metal-coordinated and chemically crosslinked ethylene-propylene-diene-monomer composites[J]. International Journal of Biological Macromolecules, 2024, 271: 132766. |
| 25 | SUN Danting, MO Jianbin, LIU Weifeng, et al. Ultra-strong and tough bio-based polyester elastomer with excellent photothermal shape memory effect and degradation performance[J]. Advanced Functional Materials, 2024, 34(39): 2403333. |
| 26 | 亓伟, 王闻, 王琼, 等. 木质纤维素预处理技术及其机理研究进展[J]. 新能源进展, 2013, 1(2): 150-158. |
| QI Wei, WANG Wen, WANG Qiong, et al. Review on the pretreatment method and mechanism of lignocellulose[J]. Advances in New and Renewable Energy, 2013, 1(2): 150-158. | |
| 27 | ZHAO Wenwen, XIAO Lingping, SONG Guoyong, et al. From lignin subunits to aggregates: Insights into lignin solubilization[J]. Green Chemistry, 2017, 19(14): 3272-3281. |
| 28 | WANG Jingyu, QIAN Yong, LI Libo, et al. Atomic force microscopy and molecular dynamics simulations for study of lignin solution self-assembly mechanisms in organic–aqueous solvent mixtures[J]. ChemSusChem, 2020, 13(17): 4420-4427. |
| 29 | WANG Jingyu, QIAN Yong, DENG Yonghong, et al. Probing the interactions between lignin and inorganic oxides using atomic force microscopy[J]. Applied Surface Science, 2016, 390: 617-622. |
| 30 | WANG Jingyu, LI Ying, QIU Xueqing, et al. Dissolution of lignin in green urea aqueous solution[J]. Applied Surface Science, 2017, 425: 736-741. |
| 31 | WANG Jingyu, QIAN Yong, ZHOU Yijie, et al. Atomic force microscopy measurement in the lignosulfonate/inorganic silica system: From dispersion mechanism study to product design[J]. Engineering, 2021, 7(8): 1140-1148. |
| 32 | FU Shaoyun, FENG Xiqiao, LAUKE Bernd, et al. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites[J]. Composites Part B: Engineering, 2008, 39(6): 933-961. |
| 33 | ZHAO Wenwen, SIMMONS Blake, SINGH Seema, et al. From lignin association to nano-/micro-particle preparation: Extracting higher value of lignin[J]. Green Chemistry, 2016, 18(21): 5693-5700. |
| 34 | XU Kaimeng, SHI Zhengjun, Jianhua LYU, et al. Effects of hydrothermal pretreatment on nano-mechanical property of switchgrass cell wall and on energy consumption of isolated lignin-coated cellulose nanofibrils by mechanical grinding[J]. Industrial Crops and Products, 2020, 149: 112317. |
| 35 | YE Haichuan, YOU Tingting, NAWAZ Haq, et al. A comprehensive review on polylactic acid/lignin composites—Structure, synthesis, performance, compatibilization, and applications[J]. International Journal of Biological Macromolecules, 2024, 280: 135886. |
| 36 | LIU Liangxian, CUI Boyu, TAN Lei, et al. Improving the combination of cellulose and lignin using xylan as a compatibilizer[J]. Cellulose, 2021, 28(9): 5335-5349. |
| 37 | ZHOU Xin, HE Taizhi, JIANG Yinkui, et al. A novel network-structured compatibilizer for improving the interfacial behavior of PBS/lignin[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(25): 8592-8602. |
| 38 | YE Haichuan, HE Yuan, LI Haichao, et al. Customized compatibilizer to improve the mechanical properties of polylactic acid/lignin composites via enhanced intermolecular interactions for 3D printing[J]. Industrial Crops and Products, 2023, 205: 117454. |
| 39 | TAHER Muhammad ABU, WANG Xiaolin, FARIDUL HASAN K M, et al. Lignin modification for enhanced performance of polymer composites[J]. ACS Applied Bio Materials, 2023, 6(12): 5169-5192. |
| 40 | CHAI Lanfang, DU Boyu, YAN Shasha, et al. Preparation of activated lignin with high hydroxyl content using lewis acid as demethylation reagent[J]. International Journal of Biological Macromolecules, 2022, 222: 2571-2580. |
| 41 | XIAO Liangfeng, LIU Weifeng, HUANG Jinhao, et al. Study on the antioxidant activity of lignin and its application performance in SBS elastomer[J]. Industrial & Engineering Chemistry Research, 2021, 60(1): 790-797. |
| 42 | MO Jianbin, LEI Junjie, WANG Haixu, et al. Melt-processable polyvinyl alcohol/lignin composites with improved strength via synergistic plasticization of lignin[J]. International Journal of Biological Macromolecules, 2024, 267: 131726. |
| 43 | DEHNE Laura, VILA Carlos, SAAKE Bodo, et al. Esterification of Kraft lignin as a method to improve structural and mechanical properties of lignin-polyethylene blends[J]. Journal of Applied Polymer Science, 2017, 134(11): 44582. doi:10.1002/app.44582 . |
| 44 | Ji Won HEO, XIA Qian, KIM Min Soo, et al. Tunable hydrophobicity and biodegradability of acetylated lignin/polyester fibrous mat for water/oil separation[J]. Journal of Wood Chemistry and Technology, 2024, 44(4): 253-265. |
| 45 | LIU Hailing, CHUNG Hoyong. Lignin-based polymers via graft copolymerization[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2017, 55(21): 3515-3528. |
| 46 | KIM Sundol, CHUNG Hoyong. Biodegradable polymers: From synthesis methods to applications of lignin-graft-polyester[J]. Green Chemistry, 2024, 26(21): 10774-10803. |
| 47 | TANG Qianqian, QIAN Yong, YANG Dongjie, et al. Lignin-based nanoparticles: A review on their preparations and applications[J]. Polymers, 2020, 12(11): 2471. |
| 48 | ZHANG Zhao, TERRASSON Vincent, Erwann GUÉNIN. Lignin nanoparticles and their nanocomposites[J]. Nanomaterials, 2021, 11(5): 1336. |
| 49 | XIANG Ting, CHEN Liheng, QIU Xueqing, et al. Strengthening the π-conjugation of lignin by constructing its ordered supramolecular structure[J]. Chemical Engineering Journal, 2024, 497: 154356. |
| 50 | WANG Jingyu, CHEN Wenhao, YANG Dongjie, et al. Photonic lignin with tunable and stimuli-responsive structural color[J]. ACS Nano, 2022, 16(12): 20705-20713. |
| 51 | WANG Jingyu, CHEN Wenhao, YANG Dongjie, et al. Monodispersed lignin colloidal spheres with tailorable sizes for bio-photonic materials[J]. Small, 2022, 18(19): 2200671. |
| 52 | ZHANG Xiao, LIU Weifeng, YANG Dongjie, et al. Biomimetic supertough and strong biodegradable polymeric materials with improved thermal properties and excellent UV-blocking performance[J]. Advanced Functional Materials, 2019, 29(4): 1806912. |
| 53 | WANG Haixu, YANG Dongjie, XIONG Wenlong, et al. One-pot preparation of hydrophobic lignin/SiO2 nanoparticles and its reinforcing effect on HDPE[J]. International Journal of Biological Macromolecules, 2021, 180: 523-532. |
| 54 | HUANG Jinhao, LIU Weifeng, QIU Xueqing, et al. Effects of sacrificial coordination bonds on the mechanical performance of lignin-based thermoplastic elastomer composites[J]. International Journal of Biological Macromolecules, 2021, 183: 1450-1458. |
| 55 | ZHOU Xinxin, GUO Baochun, ZHANG Liqun, et al. Progress in bio-inspired sacrificial bonds in artificial polymeric materials[J]. Chemical Society Reviews, 2017, 46(20): 6301-6329. |
| 56 | MA Chao, WEI Jie, An Bowen, et al. Scallop-inspired of multi-boned network protein adhesive with excellent bonding strength, mildew resistance and flame retardancy. Industrial Crops and Products, 2024, 222: 120006. |
| 57 | ZHANG Xiao, LIU Weifeng, SUN Danting, et al. Very strong, super-tough, antibacterial, and biodegradable polymeric materials with excellent UV-blocking performance[J]. ChemSusChem, 2020, 13(18): 4974-4984. |
| 58 | ZHANG Xiao, LIU Weifeng, LIU Wenqiang, et al. High performance PVA/lignin nanocomposite films with excellent water vapor barrier and UV-shielding properties[J]. International Journal of Biological Macromolecules, 2020, 142: 551-558. |
| 59 | DUVAL Antoine, LAWOKO Martin. A review on lignin-based polymeric, micro- and nano-structured materials[J]. Reactive and Functional Polymers, 2014, 85: 78-96. |
| 60 | Ángel SÁNCHEZ-GONZÁLEZ, MARTÍN-MARTÍNEZ Francisco J, DOBADO J A. The role of weak interactions in lignin polymerization[J]. Journal of Molecular Modeling, 2017, 23(3): 80. |
| 61 | Dávid KUN, Béla PUKÁNSZKY. Polymer/lignin blends: Interactions, properties, applications[J]. European Polymer Journal, 2017, 93: 618-641. |
| 62 | LI Wenfeng, HUANG Jinhao, LIU Weifeng, et al. Lignin modified PBAT composites with enhanced strength based on interfacial dynamic bonds[J]. Journal of Applied Polymer Science, 2022, 139(27): e52476. |
| 63 | ZHANG Ganggang, TIAN Chenru, SHI Jinwei, et al. Mechanically robust, self-repairable, shape memory and recyclable ionomeric elastomer composites with renewable lignin via interfacial metal-ligand interactions[J]. ACS Applied Materials & Interfaces, 2022, 14(33): 38216-38227. |
| 64 | JIANG Shan, LIU Xiuyu, WANG Zehai, et al. In situ lignin modification enabling enhanced interfibrillar interactions in lignocellulosic nanomaterials toward structural applications[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(20): 7705-7718. |
| 65 | HUANG Zhiyi, WANG Huan, DU Jiahao, et al. High-strength, self-reinforcing and recyclable multifunctional lignin-based polyurethanes based on multi-level dynamic cross-linking[J]. Chemical Engineering Journal, 2023, 473: 145423. |
| 66 | 于清溪. 中国橡胶工业崛起之思考[J]. 现代化工, 2006, 26(6): 1-6. |
| YU Qingxi. Some thoughts about rubber industry already grown up in China[J]. Modern Chemical Industry, 2006, 26(6): 1-6. | |
| 67 | FAN Yiran, FOWLER Geoff D, ZHAO Ming. The past, present and future of carbon black as a rubber reinforcing filler—A review[J]. Journal of Cleaner Production, 2020, 247: 119115. |
| 68 | KARÁSEK L, SUMITA M. Characterization of dispersion state of filler and polymer-filler interactions in rubber-carbon black composites[J]. Journal of Materials Science, 1996, 31(2): 281-289. |
| 69 | FU Ye, ZHAO Detao, YAO Pengjun, et al. Highly aging-resistant elastomers doped with antioxidant-loaded clay nanotubes[J]. ACS Applied Materials & Interfaces, 2015, 7(15): 8156-8165. |
| 70 | PRAVEEN S, CHATTOPADHYAY P K, ALBERT P, et al. Synergistic effect of carbon black and nanoclay fillers in styrene butadiene rubber matrix: Development of dual structure[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(3): 309-316. |
| 71 | GOMES Filipa O, ROSÁRIO ROCHA M, ALVES Arminda, et al. A review of potentially harmful chemicals in crumb rubber used in synthetic football pitches[J]. Journal of Hazardous Materials, 2021, 409: 124998. |
| 72 | WANG Haixu, LIU Weifeng, HUANG Jinhao, et al. Bioinspired engineering towards tailoring advanced lignin/rubber elastomers[J]. Polymers, 2018, 10(9): 1033. |
| 73 | WANG Haixu, LIU Weifeng, TU Zhikai, et al. Lignin-reinforced nitrile rubber/poly(vinyl chloride) composites via metal coordination interactions[J]. Industrial & Engineering Chemistry Research, 2019, 58(51): 23114-23123. |
| 74 | YANG Ling, LUO Wenjie, MUHAMMAD Yassen, et al. Surface modification of bagasse fibers based on polyphenol-induced self-supplied lignin for the creation of composite SBS-modified asphalt[J]. Industrial Crops and Products, 2024, 208, 117835. |
| 75 | HUANG Jinhao, LIU Weifeng, QIU Xueqing. High performance thermoplastic elastomers with biomass lignin as plastic phase[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 6550-6560. |
| 76 | TU Zhikai, LIU Weifeng, WANG Jin, et al. Biomimetic high performance artificial muscle built on sacrificial coordination network and mechanical training process[J]. Nature Communications, 2021, 12(1): 2916. |
| 77 | TU Zhikai, WANG Jin, LIU Weifeng, et al. A fast-response biomimetic phototropic material built by a coordination-assisted photothermal domino strategy[J]. Materials Horizons, 2022, 9(10): 2613-2625. |
| 78 | LIU Weifeng, FANG Chang, WANG Shengyu, et al. High-performance lignin-containing polyurethane elastomers with dynamic covalent polymer networks[J]. Macromolecules, 2019, 52(17): 6474-6484. |
| 79 | LIU Zheng, LIU Tao, JIANG Huguo, et al. Biomimetic lignin-protein adhesive with dynamic covalent/hydrogen hybrid networks enables high bonding performance and wood-based panel recycling[J]. International Journal of Biological Macromolecules, 2022, 214: 230-240. |
| 80 | SONG Panpan, DU Liuping, PANG Jiuyin, et al. Preparation and properties of lignin-based vitrimer system containing dynamic covalent bonds for reusable and recyclable epoxy asphalt[J]. Industrial Crops and Products, 2023, 197: 116498. |
| 81 | WANG Haixu, HUANG Jianhua, LIU Weifeng, et al. Tough and fast light-controlled healable lignin-containing polyurethane elastomers[J]. Macromolecules, 2022, 55(19): 8629-8641. |
| 82 | WANG Shengyu, LIU Weifeng, YANG Dongjie, et al. Highly resilient lignin-containing polyurethane foam[J]. Industrial & Engineering Chemistry Research, 2019, 58(1): 496-504. |
| [1] | 王水众, 宋国勇. 木质素选择性氢解制备高功能化单酚及其高值利用[J]. 化工进展, 2025, 44(5): 2535-2540. |
| [2] | 陈彦君, 戴杰, 单军强, 张思欣, 计磊, 朱晨杰, 应汉杰. 我国纤维素乙醇的研究进展和发展趋势[J]. 化工进展, 2025, 44(5): 2541-2562. |
| [3] | 艾佳臻, 张振磊, 詹国雄, 马龙巍, 史国靖, 尹海川, 张香平. “木质素优先”还原催化分馏工艺与模拟研究进展[J]. 化工进展, 2025, 44(5): 2683-2693. |
| [4] | 王鑫颖, 李爱朋, 苏文蕊, 费强. 木质素降解酶人工调控的研究进展[J]. 化工进展, 2025, 44(5): 2694-2704. |
| [5] | 安明泽, 张兵兵, 王盛, 陈蔚洁, 刘世旺, 薛斌, 徐国敏, 秦舒浩. 碳基定型复合相变材料的研究进展[J]. 化工进展, 2025, 44(4): 2102-2118. |
| [6] | 张舒茜, 陈佩婷, 蒲建波, 王宇作, 阮殿波, 乔志军. 进风量对硅/碳负极材料二次颗粒尺寸及电化学性能的影响[J]. 化工进展, 2025, 44(4): 2196-2201. |
| [7] | 刘俊杰, 吴建民, 孙启文, 王建成, 孙燕. 茂金属催化线性α-烯烃聚合获取高分子量产物研究进展[J]. 化工进展, 2025, 44(3): 1309-1322. |
| [8] | 马晓宇, 张岩, 周阿武, 李涵冰, 杨飞华, 李建荣. MOF-on-MOF复合材料制备与光催化性能的研究进展[J]. 化工进展, 2025, 44(3): 1417-1431. |
| [9] | 单雪影, 李玲玉, 张濛, 张家傅, 李锦春. 阻燃环氧树脂/低分子聚苯醚材料的制备及性能[J]. 化工进展, 2025, 44(3): 1533-1541. |
| [10] | 冯琬淇, 杨翠平, 郝俊尧, 倪红梅, 赵俭波. 棉浆黑液提取物基木塑复合材料的制备及性能[J]. 化工进展, 2025, 44(3): 1768-1775. |
| [11] | 赵珂, 张恒, 翟倩, 甄琪, 苏天阳, 崔景强. PLA/PEG@SDS超细纤维水蒸发器的复合结构设计及其液体传输行为[J]. 化工进展, 2025, 44(2): 1014-1024. |
| [12] | 方碧瑶, 邱健豪, 李伊馨, 姚建峰. 木质纤维素基生物质炭改性半导体及其光催化应用[J]. 化工进展, 2025, 44(2): 957-970. |
| [13] | 杨帆, 赵溢涛, 朱学栋, 王达锐. 三元尖晶石与孪晶ZSM-5分子筛在苯与二氧化碳甲基化中的应用[J]. 化工进展, 2025, 44(2): 856-866. |
| [14] | 闫鹏程, 高卓凡, 周志辉, 吴红丹, 陈霞, 周显, 范泽宇, 邓闪闪, 鲁麒, 向媛. 聚酰胺/聚醚醚酮复合膜的制备及其有机溶剂纳滤性能[J]. 化工进展, 2025, 44(2): 1147-1156. |
| [15] | 刘炜, 张敏, 朱照琪, 王毅, 梁卫东, 孙寒雪. 黑色二氧化钛纳米材料的构筑及其应用现状[J]. 化工进展, 2025, 44(1): 341-353. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |