化工进展 ›› 2024, Vol. 43 ›› Issue (S1): 419-430.DOI: 10.16085/j.issn.1000-6613.2024-0620
收稿日期:
2024-04-12
修回日期:
2024-07-02
出版日期:
2024-11-20
发布日期:
2024-12-06
通讯作者:
辛春福
作者简介:
杜小聪(1997—),男,硕士研究生,研究方向为绿色道路新材料研发与设计。E-mail:dxcsxht@163.com。
DU Xiaocong1,2(), XIN Chunfu1(), ZHAO Yu1,3
Received:
2024-04-12
Revised:
2024-07-02
Online:
2024-11-20
Published:
2024-12-06
Contact:
XIN Chunfu
摘要:
沥青路面在极端温度下会产生高温车辙、低温开裂等问题,发展复合相变材料对提高沥青的调温性能具有重要意义。为进一步推进沥青路面调温技术的发展,延长相变材料在沥青中的生命周期。首先,本文对路用复合相变材料的组成成分进行介绍。其次,对复合相变材料的制备工艺进行对比。在此基础上,主要从沥青路面的调温性能以及复合相变材料掺入对沥青路面造成的影响展开讨论。梳理发现,载体是决定复合相变材料导热能力和耐久性的关键因素。因此,确定复合相变材料载体后针对不同的载体材料选择相应的制备方法至关重要。在载体中使用具有高导热性的碳基材料,不仅可以提高复合相变材料的抗渗漏性能,还能提高复合相变材料的导热能力。目前,复合相变材料在沥青中虽具有一定的调温性能,但仍然存在储热能力低和抗渗漏性能不足的缺点,未来研究可以在明确复合相变材料与沥青相容的基础上,研发更具有针对性的路用复合相变材料,进而制定统一的相变评价标准和方法。
中图分类号:
杜小聪, 辛春福, 赵钰. 路用复合相变材料及相变改性沥青性能评价[J]. 化工进展, 2024, 43(S1): 419-430.
DU Xiaocong, XIN Chunfu, ZHAO Yu. Performance evaluation of composite phase change materials and phase change modified asphalt for road use[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 419-430.
名称 | 相变温度/℃ | 相变焓值 /J·g-1 | 参考文献 |
---|---|---|---|
低温聚氨酯相变材料 | -3.2 | 35.0 | [ |
聚乙二醇基聚氨酯(PU-5) | 48.3/36.0 | 93.5 | [ |
聚氨酯相变材料 | 43.9 | 146.6 | [ |
癸酸(CA) | 31.4 | 149.1 | [ |
肉豆蔻酸(MA) | 52.3 | 184.5 | [ |
硬脂酸(SA) | 67.2 | 199.1 | [ |
棕榈酸(PA) | 62.0 | 198.4 | [ |
月桂酸(LA) | 45.6 | 185.7 | [ |
聚乙二醇(PEG) | 54.0 | 112.3 | [ |
表1 路用有机非石蜡类相变原材料热物性参数
名称 | 相变温度/℃ | 相变焓值 /J·g-1 | 参考文献 |
---|---|---|---|
低温聚氨酯相变材料 | -3.2 | 35.0 | [ |
聚乙二醇基聚氨酯(PU-5) | 48.3/36.0 | 93.5 | [ |
聚氨酯相变材料 | 43.9 | 146.6 | [ |
癸酸(CA) | 31.4 | 149.1 | [ |
肉豆蔻酸(MA) | 52.3 | 184.5 | [ |
硬脂酸(SA) | 67.2 | 199.1 | [ |
棕榈酸(PA) | 62.0 | 198.4 | [ |
月桂酸(LA) | 45.6 | 185.7 | [ |
聚乙二醇(PEG) | 54.0 | 112.3 | [ |
载体类型 | 特点 | 名称 | 制备 方法 | 结论 | 参考 文献 |
---|---|---|---|---|---|
高分子 聚合物 | 具有不生锈、易于生产、导热性好、成本低且密度低等特点[ | 正十四烷/密胺树脂 | 原位聚合法 | 相变微胶囊具有良好的相变潜热和热稳定性,可用于沥青路面并进行研究 | [ |
正十四烷、二甲苯/环氧树脂 | 界面聚合法 | 随着芯材和载体质量比的增加,储热能力 增加,热裂解温度降低 | [ | ||
硬脂酸丁酯/聚脲、聚氨酯 | 界面聚合法 | 双层载体相比单层载体,致密性和稳定性 得到显著提高 | [ | ||
碳基材料 | 高导热性和良好的密度 | PA、SA/碳纳米管 | — | 碳纳米管能够降低熔融温度、提高凝固温度 | [ |
相变蜡/天然石墨改性聚乙烯 | — | 石墨的加入可以抵抗石蜡的软化作用 | [ | ||
黏土矿物 | 具有较高的热导率和良好的吸附性能,可以 很好地弥补液体PCMs渗漏的缺陷[ | PEG/多巴胺改性膨胀蛭石 | 真空浸渍法 | 多巴胺对增强CPCMs的封装率、熔化和 凝固过程中的潜热发挥着重要作用 | [ |
SA/三维蒙脱土骨架 | 真空浸渍法 | 具有显著的相变潜热和良好的传热能力,可实现太阳能的直接转化、储存和利用 | [ | ||
光催化 材料 | 热导率高、形状稳定、无腐蚀性等,制备的 温度及成本要求较高[ | 月桂酸/TiO2 | 溶胶-凝胶法 | 在200℃以内的高温环境下,CPCMs不会发生热分解且具有良好的热稳定性 | [ |
表2 路用相变材料载体分类
载体类型 | 特点 | 名称 | 制备 方法 | 结论 | 参考 文献 |
---|---|---|---|---|---|
高分子 聚合物 | 具有不生锈、易于生产、导热性好、成本低且密度低等特点[ | 正十四烷/密胺树脂 | 原位聚合法 | 相变微胶囊具有良好的相变潜热和热稳定性,可用于沥青路面并进行研究 | [ |
正十四烷、二甲苯/环氧树脂 | 界面聚合法 | 随着芯材和载体质量比的增加,储热能力 增加,热裂解温度降低 | [ | ||
硬脂酸丁酯/聚脲、聚氨酯 | 界面聚合法 | 双层载体相比单层载体,致密性和稳定性 得到显著提高 | [ | ||
碳基材料 | 高导热性和良好的密度 | PA、SA/碳纳米管 | — | 碳纳米管能够降低熔融温度、提高凝固温度 | [ |
相变蜡/天然石墨改性聚乙烯 | — | 石墨的加入可以抵抗石蜡的软化作用 | [ | ||
黏土矿物 | 具有较高的热导率和良好的吸附性能,可以 很好地弥补液体PCMs渗漏的缺陷[ | PEG/多巴胺改性膨胀蛭石 | 真空浸渍法 | 多巴胺对增强CPCMs的封装率、熔化和 凝固过程中的潜热发挥着重要作用 | [ |
SA/三维蒙脱土骨架 | 真空浸渍法 | 具有显著的相变潜热和良好的传热能力,可实现太阳能的直接转化、储存和利用 | [ | ||
光催化 材料 | 热导率高、形状稳定、无腐蚀性等,制备的 温度及成本要求较高[ | 月桂酸/TiO2 | 溶胶-凝胶法 | 在200℃以内的高温环境下,CPCMs不会发生热分解且具有良好的热稳定性 | [ |
制备方法 | 芯材 | 载体 | 相变温度 /℃ | 相变焓 /J·g-1 | 特点 | 参考 文献 |
---|---|---|---|---|---|---|
真空浸渍法 | 月桂酸 | 膨胀蛭石 | 41.88 | 126.8 | 主要通过毛细管力和表面张力进行吸附,能有效防泄漏 | [ |
相变石蜡 | 膨胀珍珠岩 | 24.52 | 88.31 | [ | ||
硬脂酸 棕榈酸 | 硅藻土 | 52.93 | 106.70 | [ | ||
熔融共混法 | 棕榈酸 硬脂酸 | 碳纳米管 | 53.95 | 177.70 | 适用于两种熔点相差较大的材料 | [ |
原位聚合法 | 十四烷 | 脲醛树脂 | -4.40 | 100.30 | 致密性好 性能可控 | [ |
十四烷 | 改性密胺树脂 | -4.08 | 140.60 | [ | ||
溶胶-凝胶法 | 聚乙二醇 | SiO2 | — | 113.80 | 操作简单、反应温度低、制备纯度高、成本高、易脆裂 | [ |
硬脂酸 | SiO2 | 54.90 | 90.30 | [ | ||
界面聚合法 | 硬脂酸丁酯 | 聚氨酯/聚脲双壁 | 24.10 | 85.00 | 操作简单、反应时间短,但利用成本低、制备成本高 | [ |
表3 路用CPCMs的常用制备方法
制备方法 | 芯材 | 载体 | 相变温度 /℃ | 相变焓 /J·g-1 | 特点 | 参考 文献 |
---|---|---|---|---|---|---|
真空浸渍法 | 月桂酸 | 膨胀蛭石 | 41.88 | 126.8 | 主要通过毛细管力和表面张力进行吸附,能有效防泄漏 | [ |
相变石蜡 | 膨胀珍珠岩 | 24.52 | 88.31 | [ | ||
硬脂酸 棕榈酸 | 硅藻土 | 52.93 | 106.70 | [ | ||
熔融共混法 | 棕榈酸 硬脂酸 | 碳纳米管 | 53.95 | 177.70 | 适用于两种熔点相差较大的材料 | [ |
原位聚合法 | 十四烷 | 脲醛树脂 | -4.40 | 100.30 | 致密性好 性能可控 | [ |
十四烷 | 改性密胺树脂 | -4.08 | 140.60 | [ | ||
溶胶-凝胶法 | 聚乙二醇 | SiO2 | — | 113.80 | 操作简单、反应温度低、制备纯度高、成本高、易脆裂 | [ |
硬脂酸 | SiO2 | 54.90 | 90.30 | [ | ||
界面聚合法 | 硬脂酸丁酯 | 聚氨酯/聚脲双壁 | 24.10 | 85.00 | 操作简单、反应时间短,但利用成本低、制备成本高 | [ |
性能名称 | 复合相变材料 | 评价指标 | 结论 | 参考文献 |
---|---|---|---|---|
高温性能 | 正十四烷/脲醛树脂 | 车辙因子 | 适当掺量的低温复合相变材料并不会影响沥青路面抵抗高温变形的路用性能 | [ |
聚乙二醇/膨胀石墨 | 车辙因子 | 复合相变材料的掺入提高了改性沥青混合料的抗车辙性能,但疲劳抗力受损且对沥青的低温性能不利 | [ | |
PEG/SiO2 | 动稳定度 | 使用PEG/SiO2相变颗粒替代矿粉,可有效提高沥青混合料的高温性能 | [ | |
粉煤灰载体CPCMs | 车辙深度 | 需要良好的磨耗层作为沥青的保护层,方能达到良好的抗车辙效果 | [ | |
低温性能 | 正十四烷/商用石墨烯改性密胺树脂 | 延度 | 通过商用石墨烯对密胺树脂进行改性可以提高沥青的低温性能 | [ |
正十四烷/白炭黑 | 弯拉应变 | 复合定形相变材料的掺加有利于提高沥青混合料的低温抗裂性,且沥青混合料的低温抗裂性随着复合定形相变材料掺量的增加而增强 | [ | |
正十四烷/硅粉 | 弯拉强度 弯拉应变 劲度模量 | 随着相变微胶囊掺量的增加,沥青混合料弯拉强度逐渐增大,弯拉应变减小,劲度模量增大 | [ | |
水稳定性 | NaCl/载体 | 劈裂强度 | 掺入相变材料作为填料的沥青混合料劈裂强度比矿粉高2.3%,抗冻融损坏能力强于普通 沥青混合料 | [ |
PEG/SiO2 | 残留稳定度 劈裂强度 | 掺入相变材料作为填料的沥青混合料劈裂强度、残留稳定度相比矿粉有所降低,对水稳定性的影响不大 | [ |
表4 路用复合相变材料对路用性能的影响
性能名称 | 复合相变材料 | 评价指标 | 结论 | 参考文献 |
---|---|---|---|---|
高温性能 | 正十四烷/脲醛树脂 | 车辙因子 | 适当掺量的低温复合相变材料并不会影响沥青路面抵抗高温变形的路用性能 | [ |
聚乙二醇/膨胀石墨 | 车辙因子 | 复合相变材料的掺入提高了改性沥青混合料的抗车辙性能,但疲劳抗力受损且对沥青的低温性能不利 | [ | |
PEG/SiO2 | 动稳定度 | 使用PEG/SiO2相变颗粒替代矿粉,可有效提高沥青混合料的高温性能 | [ | |
粉煤灰载体CPCMs | 车辙深度 | 需要良好的磨耗层作为沥青的保护层,方能达到良好的抗车辙效果 | [ | |
低温性能 | 正十四烷/商用石墨烯改性密胺树脂 | 延度 | 通过商用石墨烯对密胺树脂进行改性可以提高沥青的低温性能 | [ |
正十四烷/白炭黑 | 弯拉应变 | 复合定形相变材料的掺加有利于提高沥青混合料的低温抗裂性,且沥青混合料的低温抗裂性随着复合定形相变材料掺量的增加而增强 | [ | |
正十四烷/硅粉 | 弯拉强度 弯拉应变 劲度模量 | 随着相变微胶囊掺量的增加,沥青混合料弯拉强度逐渐增大,弯拉应变减小,劲度模量增大 | [ | |
水稳定性 | NaCl/载体 | 劈裂强度 | 掺入相变材料作为填料的沥青混合料劈裂强度比矿粉高2.3%,抗冻融损坏能力强于普通 沥青混合料 | [ |
PEG/SiO2 | 残留稳定度 劈裂强度 | 掺入相变材料作为填料的沥青混合料劈裂强度、残留稳定度相比矿粉有所降低,对水稳定性的影响不大 | [ |
17 | 张菘, 周瑜, 刘静怡, 等. 聚氨酯用作抗癌药物载体的研究进展[J]. 聚氨酯工业, 2020, 35(2): 1-3. |
ZHANG Song, ZHOU Yu, LIU Jingyi, et al. Research progress of polyurethane in the field of anti-cancer drug carriers[J]. Polyurethane Industry, 2020, 35(2): 1-3. | |
18 | WEI Kun, WANG Xiaoqing, MA Biao, et al. Study on rheological properties and phase-change temperature control of asphalt modified by polyurethane solid-solid phase change material[J]. Solar Energy, 2019, 194: 893-902. |
19 | WEI Kun, LIU Zhe, WANG Lin, et al. Preparation of polyurethane solid-solid low temperature PCMs granular asphalt mixes and study of phase change temperature control behavior[J]. Solar Energy, 2022, 231: 149-157. |
20 | 马骉, 段诗雨, 魏堃, 等. 道路用聚氨酯固-固相变材料的合成及性能研究[J]. 硅酸盐通报, 2018, 37(10): 3232-3238. |
MA Biao, DUAN Shiyu, WEI Kun, et al. Synthesis and properties of polyurethane solid-solid phase change materials for highway[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(10): 3232-3238. | |
21 | CHEN Jun, MA Xie, WANG Hao, et al. Experimental study on anti-icing and deicing performance of polyurethane concrete as road surface layer[J]. Construction and Building Materials, 2018, 161: 598-605. |
22 | SHA Aimin, ZHANG Jin, JIA Meng, et al. Development of polyurethane-based solid-solid phase change materials for cooling asphalt pavements[J]. Energy and Buildings, 2022, 259: 111873. |
23 | 王玉玲. 聚氨酯固-固相变材料的合成及性能[D]. 北京: 北京服装学院, 2010. |
WANG Yuling. Synthesis and properties of polyurethane solid-solid phase change materials[D]. Beijing: Beijing Institute of Clothing Technology, 2010. | |
24 | WEI Haiting, XIE Xiuzhen, LI Xiangqi, et al. Preparation and characterization of capric-myristic-stearic acid eutectic mixture/modified expanded vermiculite composite as a form-stable phase change material[J]. Applied Energy, 2016, 178: 616-623. |
25 | YUAN Yaguang, YUAN Yanping, ZHANG Nan, et al. Preparation and thermal characterization of capric-myristic-palmitic acid/expanded graphite composite as phase change material for energy storage[J]. Materials Letters, 2014, 125: 154-157. |
26 | 李佳龙. 定型癸酸/硬脂酸相变材料在蓄热混凝土中的应用研究[D]. 武汉: 武汉理工大学, 2017. |
LI Jialong. Study on application of stabilized capric acid/stearic acid phase change material in thermal storage concrete[D]. Wuhan: Wuhan University of Technology, 2017. | |
27 | 何丽红, 王浩, 杨帆, 等. PEG/SiO2相变颗粒对沥青胶浆性能实验研究[J]. 化工新型材料, 2018, 46(8): 257-260. |
HE Lihong, WANG Hao, YANG Fan, et al. Laboratory investigation of performance of PEG/SiO2 phase change particles on asphalt mortar[J]. New Chemical Materials, 2018, 46(8): 257-260. | |
28 | SHARMA Atul, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 318-345. |
29 | DIXIT Prakhar, REDDY Vennapusa Jagadeeswara, PARVATE Sumit, et al. Salt hydrate phase change materials: Current state of art and the road ahead[J]. Journal of Energy Storage, 2022, 51: 104360. |
30 | KAKAR Muhammad Rafiq, REFAA Zakariaa, Jörg WORLITSCHEK, et al. Thermal and rheological characterization of bitumen modified with microencapsulated phase change materials[J]. Construction and Building Materials, 2019, 215: 171-179. |
31 | 肖力光, 李冰. 纳米氧化锌改性无机水合盐三元相变材料的研究[J]. 硅酸盐通报, 2020, 39(2): 616-620. |
XIAO Liguang, LI Bing. Study on nano-zinc oxide modified inorganic hydrate ternary phase change materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(2): 616-620. | |
32 | 丁兴江, 章学来, 朱嘉豪, 等. 三水合乙酸钠复合相变材料过冷特性实验统计分析[J]. 化工进展, 2022, 41(11): 5946-5960. |
DING Xingjiang, ZHANG Xuelai, ZHU Jiahao, et al. Statistical analysis for supercooling characteristics experiments of sodium acetate trihydrate composite phase change materials[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5946-5960. | |
33 | 李海丽, 季旭, 冷从斌, 等. 膨胀石墨/五水硫代硫酸钠相变储能复合材料热性能[J]. 复合材料学报, 2016, 33(12): 2941-2951. |
LI Haili, JI Xu, LENG Congbin, et al. Thermal performance of expanded graphite/Na2S2O3·5H2O phase change energy storage composite[J]. Acta Materiae Compositae Sinica, 2016, 33(12): 2941-2951. | |
34 | 黄晓凤, 马骉, 魏堃, 等. 路面NiTi合金相变材料固溶处理及调温效果[J]. 材料科学与工程学报, 2019, 37(1): 144-148, 154. |
HUANG Xiaofeng, MA Biao, WEI Kun, et al. Research on solid solution treatment of NiTi alloy phase change material and its temperature control effect[J]. Journal of Materials Science and Engineering, 2019, 37(1): 144-148, 154. | |
35 | AMINI Nahid, HAYATI Parham, LATIFI Hassan. Evaluation of rutting and fatigue behavior of modified asphalt binders with nanocomposite phase change materials[J]. International Journal of Pavement Research and Technology, 2023, 16(3): 678-692. |
36 | 胡玲玲, 刘宏宇, 殷秋运. 微结构对NiTi形状记忆合金相变行为影响的分子动力学模拟[J]. 中山大学学报(自然科学版)(中英文), 2022, 61(6): 81-88. |
HU Lingling, LIU Hongyu, YIN Qiuyun. The effect of microstructure on the phase transformation behavior of NiTi shape memory alloys: A molecular simulation[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2022, 61(6): 81-88. | |
37 | MITWALLY Mohamed E, FARAG Mahmoud. Effect of cold work and annealing on the structure and characteristics of NiTi alloy[J]. Materials Science and Engineering: A, 2009, 519(1/2): 155-166. |
38 | 王浩. PEG/SiO2复合相变储热沥青胶浆性能及调温机理研究[D]. 重庆: 重庆交通大学, 2019. |
WANG Hao. Study on properties and temperature-regulating mechanism of PEG/SiO2 composite phase change heat storage asphalt mortar[D]. Chongqing: Chongqing Jiaotong University, 2019. | |
39 | DU Yinfei, LIU Pusheng, WANG Jiacheng, et al. Laboratory investigation of phase change effect of polyethylene glycolon on asphalt binder and mixture performance[J]. Construction and Building Materials, 2019, 212: 1-9. |
40 | WANG Xiaoqing, MA Biao, WEI Kun, et al. Thermal stability and mechanical properties of epoxy resin/microcapsule composite phase change materials[J]. Construction and Building Materials, 2021, 312: 125392. |
41 | WEI Kun, WANG Yachuan, MA Biao. Effects of microencapsulated phase change materials on the performance of asphalt binders[J]. Renewable Energy, 2019, 132: 931-940. |
42 | WEI Kun, MA Biao, WANG Hainian, et al. Synthesis and thermal properties of novel microencapsulated phase-change materials with binary cores and epoxy polymer shells[J]. Polymer Bulletin, 2017, 74(2): 359-367. |
43 | 陆少锋, 邢建伟, 吴钦, 等. 界面聚合聚脲/聚氨酯双层微胶囊相变材料的研制与性能[J]. 高分子材料科学与工程, 2011, 27(1): 17-19, 23. |
LU Shaofeng, XING Jianwei, WU Qin, et al. Characterization of polyurea/polyurethane double-shell microPCMs prepared by interfacial polymerization[J]. Polymer Materials Science & Engineering, 2011, 27(1): 17-19, 23. | |
44 | ZHANG Nan, YUAN Yanping, YUAN Yaguang, et al. Effect of carbon nanotubes on the thermal behavior of palmitic-stearic acid eutectic mixtures as phase change materials for energy storage[J]. Solar Energy, 2014, 110: 64-70. |
45 | MHIKE W, FOCKE W W, MOFOKENG J P, et al. Thermally conductive phase-change materials for energy storage based on low-density polyethylene, soft Fischer-Tropsch wax and graphite[J]. Thermochimica Acta, 2012, 527: 75-82. |
46 | Peizhao LYU, LIU Chenzhen, RAO Zhonghao. Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications[J]. Renewable and Sustainable Energy Reviews, 2017, 68: 707-726. |
47 | WANG Heng, DENG Yong, WU Fuzhong, et al. Effect of dopamine-modified expanded vermiculite on phase change behavior and heat storage characteristic of polyethylene glycol[J]. Chemical Engineering Journal, 2021, 415: 128992. |
48 | YI Hao, AI Zhong, ZHAO Yunliang, et al. Design of 3D-network montmorillonite nanosheet/stearic acid shape-stabilized phase change materials for solar energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 204: 110233. |
49 | 陈晶晶, 许猛, 徐丽亚, 等. 纳米二氧化钛的制备、改性及光催化研究进展[J]. 浙江化工, 2020, 51(6): 21-24. |
CHEN Jingjing, XU Meng, XU Liya, et al. Research progress on preparation, modification and photocatalysis of nano titanium dioxide[J]. Zhejiang Chemical Industry, 2020, 51(6): 21-24. | |
50 | 刘庆祎, 肖桐, 孙文杰, 等. 纳米二氧化钛强化的相变储能研究进展[J]. 化工学报, 2022, 73(5): 1863-1882. |
LIU Qingyi, XIAO Tong, SUN Wenjie, et al. Progress in the research of phase change energy storage enhanced by titanium dioxide nanoparticles[J]. CIESC Journal, 2022, 73(5): 1863-1882. | |
51 | 刘媛. 有机/无机定型复合相变材料的制备及其性能研究[D]. 南昌: 南昌大学, 2019. |
LIU Yuan. Preparation and characterization of organic/inorganic shape-stabilized composite phase change materials[D]. Nanchang: Nanchang University, 2019. | |
52 | TRIGUI Abdelwaheb, KARKRI Mustapha, KRUPA Igor. Thermal conductivity and latent heat thermal energy storage properties of LDPE/wax as a shape-stabilized composite phase change material[J]. Energy Conversion and Management, 2014, 77: 586-596. |
53 | LI Min, MU Boyuan. Effect of different dimensional carbon materials on the properties and application of phase change materials: A review[J]. Applied Energy, 2019, 242: 695-715. |
54 | CHEN Zhonghua, WANG Jianchuan, YU Fei, et al. Preparation and properties of graphene oxide-modified poly(melamine-formaldehyde) microcapsules containing phase change material n-dodecanol for thermal energy storage[J]. Journal of Materials Chemistry A, 2015, 3(21): 11624-11630. |
55 | 贾亚可. 有机/海泡石纤维相变蓄热材料的研究[D]. 天津: 河北工业大学, 2011. |
JIA Yake. Research on the organics/sepiolite fibers composite phase change heat-storage materials[D]. Tianjin: Hebei University of Technology, 2011. | |
56 | 孙丹. 石蜡/膨胀珍珠岩复合相变材料制备及性能研究[D]. 大连: 大连理工大学, 2010. |
SUN Dan. Study on preparation and property of paraffin expanded perlite phase change materials[D]. Dalian: Dalian University of Technology, 2010. | |
57 | LI Min, GUO Qiangang, NUTT Steven. Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage[J]. Solar Energy, 2017, 146: 1-7. |
58 | EREN Erdal, EREN Bilge. Removal of copper ions by modified sepiolite samples[J]. Desalination and Water Treatment, 2010, 20(1/2/3): 114-122. |
59 | 高颖, 许子龙, 李晓旭, 等. PEG/EG/SiO2复合定形相变材料的制备与性能研究[J]. 化工新型材料, 2022, 50(5): 240-244, 249. |
GAO Ying, XU Zilong, LI Xiaoxu, et al. Preparation and property of PEG/EG/SiO2 composite form-stable PCM[J]. New Chemical Materials, 2022, 50(5): 240-244, 249. | |
60 | WEN Ruilong, HUANG Zhaohui, HUANG Yaoting, et al. Synthesis and characterization of lauric acid/expanded vermiculite as form-stabilized thermal energy storage materials[J]. Energy and Buildings, 2016, 116: 677-683. |
61 | 吴韶飞, 闫霆, 蒯子函, 等. 高各向异性十六酸/膨胀石墨定形相变储热材料的性能[J]. 材料导报, 2021, 35(4): 4186-4193. |
WU Shaofei, YAN Ting, KUAI Zihan, et al. Properties of high-anisotropy hexadecanoic acid/expanded graphite form-stable phase change heat storage materials[J]. Materials Reports, 2021, 35(4): 4186-4193. | |
62 | 范竞男. EVA基相变材料的研究[D]. 大连: 大连工业大学, 2012. |
FAN Jingnan. The research of PCM which is base on EVA[D]. Dalian: Dalian Polytechnic University, 2012. | |
63 | 邹沁杉, 罗菁, 韦玲俐, 等. 三聚氰胺甲醛树脂/十四烷微胶囊的制备与封装率计算的优化[J]. 毛纺科技, 2020, 48(10): 30-35. |
ZOU Qinshan, LUO Jing, WEI Lingli, et al. Preparation of melamine formaldehyde resin/tetradecane microcapsules and the optimization for calculation of encapsulation rate[J]. Wool Textile Journal, 2020, 48(10): 30-35. | |
64 | 公雪, 王程遥, 朱群志. 微胶囊相变材料制备与应用研究进展[J]. 化工进展, 2021, 40(10): 5554-5576. |
GONG Xue, WANG Chengyao, ZHU Qunzhi. Research progress on preparation and application of microcapsule phase change materials[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5554-5576. | |
65 | HAN Pengju, YU Bo, ZHAO Xu, et al. Excellent interfacial compatibility of phase change capsules/polyurethane foam with enhanced mechanical and thermal insulation properties for thermal energy storage[J]. Energy, 2024, 294: 130912. |
66 | 王亚川. 十四烷/三聚氰胺甲醛树脂相变微胶囊制备及改性沥青性能研究[D]. 西安: 长安大学, 2017. |
WANG Yachuan. Preparation of tetradecane/melamine formaldehyde resin phase change materials and study on properties of modified asphalt[D]. Xi’an: Chang’an University, 2017. | |
67 | ZHANG Huanzhi, WANG Xiaodong. Fabrication and performances of microencapsulated phase change materials based on n-octadecane core and resorcinol-modified melamine-formaldehyde shell[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 332(2/3): 129-138. |
68 | 朱肖运. 基于界面聚合法制备相变胶囊及其应用研究[D]. 广州: 广东工业大学, 2022. |
ZHU Xiaoyun. Preparation of phase change capsules based on interfacial polymerization and its application[D]. Guangzhou: Guangdong University of Technology, 2022. | |
69 | 秦嗣银. 烷基化石墨烯改性相变微胶囊的制备及性能表征[D]. 深圳: 深圳大学, 2018. |
QIN Siyin. Fabrication and characterization of alkylated graphene oxide-modified phase-change microcapsules[D]. Shenzhen: Shenzhen University, 2018. | |
70 | HE Lihong, LI Jingruo, ZHU Hongzhou. Analysis on application prospect of shape-stabilized phase change materials in asphalt pavement[J]. Applied Mechanics and Materials, 2013, 357/358/359/360: 1277-1281. |
71 | SERRANO Angel, MARTÍN DEL CAMPO Jesús, PECO Nieves, et al. Influence of gelation step for preparing PEG-SiO2 shape-stabilized phase change materials by sol-gel method[J]. Journal of Sol-Gel Science and Technology, 2019, 89(3): 731-742. |
72 | 王辉. 石膏基复合相变材料的制备及其性能研究[D]. 绵阳: 西南科技大学, 2020. |
WANG Hui. Study on preparation and performance of gypsum-based composite phase change materials[D]. Mianyang: Southwest University of Science and Technology, 2020. | |
73 | 顾庆军. 膨胀石墨基复合相变材料的结构、性能及其应用研究[D]. 赣州: 江西理工大学, 2020. |
GU Qingjun. Research on structure, properties and application of composite phase change materials based expanded graphite[D]. Ganzhou: Jiangxi University of Science and Technology, 2020. | |
74 | 白捷, 李帅, 刘昕烨, 等. 路用调温低温相变微胶囊制备及性能[J]. 科学技术与工程, 2021, 21(18): 7752-7761. |
BAI Jie, LI Shuai, LIU Xinye, et al. Preparation and properties of low temperature phase change microcapsules for road use[J]. Science Technology and Engineering, 2021, 21(18): 7752-7761. | |
75 | 刘健. 十四烷-正辛酸复合相变沥青性能研究[D]. 西安: 长安大学, 2021. |
LIU Jian. Study on performance of tetradecane-octanoic acid composite phase change asphalt[D]. Xi'an: Chang'an University, 2021. | |
76 | 贾超, 唐炳涛, 张淑芬, 等. 超声辅助溶胶-凝胶法制备硬脂酸/SiO2定形相变储能材料[J]. 复合材料学报, 2012, 29(1): 85-90. |
JIA Chao, TANG Bingtao, ZHANG Shufen, et al. Synthesis of stearic acid/SiO2 hybrid phase change materials by ultrasound assisted[J]. Acta Materiae Compositae Sinica, 2012, 29(1): 85-90. | |
77 | TYAGI V V, KAUSHIK S C, TYAGI S K, et al. Development of phase change materials based microencapsulated technology for buildings: A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(2): 1373-1391. |
78 | JAMEKHORSHID A, SADRAMELI S M, FARID M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium[J]. Renewable and Sustainable Energy Reviews, 2014, 31: 531-542. |
79 | LI Wenting, ZHU Xujing, ZHAO Nan, et al. Preparation and properties of melamine urea-formaldehyde microcapsules for self-healing of cementitious materials[J]. Materials, 2016, 9(3): 152. |
80 | SI Wei, ZHOU Xueyan, MA Biao, et al. The mechanism of different thermoregulation types of composite shape-stabilized phase change materials used in asphalt pavement[J]. Construction and Building Materials, 2015, 98: 547-558. |
81 | 刘涛, 郭乃胜, 金鑫, 等. 聚氨酯固-固相变材料改性沥青的流变性能与改性机理[J]. 中国公路学报, 2023, 36(1): 16-26. |
LIU Tao, GUO Naisheng, JIN Xin, et al. Rheological properties and modified mechanism of polyurethane solid-solid phase change materials modified asphalt[J]. China Journal of Highway and Transport, 2023, 36(1): 16-26. | |
82 | 何丽红. 复合相变储热沥青路面材料研制及降温机理[D]. 重庆: 重庆交通大学, 2016. |
HE Lihong. Preparation and cooling mechanism of composite phase change heat storage asphalt pavement materials[D]. Chongqing: Chongqing Jiaotong University, 2016. | |
83 | 高玉超. 定形复合相变材料改性沥青及混合料性能研究[D]. 长沙: 长沙理工大学, 2021. |
GAO Yuchao. Study on performance of modified asphalt and mixture by shape stabilized composite phase change materials[D]. Changsha: Changsha University of Science & Technology, 2021. | |
84 | 郭猛, 任鑫, 焦峪波, 等. 沥青及沥青混合料老化与抗老化研究综述[J]. 中国公路学报, 2022, 35(4): 41-59. |
GUO Meng, REN Xin, JIAO Yubo, et al. Review of aging and antiaging of asphalt and asphalt mixtures[J]. China Journal of Highway and Transport, 2022, 35(4): 41-59. | |
85 | ZHANG Dong, CHEN Meizhu, WU Shaopeng, et al. Thermal and rheological performance of asphalt binders modified with expanded graphite/polyethylene glycol composite phase change material (EP-CPCM)[J]. Construction and Building Materials, 2019, 194: 83-91. |
86 | RYMS Michał, DENDA Hubert, Piotr JASKUŁA. Thermal stabilization and permanent deformation resistance of LWA/PCM-modified asphalt road surfaces[J]. Construction and Building Materials, 2017, 142: 328-341. |
87 | REN Yongxiang, HAO Peiwen. Modification mechanism and enhanced low-temperature performance of asphalt mixtures with graphene-modified phase-change microcapsules[J]. Construction and Building Materials, 2022, 320: 126301. |
88 | 周雪艳, 马骉, 任宇铮, 等. 沥青路面用复合定形相变材料的路用性能研究[J]. 硅酸盐通报, 2017, 36(8): 2743-2748, 2786. |
ZHOU Xueyan, MA Biao, REN Yuzheng, et al. Pavement performance of composite shape-stabilized phase change material used for asphalt pavement[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(8): 2743-2748, 2786. | |
89 | 汪莎莎. 沥青混合料用复合定形相变材料制备与性质研究[D]. 西安: 长安大学, 2011. |
WANG Shasha. Research on preparation and properties of CFPCM using in asfalt mixture[D]. Xi’an: Chang’an University, 2011. | |
90 | MA Biao, WANG Shasha, LI Jun. Study on application of PCM in asphalt mixture[J]. Advanced Materials Research, 2011, 168/170: 2625-2630. |
91 | 孙嵘蓉. 缓释蓄盐沥青混合料的研发及性能的评价[D]. 哈尔滨: 哈尔滨工业大学, 2012. |
SUN Rongrong. Develop and performance evaluate of sustained-release mixture include salt[D]. Harbin: Harbin Institute of Technology, 2012. | |
92 | GUO Meng, LIANG Meichen, JIAO Yubo, et al. A review of phase change materials in asphalt binder and asphalt mixture[J]. Construction and Building Materials, 2020, 258: 119565. |
93 | ZHOU Xiangming, KASTIUKAS Gediminas, LANTIERI Claudio, et al. Mechanical and thermal performance of macro-encapsulated phase change materials for pavement application[J]. Materials, 2018, 11(8): 1398. |
94 | CHEN Jun, LI Jiahao, WANG Hao, et al. Preparation and effectiveness of composite phase change material for performance improvement of open graded friction course[J]. Journal of Cleaner Production, 2019, 214: 259-269. |
1 | 王海成, 金娇, 刘帅, 等. 环境友好型绿色道路研究进展与展望[J]. 中南大学学报(自然科学版), 2021, 52(7): 2137-2169. |
WANG Haicheng, JIN Jiao, LIU Shuai, et al. Research progress and prospect of environment-friendly green road[J]. Journal of Central South University (Science and Technology), 2021, 52(7): 2137-2169. | |
2 | 施楠彬, 张东. 新型气凝胶基复合相变材料研究进展[J]. 现代化工, 2020, 40(8): 39-43, 48. |
SHI Nanbin, ZHANG Dong. Research progress on novel aerogel-based composite phase change materials[J]. Modern Chemical Industry, 2020, 40(8): 39-43, 48. | |
3 | 周建华, 周梦园, 李燕, 等. 改性胶原气凝胶复合相变材料的制备及性能[J]. 精细化工, 2022, 39(6): 1117-1124, 1133. |
ZHOU Jianhua, ZHOU Mengyuan, LI Yan, et al. Preparation and properties of modified collagen aerogel composite phase change material[J]. Fine Chemicals, 2022, 39(6): 1117-1124, 1133. | |
4 | 刘涛, 郭乃胜, 谭忆秋, 等. 路用相变材料研究现状和发展趋势[J]. 材料导报, 2020, 34(23): 23179-23189. |
LIU Tao, GUO Naisheng, TAN Yiqiu, et al. Research and development trend of road usage phase change materials[J]. Materials Reports, 2020, 34(23): 23179-23189. | |
5 | KAKAR Muhammad Rafiq, REFAA Zakariaa, BUENO Moises, et al. Investigating bitumen’s direct interaction with tetradecane as potential phase change material for low temperature applications[J]. Road Materials and Pavement Design, 2020, 21(8): 2356-2363. |
6 | 张路曼, 侯风. 相变调温墙板热工性能试验和数值模拟研究[J]. 硅酸盐通报, 2024, 43(3): 866-877. |
ZHANG Luman, HOU Feng. Thermal performance test and numerical simulation of phase change thermostatic wall board[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(3): 866-877. | |
7 | 于文艳, 殷凯. 复合相变蓄热涂层的蓄放热调温特性[J]. 科学技术与工程, 2023, 23(31): 13492-13498. |
YU Wenyan, YIN Kai. Thermal storage and release characteristics of composite phase change thermal storage coatings[J]. Science Technology and Engineering, 2023, 23(31): 13492-13498. | |
8 | 刘林林, 卢勇, 吴春颖, 等. 沥青路面用相变材料研究进展[J]. 化工新型材料, 2021, 49(S1): 252-255, 259. |
LIU Linlin, LU Yong, WU Chunying, et al. Research progress of phase change materials for asphalt pavement[J]. New Chemical Materials, 2021, 49(S1): 252-255, 259. | |
9 | 蔡昕辰, 刘志彬, 张云, 等. 相变材料在道路工程中的应用研究进展[J]. 功能材料, 2021, 52(12): 12013-12021. |
CAI Xinchen, LIU Zhibin, ZHANG Yun, et al. Research of application of phase change materials in road engineering: A review[J]. Journal of Functional Materials, 2021, 52(12): 12013-12021. | |
10 | 吴丽梅, 刘庆欣, 王晓龙, 等. 相变储能材料研究进展[J]. 材料导报, 2021, 35(S1): 501-506. |
WU Limei, LIU Qingxin, WANG Xiaolong, et al. Review on phase change energy storage materials[J]. Materials Reports, 2021, 35(S1): 501-506. | |
11 | 王立久, 孙丹. 国内外石蜡类相变材料在节能方面的研究与进展[J]. 材料导报, 2010, 24(S1): 275-277. |
WANG Lijiu, SUN Dan. Research and progress of paraffin phase change material for energy-saving domestic and foreign[J]. Materials Reports, 2010, 24(S1): 275-277. | |
12 | YUAN Yanping, ZHANG Nan, TAO Wenquan, et al. Fatty acids as phase change materials: A review[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 482-498. |
13 | RATHOD Manish K, BANERJEE Jyotirmay. Thermal stability of phase change materials used in latent heat energy storage systems: A review[J]. Renewable and Sustainable Energy Reviews, 2013, 18: 246-258. |
14 | MEHLING Harald, CABEZA Luisa F. Heat and cold storage with PCM: An up to date introduction into basics and applications[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. |
15 | JIN Jiao, LIU Lang, LIU Ruohua, et al. Preparation and thermal performance of binary fatty acid with diatomite as form-stable composite phase change material for cooling asphalt pavements[J]. Construction and Building Materials, 2019, 226: 616-624. |
16 | 《中国公路学报》编辑部. 中国路面工程学术研究综述·2020[J]. 中国公路学报, 2020, 33(10): 1-66. |
China Journal of Highway editorial office. Academic research on pavement engineering in China-2020: A review[J]. China Journal of Highway and Transport, 2020, 33(10): 1-66. |
[1] | 尹少武, 黄若萧, 昝晓君, 童莉葛, 刘传平, 王立. 基于CPCM正六边形砖的蓄热储能系统设计与蓄放热模拟[J]. 化工进展, 2024, 43(S1): 243-254. |
[2] | 马桂璇, 徐子桐, 肖志华, 宁国庆, 魏强, 徐春明. 氧硫双掺杂CNTs水系导电剂辅助构筑高性能石墨/SiO负极[J]. 化工进展, 2024, 43(S1): 443-456. |
[3] | 高觊兴, 丁玉梅, 张超, 谭晶, 丁熙, 李好义, 杨卫民. 熔体微分电纺PLA/PCL微纳米纤维膜的制备及其性能[J]. 化工进展, 2024, 43(S1): 457-468. |
[4] | 楼高波, 姚潇翎, 倪静雯, 傅深渊, 刘丽娜. 离子络合物改性二维云母环氧树脂复合材料的制备及性能[J]. 化工进展, 2024, 43(9): 5142-5156. |
[5] | 李美萱, 成建凤, 黄国勇, 徐盛明, 郁丰善, 翁雅青, 曹才放, 温嘉玮, 王俊莲, 王春霞, 顾斌涛, 张袁华, 刘斌, 王才平, 潘剑明, 徐泽良, 王翀, 王珂. 高电压镍锰酸锂正极材料的合成与电化学机理[J]. 化工进展, 2024, 43(9): 5086-5094. |
[6] | 刘丽, 冯博, 文洋, 古启雄. 硅基介孔材料的合成、功能化及对金属的吸附研究进展[J]. 化工进展, 2024, 43(9): 5063-5078. |
[7] | 申纯宇, 李翠利, 汤建伟, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 纳米氢氧化镁制备及其阻燃应用进展[J]. 化工进展, 2024, 43(9): 4980-4995. |
[8] | 慕铭, 赵伟伟, 陈光孟, 刘小青. 基于激光诱导石墨烯的应变传感器研究进展[J]. 化工进展, 2024, 43(9): 4970-4979. |
[9] | 潘涵婷, 徐洪涛, 许多, 罗祝清. 低温条件下基于相变材料的锂离子电池保温特性分析[J]. 化工进展, 2024, 43(8): 4333-4341. |
[10] | 孙忻茹, 张秋怡, 卓建坤, 杨润, 姚强. CaCl2复合热化学储热材料的研究进展[J]. 化工进展, 2024, 43(8): 4506-4515. |
[11] | 杨光, 姜瑞婷, 张玥, 符子剑, 刘伟. 五氧化二钒/碳纳米复合材料在超级电容器中的应用[J]. 化工进展, 2024, 43(7): 3857-3871. |
[12] | 赵伟刚, 张倩倩, 蓝钰玲, 闫雯, 周晓剑, 范毜仔, 杜官本. 真空绝热板芯材的研究进展与展望[J]. 化工进展, 2024, 43(7): 3910-3922. |
[13] | 江慧珍, 罗凯, 王艳, 费华, 吴登科, 叶卓铖, 曹雄金. 废弃生物质复合相变材料的构建与应用[J]. 化工进展, 2024, 43(7): 3934-3945. |
[14] | 杜倩, 侯明, 高冀芸, 杨黎, 鲁元佳, 郭胜惠. f-Ti3C2T x /ZIF-8异质结构增强NO2气体传感器的敏感性能[J]. 化工进展, 2024, 43(7): 3946-3954. |
[15] | 张世蕊, 范朕连, 宋慧平, 张丽娜, 高宏宇, 程淑艳, 程芳琴. 粉煤灰负载光催化材料的研究进展[J]. 化工进展, 2024, 43(7): 4043-4058. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 61
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 65
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |