化工进展 ›› 2025, Vol. 44 ›› Issue (1): 341-353.DOI: 10.16085/j.issn.1000-6613.2023-2275
刘炜1(), 张敏2, 朱照琪1, 王毅1, 梁卫东1(
), 孙寒雪1(
)
收稿日期:
2023-12-27
修回日期:
2024-01-30
出版日期:
2025-01-15
发布日期:
2025-02-13
通讯作者:
梁卫东,孙寒雪
作者简介:
刘炜(1999—),男,硕士研究生,研究方向为微纳孔功能材料。E-mail:2497865718@qq.com。
基金资助:
LIU Wei1(), ZHANG Min2, ZHU Zhaoqi1, WANG Yi1, LIANG Weidong1(
), SUN Hanxue1(
)
Received:
2023-12-27
Revised:
2024-01-30
Online:
2025-01-15
Published:
2025-02-13
Contact:
LIANG Weidong, SUN Hanxue
摘要:
二氧化钛(TiO2)是典型的氧化物半导体材料,广泛应用于光催化领域,但其较宽的能量带隙限制了其在实际中的应用。黑色TiO2(B-TiO2)纳米材料通过在TiO2表面构筑结构缺陷降低带隙宽度,能够有效提高其可见光响应性能和量子效率。本文总结了B-TiO2的基本特性,包括光学性质、晶型、缺陷与微观结构性质,并对近年来B-TiO2的制备与缺陷构筑方法(如气氛焙烧法、溶胶-凝胶法、化学还原法等)进行了系统总结。同时,本文梳理了黑色TiO2性能提升策略及其在水体净化、有机物降解、能源转换及医疗等领域的应用现状。最后指出B-TiO2研究领域未来需要重点关注的几个方面为:结合理论和实验深入探讨其结构-性能之间的构效关系是合理设计B-TiO2表面缺陷、开发高效合成方法的基础,先进的表征和分析手段有待加强;在保持高活性的同时,开发结构更加稳定的B-TiO2是将其推向实际应用的重要前提;此外,交叉学科的发展应推动B-TiO2的应用范围向更多领域延伸。
中图分类号:
刘炜, 张敏, 朱照琪, 王毅, 梁卫东, 孙寒雪. 黑色二氧化钛纳米材料的构筑及其应用现状[J]. 化工进展, 2025, 44(1): 341-353.
LIU Wei, ZHANG Min, ZHU Zhaoqi, WANG Yi, LIANG Weidong, SUN Hanxue. Preparation and current applications of black titanium dioxide nanomaterials[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 341-353.
样品名称 | 合成方法 | 带隙宽度 /eV | 吸光波长 /nm | 微观结构 | 缺陷类型 | 参考文献 |
---|---|---|---|---|---|---|
黑色 TiO2 纳米晶体 | 气氛焙烧法(H2) | 1.26 | — | 无序工程纳米晶体结构 | Ti3+,氧空位 | [ |
黑色 TiO2 纳米粒子 | 气氛焙烧法(真空) | 2.07 | 200~1000 | 介孔颗粒结构 | Ti3+,氧空位 | [ |
掺杂氮的黑色TiO2 | 气氛焙烧法(N2) | 1.47 | 400~500 | 锐钛矿相晶体结构 | N元素,氧空位,Ti3+ | [ |
黑色TiO2 | 铝热还原法 | 3.02 | — | 超薄空心球 | 表面积,氧空位 | [ |
黑色TiO2 | 铝热还原法 盐酸酸洗法 | 2.4~2.8 | 600~800 | 纯锐钛矿晶体结构 | 结构无序、氧空位 | [ |
高度畸变S/C/Ti3+掺杂的黑色TiO2 | 溶胶-凝胶法 | 2.53 | — | 球形纳米结构 | Ti3+,氧空位 | [ |
具有核壳结构的黑色TiO2 | 溶胶-凝胶法 | 2.96 | 400~600 | 核壳结构 | Ti3+ | [ |
具有可控晶格无序的黑色TiO2 | 溶剂挥发诱导自组装法 化学还原法 | 2.65 | 400~800 | 空心球结构 | Ti3+,比较大的比表面积,较高的无序度 | [ |
具有反蛋白石结构的负载镍的 黑色TiO2 | 模板法 气氛焙烧法(H2) | 1.71 | 400~800 | IO结构 | Ti3+,掺杂元素Ni | [ |
黑色TiO2纳米胶体 | 脉冲激光辐照法 | 1.9 | 400~500 | 球形核结构 | 氧空位,晶格缺陷 | [ |
掺杂碳黑的锐钛矿型TiO2纳米棒 | 气氛焙烧法(N2) | 2.4~3.2 | 350~450 | 短纳米棒结构 | Ti3+,氧空位,杂质掺杂 | [ |
黑色TiO2纳米板 | 气氛焙烧法(Ar2) | 1.5 | 500~600 | 非晶态结构 | 氧空位,无序结构,Ti3+ | [ |
表1 黑色TiO2的制备方法及特性
样品名称 | 合成方法 | 带隙宽度 /eV | 吸光波长 /nm | 微观结构 | 缺陷类型 | 参考文献 |
---|---|---|---|---|---|---|
黑色 TiO2 纳米晶体 | 气氛焙烧法(H2) | 1.26 | — | 无序工程纳米晶体结构 | Ti3+,氧空位 | [ |
黑色 TiO2 纳米粒子 | 气氛焙烧法(真空) | 2.07 | 200~1000 | 介孔颗粒结构 | Ti3+,氧空位 | [ |
掺杂氮的黑色TiO2 | 气氛焙烧法(N2) | 1.47 | 400~500 | 锐钛矿相晶体结构 | N元素,氧空位,Ti3+ | [ |
黑色TiO2 | 铝热还原法 | 3.02 | — | 超薄空心球 | 表面积,氧空位 | [ |
黑色TiO2 | 铝热还原法 盐酸酸洗法 | 2.4~2.8 | 600~800 | 纯锐钛矿晶体结构 | 结构无序、氧空位 | [ |
高度畸变S/C/Ti3+掺杂的黑色TiO2 | 溶胶-凝胶法 | 2.53 | — | 球形纳米结构 | Ti3+,氧空位 | [ |
具有核壳结构的黑色TiO2 | 溶胶-凝胶法 | 2.96 | 400~600 | 核壳结构 | Ti3+ | [ |
具有可控晶格无序的黑色TiO2 | 溶剂挥发诱导自组装法 化学还原法 | 2.65 | 400~800 | 空心球结构 | Ti3+,比较大的比表面积,较高的无序度 | [ |
具有反蛋白石结构的负载镍的 黑色TiO2 | 模板法 气氛焙烧法(H2) | 1.71 | 400~800 | IO结构 | Ti3+,掺杂元素Ni | [ |
黑色TiO2纳米胶体 | 脉冲激光辐照法 | 1.9 | 400~500 | 球形核结构 | 氧空位,晶格缺陷 | [ |
掺杂碳黑的锐钛矿型TiO2纳米棒 | 气氛焙烧法(N2) | 2.4~3.2 | 350~450 | 短纳米棒结构 | Ti3+,氧空位,杂质掺杂 | [ |
黑色TiO2纳米板 | 气氛焙烧法(Ar2) | 1.5 | 500~600 | 非晶态结构 | 氧空位,无序结构,Ti3+ | [ |
B-TiO2 | 合成方法 | 目标分子 | 降解率 | 降解机理 | 参考文献 |
---|---|---|---|---|---|
金红石型黑色TiO2 | 化学还原法、气氛焙烧法(Ar) | 亚甲基蓝 | 100%(10-5mol/L,20min) | 较窄的带隙显示出较宽的吸光度,且降低了光电子的重组速率,增强了载流子的迁移,产生的H+和·OH是降解亚甲基蓝分子的主要活性物种 | [ |
三元碳球(CSs)/ TiO2-x @碳化氮(CN) | 化学还原法 | 2,4,6-三氯苯酚 | >90%(10mg/L,150min) | TiO2-x /g-C3N4异质结与CSs结构中Ti-O-C桥之间多层转移的有效电子传递,使其具有良好的可见光收集能力,同时高的比表面积为吸附和表面反应提供有效反应位点,反应生成·OH和电子空穴有效降解2,4,6-三氯苯酚 | [ |
氢化的黑色TiO2 | 气氛烘焙法(H2) | 蚁醛 | 57%(100mg/L,4h) | 表面存在氧空位,并通过杂质缺陷电离产生大量电子;吸附在H-TiO2/H-C-TiO2表面的O2与电子相互作用,转化为活性氧降解甲醛 | [ |
黑色TiO2纳米粒子 | 化学还原法、 气氛焙烧法(N2) | 二甲苯 | 35.64%(60mg/L) | CuOTiO2(mb)中Ti4+、Ti3+、Cu2+和Cu+的共存降低了e--h+的复合速率,Cu-MOF前体引入的晶粒最小使其带隙变窄为2.75eV,显著提高了可见光下对二甲苯的去除效率 | [ |
黑色TiO2 | 气氛烘焙法 (真空) | 乙酰氨基酚 | 100% (1mg/L,3h) | 黑色TiO2样品的价带比OH-/·OH的氧化还原电位更正,在光催化过程中具有较高的生成·OH自由基的电位 | [ |
磁性γ-Fe2O3超薄纳米片修饰的介孔黑色TiO2空心球 | 化学还原法、 气氛烘焙法(H2) | 四环素 | 99.3%(10mg/L,50min) | 辐照后的氧化活性物质主要有四种:羟基自由基、空穴、超氧阴离子和过氧化氢,这些活性氧化物在降解过程中攻击四环素的官能团使其分解 | [ |
氮掺杂的黑色TiO2 | 化学还原法、 气氛烘焙法(Ar) | 环丙沙星 | 100%(500mg/L,70min) | 样品具有更高的光致电子空穴对分离效率,通过·OH自由基氧化分解环丙沙星 | [ |
磁性Fe2O3修饰的介孔黑色TiO2空心球 | 化学还原法、 气氛烘焙法(H2) | 赛克津 | 99%(10mg /L,60min) | 由于氧空位、Ti3+和Fe2+的形成,使TiO2带隙明显缩小,有利于光生载流子的分离,在水介质中捕获溶解氧,从而形成超氧自由基和H2O2,孔洞与水或OH-反应,使赛克津分子完全矿化 | [ |
表2 B-TiO2在水体污染物去除方面的应用
B-TiO2 | 合成方法 | 目标分子 | 降解率 | 降解机理 | 参考文献 |
---|---|---|---|---|---|
金红石型黑色TiO2 | 化学还原法、气氛焙烧法(Ar) | 亚甲基蓝 | 100%(10-5mol/L,20min) | 较窄的带隙显示出较宽的吸光度,且降低了光电子的重组速率,增强了载流子的迁移,产生的H+和·OH是降解亚甲基蓝分子的主要活性物种 | [ |
三元碳球(CSs)/ TiO2-x @碳化氮(CN) | 化学还原法 | 2,4,6-三氯苯酚 | >90%(10mg/L,150min) | TiO2-x /g-C3N4异质结与CSs结构中Ti-O-C桥之间多层转移的有效电子传递,使其具有良好的可见光收集能力,同时高的比表面积为吸附和表面反应提供有效反应位点,反应生成·OH和电子空穴有效降解2,4,6-三氯苯酚 | [ |
氢化的黑色TiO2 | 气氛烘焙法(H2) | 蚁醛 | 57%(100mg/L,4h) | 表面存在氧空位,并通过杂质缺陷电离产生大量电子;吸附在H-TiO2/H-C-TiO2表面的O2与电子相互作用,转化为活性氧降解甲醛 | [ |
黑色TiO2纳米粒子 | 化学还原法、 气氛焙烧法(N2) | 二甲苯 | 35.64%(60mg/L) | CuOTiO2(mb)中Ti4+、Ti3+、Cu2+和Cu+的共存降低了e--h+的复合速率,Cu-MOF前体引入的晶粒最小使其带隙变窄为2.75eV,显著提高了可见光下对二甲苯的去除效率 | [ |
黑色TiO2 | 气氛烘焙法 (真空) | 乙酰氨基酚 | 100% (1mg/L,3h) | 黑色TiO2样品的价带比OH-/·OH的氧化还原电位更正,在光催化过程中具有较高的生成·OH自由基的电位 | [ |
磁性γ-Fe2O3超薄纳米片修饰的介孔黑色TiO2空心球 | 化学还原法、 气氛烘焙法(H2) | 四环素 | 99.3%(10mg/L,50min) | 辐照后的氧化活性物质主要有四种:羟基自由基、空穴、超氧阴离子和过氧化氢,这些活性氧化物在降解过程中攻击四环素的官能团使其分解 | [ |
氮掺杂的黑色TiO2 | 化学还原法、 气氛烘焙法(Ar) | 环丙沙星 | 100%(500mg/L,70min) | 样品具有更高的光致电子空穴对分离效率,通过·OH自由基氧化分解环丙沙星 | [ |
磁性Fe2O3修饰的介孔黑色TiO2空心球 | 化学还原法、 气氛烘焙法(H2) | 赛克津 | 99%(10mg /L,60min) | 由于氧空位、Ti3+和Fe2+的形成,使TiO2带隙明显缩小,有利于光生载流子的分离,在水介质中捕获溶解氧,从而形成超氧自由基和H2O2,孔洞与水或OH-反应,使赛克津分子完全矿化 | [ |
1 | RAJARAMAN T S, PARIKH Sachin P, GANDHI Vimal G. Black TiO2: A review of its properties and conflicting trends[J]. Chemical Engineering Journal, 2020, 389: 123918. |
2 | LIAO Lijun, WANG Mingtao, LI Zhenzi, et al. Recent advances in black TiO2 nanomaterials for solar energy conversion[J]. Nanomaterials, 2023, 13(3): 468. |
3 | DETTE Christian, PÉREZ-OSORIO Miguel A, KLEY Christopher S, et al. TiO2 anatase with a bandgap in the visible region[J]. Nano Letters, 2014, 14(11): 6533-6538. |
4 | 张甄, 王宝冬, 徐文强, 等. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(S1): 8-15. |
ZHANG Zhen, WANG Baodong, XU Wenqiang, et al. Research progress of black titanium dioxide nanomaterials[J]. Materials Reports, 2019, 33(S1): 8-15. | |
5 | CHEN Xiaobo, LIU Lei, YU Peter Y, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011, 331(6018): 746-750. |
6 | WANG Xiangdong, FU Rong, YIN Qianqian, et al. Black TiO2 synthesized via magnesiothermic reduction for enhanced photocatalytic activity[J]. Journal of Nanoparticle Research, 2018, 20(4): 89. |
7 | YU Xiaomei, KIM Boseong, KIM Yu Kwon. Highly enhanced photoactivity of anatase TiO2 nanocrystals by controlled hydrogenation-induced surface defects[J]. ACS Catalysis, 2013, 3(11): 2479-2486. |
8 | SINHAMAHAPATRA Apurba, JEON Jong-Pil, YU Jong-Sung. A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production[J]. Energy & Environmental Science, 2015, 8(12): 3539-3544. |
9 | SONG Hui, LI Chenxi, LOU Zirui, et al. Effective formation of oxygen vacancies in black TiO2 nanostructures with efficient solar-driven water splitting[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8982-8987. |
10 | LI Zhe, WANG Engui, ZHANG Yingzi, et al. Antibacterial ability of black titania in dark: Via oxygen vacancies mediated electron transfer[J]. Nano Today, 2023, 50: 101826. |
11 | 张开富. 多孔黑二氧化钛及其复合体的制备与光催化性能研究[D]. 哈尔滨: 黑龙江大学, 2016. |
ZHANG Kaifu. Preparation and photocatalytic properties of porous black titanium dioxide and its complex[D]. Harbin: Helongjiang University, 2016. | |
12 | KATAL Reza, SALEHI Mojtaba, FARAHANI Mohammad Hossein Davood Abadi, et al. Preparation of a new type of black TiO2 under a vacuum atmosphere for sunlight photocatalysis[J]. ACS Applied Materials & Interfaces, 2018, 10(41): 35316-35326. |
13 | YE Jin, HE Jiahui, WANG Shuang, et al. Nickel-loaded black TiO2 with inverse opal structure for photocatalytic reduction of CO2 under visible light[J]. Separation and Purification Technology, 2019, 220: 8-15. |
14 | ZHOU Li, CAI Min, ZHANG Xu, et al. In-situ nitrogen-doped black TiO2 with enhanced visible-light-driven photocatalytic inactivation of Microcystis aeruginosa cells: Synthesization, performance and mechanism[J]. Applied Catalysis B: Environmental, 2020, 272: 119019. |
15 | PATIL Shivaraj B, PHATTEPUR Harish, NAGARAJU G, et al. Highly distorted mesoporous S/C/Ti3+ doped black TiO2 for simultaneous visible light degradation of multiple dyes[J]. New Journal of Chemistry, 2020, 44(23): 9830-9836. |
16 | YANG Chongyin, WANG Zhou, LIN Tianquan, et al. Core-shell nanostructured “black” rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping[J]. Journal of the American Chemical Society, 2013, 135(47): 17831-17838. |
17 | WU Tong, FAN Jinchen, LI Qiaoxia, et al. Palladium nanoparticles anchored on anatase titanium dioxide-black phosphorus hybrids with heterointerfaces: Highly electroactive and durable catalysts for ethanol electrooxidation[J]. Advanced Energy Materials, 2018, 8(1): 1701799. |
18 | AN Ha-Rim, PARK So Young, Jin Young HUH, et al. Nanoporous hydrogenated TiO2 photocatalysts generated by underwater discharge plasma treatment for solar photocatalytic applications[J]. Applied Catalysis B: Environmental, 2017, 211: 126-136. |
19 | ZHENG Peiru, ZHANG Lishu, ZHANG Xingfan, et al. Hydrogenation of TiO2 nanosheets and nanoparticles: Typical reduction stages and orientation-related anisotropic disorder[J]. Journal of Materials Chemistry A, 2021, 9(39): 22603-22614. |
20 | HAN Lijuan, AN Xingcai, ZHANG Ping, et al. The removal of formaldehyde via visible photocatalysis using the black TiO2 nanoparticles with mesoporous[J]. ChemistrySelect, 2020, 5(1): 97-103. |
21 | ZHANG Xu, CAI Min, CUI Naxin, et al. Defective black TiO2: Effects of annealing atmospheres and urea addition on the properties and photocatalytic activities[J]. Nanomaterials, 2021, 11(10): 2648. |
22 | LI Jun, WU Enhui, HOU Jing, et al. A facile method for the preparation of black TiO2 by Al reduction of TiO2 and their visible light photocatalytic activity[J]. RSC Advances, 2020, 10(57): 34775-34780. |
23 | HAIDER Sajjad, NAWAZ Rab, ANJUM Muzammil, et al. Property-performance relationship of core-shell structured black TiO2 photocatalyst for environmental remediation[J]. Frontiers of Environmental Science & Engineering, 2023, 17(9): 111. |
24 | JIANG Xiongrui, YAN Zhiyao, ZHANG Jing, et al. Mesoporous hollow black TiO2 with controlled lattice disorder degrees for highly efficient visible-light-driven photocatalysis[J]. RSC Advances, 2019, 9(63): 36907-36914. |
25 | RAVEENDRAN NAIR Pooja, ROSA SANTIAGO RAMIREZ Claudia, ANGEL GRACIA PINILLA Miguel, et al. Black titanium dioxide nanocolloids by laser irradiation in liquids for visible light photo-catalytic/electrochemical applications[J]. Applied Surface Science, 2023, 623: 157096. |
26 | LI Wenjuan, LIANG Robert, ZHOU Norman Y, et al. Carbon black-doped anatase TiO2 nanorods for solar light-induced photocatalytic degradation of methylene blue[J]. ACS Omega, 2020, 5(17): 10042-10051. |
27 | KANG Jianxin, ZHANG Yan, CHAI Ziwei, et al. Amorphous domains in black titanium dioxide[J]. Advanced Materials, 2021, 33(23): e2100407. |
28 | GAMBOA Julio Andrade, PASQUEVICH Daniel M. Effect of chlorine atmosphere on the anatase-rutile transformation[J]. Journal of the American Ceramic Society, 1992, 75(11): 2934-2938. |
29 | Joohyun LIM, KIM Se-Ho, AYMERICH ARMENGOL Raquel Aymerich, et al. Atomic-scale mapping of impurities in partially reduced hollow TiO2 nanowires[J]. Angewandte Chemie International Edition, 2020, 59(14): 5651-5655. |
30 | ZHU Guilian, YIN Hao, YANG Chongyin, et al. Black titania for superior photocatalytic hydrogen production and photoelectrochemical water splitting[J]. ChemCatChem, 2015, 7(17): 2614-2619. |
31 | XIAO Bo, YU Fang, XIA Yue, et al. Wood-based, bifunctional, mulberry-like nanostructured black titania evaporator for solar-driven clean water generation[J]. Energy Technology, 2022, 10(3): 2100679. |
32 | LI Zebiao, BIAN Haidong, XU Zhengtao, et al. Solution-based comproportionation reaction for facile synthesis of black TiO2 nanotubes and nanoparticles[J]. ACS Applied Energy Materials, 2020, 3(7): 6087-6092. |
33 | ZHAN Xuepeng, XU Huailiang, LI Chunhao, et al. Remote and rapid micromachining of broadband low-reflectivity black silicon surfaces by femtosecond laser filaments[J]. Optics Letters, 2017, 42(3): 510-513. |
34 | SU Yue, ZHANG Wei, CHEN Shanming, et al. Engineering black titanium dioxide by femtosecond laser filament[J]. Applied Surface Science, 2020, 520: 146298. |
35 | GRABSTANOWICZ Lauren R, GAO Shanmin, LI Tao, et al. Facile oxidative conversion of TiH2 to high-concentration Ti3+-self-doped rutile TiO2 with visible-light photoactivity[J]. Inorganic Chemistry, 2013, 52(7): 3884-3890. |
36 | ZHU Chengzhang, CHEN Xiao, MA Jian, et al. Carbon nitride-modified defective TiO2– x @Carbon spheres for photocatalytic H2 evolution and pollutants removal: Synergistic effect and mechanism insight[J]. The Journal of Physical Chemistry C, 2018, 122(35): 20444-20458. |
37 | ZENG Lei, SONG Wulin, LI Minghui, et al. Catalytic oxidation of formaldehyde on surface of H-TiO2/H-C-TiO2 without light illumination at room temperature[J]. Applied Catalysis B: Environmental, 2014, 147: 490-498. |
38 | ZHOU Wenjun, SHEN Boxiong, WANG Fumei, et al. Enhanced photocatalytic degradation of xylene by blackening TiO2 nanoparticles with high dispersion of CuO[J]. Journal of Hazardous Materials, 2020, 391: 121642. |
39 | REN Liping, ZHOU Wei, SUN Bojing, et al. Defects-engineering of magnetic γ-Fe2O3 ultrathin nanosheets/mesoporous black TiO2 hollow sphere heterojunctions for efficient charge separation and the solar-driven photocatalytic mechanism of tetracycline degradation[J]. Applied Catalysis B: Environmental, 2019, 240: 319-328. |
40 | SARAFRAZ Mansour, SADEGHI Morteza, YAZDANBAKHSH Ahmadreza, et al. Enhanced photocatalytic degradation of ciprofloxacin by black Ti3+/N-TiO2 under visible LED light irradiation: Kinetic, energy consumption, degradation pathway, and toxicity assessment[J]. Process Safety and Environmental Protection, 2020, 137: 261-272. |
41 | SUN Bojing, ZHOU Wei, LI Haoze, et al. Magnetic Fe2O3/mesoporous black TiO2 hollow sphere heterojunctions with wide-spectrum response and magnetic separation[J]. Applied Catalysis B: Environmental, 2018, 221: 235-242. |
42 | CAREY John H, LAWRENCE John, TOSINE Helle M. Photodechlorination of PCB in the presence of titanium dioxide in aqueous suspensions[J].Bull of Environ Contam Toxic,1976,16(6): 697-701. |
43 | CAO Yan, XING Zipeng, SHEN Yingcai, et al. Mesoporous black Ti3+/N-TiO2 spheres for efficient visible-light-driven photocatalytic performance[J]. Chemical Engineering Journal, 2017, 325: 199-207. |
44 | JIANG Jiaojiao, XING Zipeng, LI Meng, et al. In situ Ti3+/N-codoped three-dimensional (3D) urchinlike black TiO2 architectures as efficient visible-light-driven photocatalysts[J]. Industrial & Engineering Chemistry Research, 2017, 56(28): 7948-7956. |
45 | XUE Chaorui, LI Dong, LI Yangsen, et al. 3D-carbon dots decorated black TiO2 nanotube Array@Ti foam with enhanced photothermal and photocatalytic activities[J]. Ceramics International, 2019, 45(14): 17512-17520. |
46 | DU Jimin, WANG Huiming, CHEN Huijuan, et al. Synthesis and enhanced photocatalytic activity of black porous Zr-doped TiO2 monoliths[J]. Nano, 2016, 11(6): 1650068. |
47 | ZHANG Hang, XING Zipeng, ZHANG Yan, et al. Ni2+ and Ti3+ Co-doped porous black anatase TiO2 with unprecedented-high visible-light-driven photocatalytic degradation performance[J]. RSC Advances, 2015, 5(129): 107150-107157. |
48 | YANG Jingxia, ZHANG Jingjin, ZOU Bingjie, et al. Black SnO2-TiO2 nanocomposites with high dispersion for photocatalytic and photovoltalic applications[J]. ACS Applied Nano Materials, 2020, 3(5): 4265-4273. |
49 | CHEN Ping. A novel synthesis of Ti3+ self-doped Ag2O/TiO2 (p-n) nanoheterojunctions for enhanced visible photocatalytic activity[J]. Materials Letters, 2016, 163: 130-133. |
50 | LI Kai, HUANG Zhenyu, ZENG Xiaoqiao, et al. Synergetic effect of Ti3+ and oxygen doping on enhancing photoelectrochemical and photocatalytic properties of TiO2/g-C3N4 heterojunctions[J]. ACS Applied Materials & Interfaces, 2017, 9(13): 11577-11586. |
51 | WANG Shanchi, CAI Jingsheng, MAO Jiajun, et al. Defective black Ti3+ self-doped TiO2 and reduced graphene oxide composite nanoparticles for boosting visible-light driven photocatalytic and photoelectrochemical activity[J]. Applied Surface Science, 2019, 467/468: 45-55. |
52 | WILKINSON John L, BOXALL Alistair B A, KOLPIN Dana W, et al. Pharmaceutical pollution of the world’s rivers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(8): e2113947119. |
53 | WU Suqing, LI Xueyan, TIAN Yanqin, et al. Excellent photocatalytic degradation of tetracycline over black anatase-TiO2 under visible light[J]. Chemical Engineering Journal, 2021, 406: 126747. |
54 | ANDRONIC Luminita, GHICA Daniela, STEFAN Mariana, et al. Visible-light-active black TiO2 nanoparticles with efficient photocatalytic performance for degradation of pharmaceuticals[J]. Nanomaterials, 2022, 12(15): 2563. |
55 | GAO Peiru, NOOR Nor Qhairul Izzreen Mohd, SHAARANI Sharifudin Md. Current status of food safety hazards and health risks connected with aquatic food products from Southeast Asian Region[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(13): 3471-3489. |
56 | WANG Gongming, WANG Hanyu, LING Yichuan, et al. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting[J]. Nano Letters, 2011, 11(7): 3026-3033. |
57 | ZHANG Changkun, YU Hongmei, LI Yongkun, et al. Supported noble metals on hydrogen-treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells[J]. ChemSusChem, 2013, 6(4): 659-666. |
58 | TOUNI Aikaterini, LIU Xin, KANG Xiaolan, et al. Methanol oxidation at platinum coated black titania nanotubes and titanium felt electrodes[J]. Molecules, 2022, 27(19): 6382. |
59 | LIU Ning, ZHU Ming, NIU Niu, et al. Aza-BODIPY probe-decorated mesoporous black TiO2 nanoplatform for the highly efficient synergistic phototherapy[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41071-41078. |
60 | DAI Ting, HE Wenming, TU Shuangshuang, et al. Black TiO2 nanoprobe-mediated mild phototherapy reduces intracellular lipid levels in atherosclerotic foam cells via cholesterol regulation pathways instead of apoptosis[J]. Bioactive Materials, 2022, 17: 18-28. |
[1] | 李洪慧, 李青云, 李梅, 方艺燕, 沈慧婷, 林宏飞. 生物法处理典型难降解铁氰络合物[J]. 化工进展, 2025, 44(2): 1163-1169. |
[2] | 闫鹏程, 高卓凡, 周志辉, 吴红丹, 陈霞, 周显, 范泽宇, 邓闪闪, 鲁麒, 向媛. 聚酰胺/聚醚醚酮复合膜的制备及其有机溶剂纳滤性能[J]. 化工进展, 2025, 44(2): 1147-1156. |
[3] | 赵珂, 张恒, 翟倩, 甄琪, 苏天阳, 崔景强. PLA/PEG@SDS超细纤维水蒸发器的复合结构设计及其液体传输行为[J]. 化工进展, 2025, 44(2): 1014-1024. |
[4] | 游小银, 汪楚乔, 刘才华, 彭小明. Z型CN/NGBO/BV催化剂体系的构筑及光类芬顿降解四环素性能[J]. 化工进展, 2025, 44(1): 286-296. |
[5] | 吴迪, 彭明国, 谷宇, 毛林强, 张文艺. 磁性纳米破乳剂的制备及其稠油乳状液破乳性能[J]. 化工进展, 2025, 44(1): 436-444. |
[6] | 蒋莉萍, 张雪乔, 钟晓娟, 魏于凡, 肖利, 郭旭晶, 羊依金. 钒渣酸浸提铁工艺优化及复合光催化剂的制备[J]. 化工进展, 2025, 44(1): 538-548. |
[7] | 杜小聪, 辛春福, 赵钰. 路用复合相变材料及相变改性沥青性能评价[J]. 化工进展, 2024, 43(S1): 419-430. |
[8] | 马桂璇, 徐子桐, 肖志华, 宁国庆, 魏强, 徐春明. 氧硫双掺杂CNTs水系导电剂辅助构筑高性能石墨/SiO负极[J]. 化工进展, 2024, 43(S1): 443-456. |
[9] | 高觊兴, 丁玉梅, 张超, 谭晶, 丁熙, 李好义, 杨卫民. 熔体微分电纺PLA/PCL微纳米纤维膜的制备及其性能[J]. 化工进展, 2024, 43(S1): 457-468. |
[10] | 慕铭, 赵伟伟, 陈光孟, 刘小青. 基于激光诱导石墨烯的应变传感器研究进展[J]. 化工进展, 2024, 43(9): 4970-4979. |
[11] | 申纯宇, 李翠利, 汤建伟, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 纳米氢氧化镁制备及其阻燃应用进展[J]. 化工进展, 2024, 43(9): 4980-4995. |
[12] | 李镇武, 蒲迪, 熊亚春, 吴定莹, 金诚, 郭拥军. 驱油用纳米材料在提高采收率方面研究进展[J]. 化工进展, 2024, 43(9): 5035-5048. |
[13] | 刘丽, 冯博, 文洋, 古启雄. 硅基介孔材料的合成、功能化及对金属的吸附研究进展[J]. 化工进展, 2024, 43(9): 5063-5078. |
[14] | 李美萱, 成建凤, 黄国勇, 徐盛明, 郁丰善, 翁雅青, 曹才放, 温嘉玮, 王俊莲, 王春霞, 顾斌涛, 张袁华, 刘斌, 王才平, 潘剑明, 徐泽良, 王翀, 王珂. 高电压镍锰酸锂正极材料的合成与电化学机理[J]. 化工进展, 2024, 43(9): 5086-5094. |
[15] | 楼高波, 姚潇翎, 倪静雯, 傅深渊, 刘丽娜. 离子络合物改性二维云母环氧树脂复合材料的制备及性能[J]. 化工进展, 2024, 43(9): 5142-5156. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 30
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 84
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |