化工进展 ›› 2024, Vol. 43 ›› Issue (9): 4970-4979.DOI: 10.16085/j.issn.1000-6613.2023-1343
• 材料科学与技术 • 上一篇
收稿日期:
2023-08-07
修回日期:
2023-09-08
出版日期:
2024-09-15
发布日期:
2024-09-30
通讯作者:
赵伟伟,刘小青
作者简介:
慕铭(1998—),女,硕士研究生,研究方向为树脂基碳材料。E-mail:muming@nimte.ac.cn。
基金资助:
MU Ming1,2(), ZHAO Weiwei2(), CHEN Guangmeng2, LIU Xiaoqing2()
Received:
2023-08-07
Revised:
2023-09-08
Online:
2024-09-15
Published:
2024-09-30
Contact:
ZHAO Weiwei, LIU Xiaoqing
摘要:
激光诱导石墨烯(LIG)是通过激光直接照射碳前体得到的一种三维多孔石墨烯材料。凭借制备过程简单、可任意图案化、价廉质优等优势,LIG在柔性应变传感器领域受到极大关注,已广泛应用于医疗健康、运动监测、人机交互等领域。本文着重介绍了LIG的制备工艺,激光参数、碳前体及掺杂改性等影响其结构-性能的因素,以及LIG在柔性应变传感器应用的最新进展,其中激光参数包括激光功率和扫描速率、图像密度、焦距及气氛环境;碳前体包括芳香族聚合物和天然材料;掺杂改性包括原位掺杂和后处理掺杂。指出开发生物兼容性高、可降解的碳前体是电子产品可再生性和可持续性的重要需求,大变形、快响应是LIG基柔性可穿戴传感器的探索目标,多功能传感集成是LIG基柔性可穿戴传感器的发展趋势。
中图分类号:
慕铭, 赵伟伟, 陈光孟, 刘小青. 基于激光诱导石墨烯的应变传感器研究进展[J]. 化工进展, 2024, 43(9): 4970-4979.
MU Ming, ZHAO Weiwei, CHEN Guangmeng, LIU Xiaoqing. Research progress of strain sensor based on laser-induced graphene[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4970-4979.
制备方法 | 传感材料 | 传感范围/% | 灵敏度 | 稳定性 | 参考文献 |
---|---|---|---|---|---|
原位 | LIG/Ecoflex | 14 | 8557.19 | >10000 | [ |
LIG/PI织物 | <4 | 27 | 1000 | [ | |
LIG/PI | — | 112 | — | [ | |
LIG/PDMS | 10 | 75 | — | [ | |
PANI/LIG/Ecoflex | 20 | — | >12000 | [ | |
转移 | MoS2-LIG/PDMS | 25 | 1242 | >12000 | [ |
BP①/LIG/SEBS | 19.2 | 2765 | >18400 | [ | |
LIG/PDMS | 100 | 3.54 | 10000 | [ | |
LIG/PDMS | 100 | 20000 | 1000 | [ | |
Pt/LIG/PDMS | 20 | 489.3 | >5000 | [ | |
LIG/Ecoflex | 10 | 673 | 1000 | [ | |
LMs②/SHL③-LIG/ Ecoflex | 200 | 1.558 | — | [ | |
LIG/PDMS | 35 | 36.8 | 3000 | [ |
表1 LIG基应变传感器的性能比较
制备方法 | 传感材料 | 传感范围/% | 灵敏度 | 稳定性 | 参考文献 |
---|---|---|---|---|---|
原位 | LIG/Ecoflex | 14 | 8557.19 | >10000 | [ |
LIG/PI织物 | <4 | 27 | 1000 | [ | |
LIG/PI | — | 112 | — | [ | |
LIG/PDMS | 10 | 75 | — | [ | |
PANI/LIG/Ecoflex | 20 | — | >12000 | [ | |
转移 | MoS2-LIG/PDMS | 25 | 1242 | >12000 | [ |
BP①/LIG/SEBS | 19.2 | 2765 | >18400 | [ | |
LIG/PDMS | 100 | 3.54 | 10000 | [ | |
LIG/PDMS | 100 | 20000 | 1000 | [ | |
Pt/LIG/PDMS | 20 | 489.3 | >5000 | [ | |
LIG/Ecoflex | 10 | 673 | 1000 | [ | |
LMs②/SHL③-LIG/ Ecoflex | 200 | 1.558 | — | [ | |
LIG/PDMS | 35 | 36.8 | 3000 | [ |
1 | CHOONG Chwee-Lin, SHIM Mun-Bo, LEE Byoung-Sun, et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array[J]. Advanced Materials, 2014, 26(21): 3451-3458. |
2 | TAO Luqi, ZHANG Kunning, TIAN He, et al. Graphene-paper pressure sensor for detecting human motions[J]. ACS Nano, 2017, 11(9): 8790-8795. |
3 | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
4 | HERNAEZ Miguel. Applications of graphene-based materials in sensors[J]. Sensors, 2020, 20(11): 3196. |
5 | KABIRI AMERI Shideh, Rebecca HO, JANG Hongwoo, et al. Graphene electronic tattoo sensors[J]. ACS Nano, 2017, 11(8): 7634-7641. |
6 | LIU Qiang, CHEN Ji, LI Yingru, et al. High-performance strain sensors with fish-scale-like graphene-sensing layers for full-range detection of human motions[J]. ACS Nano, 2016, 10(8): 7901-7906. |
7 | MIAO Jinlei, FAN Tingting. Flexible and stretchable transparent conductive graphene-based electrodes for emerging wearable electronics[J]. Carbon, 2023, 202: 495-527. |
8 | HUMMERS William S, OFFEMAN Richard E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339. |
9 | REINA Alfonso, JIA Xiaoting, John HO, et al. Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Letters, 2009, 9(8): 3087. |
10 | BERGER Claire, SONG Zhimin, LI Xuebin, et al. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 2006, 312(5777): 1191-1196. |
11 | LIN Yuming, DIMITRAKOPOULOS C, JENKINS K A, et al. 100GHz transistors from wafer-scale epitaxial graphene[J]. Science, 2010, 327(5966): 662. |
12 | JANG Houk, PARK Yong Ju, CHEN Xiang, et al. Graphene-based flexible and stretchable electronics[J]. Advanced Materials, 2016, 28(22): 4184-4202. |
13 | CHEN Zhaolong, QI Yue, CHEN Xudong, et al. Direct CVD growth of graphene on traditional glass: Methods and mechanisms[J]. Advanced Materials, 2019, 31(9): 1803639. |
14 | YI Min, SHEN Zhigang. A review on mechanical exfoliation for the scalable production of graphene[J]. Journal of Materials Chemistry A, 2015, 3(22): 11700-11715. |
15 | 李文博, 王旭东, 宋延林. 石墨烯基墨水的制备及其在印刷电子中的应用[J]. 科技导报, 2017, 35(17): 30-36. |
LI Wenbo, WANG Xudong, SONG Yanlin. Preparation of graphene-based inks and their applications to printed electronics: A review[J]. Science & Technology Review, 2017, 35(17): 30-36. | |
16 | LE Truong-Son Dinh, PHAN Hoang-Phuong, KWON Soongeun, et al. Recent advances in laser-induced graphene: Mechanism, fabrication, properties, and applications in flexible electronics [J]. Advanced Functional Materials, 2022, 32(48): 2205158. |
17 | LIN Jian, PENG Zhiwei, LIU Yuanyue, et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications, 2014, 5: 5714. |
18 | PENG Yunyan, ZHAO Weiwei, NI Feng, et al. Forest-like laser-induced graphene film with ultrahigh solar energy utilization efficiency[J]. ACS Nano, 2021, 15(12): 19490-19502. |
19 | ZHAO Weiwei, JIANG Ye, YU Wenjie, et al. Wettability controlled surface for energy conversion[J]. Small, 2022, 18(31): 2202906. |
20 | LI Yilun, LUONG Duy Xuan, ZHANG Jibo, et al. Laser-induced graphene in controlled atmospheres: From superhydrophilic to superhydrophobic surfaces[J]. Advanced Materials, 2017, 29(27): 1700496. |
21 | ZHAO Weiwei, YU Wenjie, JIANG Ye, et al. Patterning of thermosetting resins via laser engraving towards efficient thermal management[J]. Nano Energy, 2022, 100: 107477. |
22 | NASSER Jalal, LIN Jiajun, ZHANG Lisha, et al. Laser induced graphene printing of spatially controlled super-hydrophobic/hydrophilic surfaces[J]. Carbon, 2020, 162: 570-578. |
23 | YU Wenjie, ZHAO Weiwei, WANG Shuaipeng, et al. Direct conversion of liquid organic precursor into 3D laser-induced graphene materials[J]. Advanced Materials, 2023, 35(9): 2209545. |
24 | ZHANG Zhuchan, SONG Mengmeng, HAO Junxing, et al. Visible light laser-induced graphene from phenolic resin: A new approach for directly writing graphene-based electrochemical devices on various substrates[J]. Carbon, 2018, 127: 287-296. |
25 | SINGH Swatantra P, LI Yilun, ZHANG Jibo, et al. Sulfur-doped laser-induced porous graphene derived from polysulfone-class polymers and membranes[J]. ACS Nano, 2018, 12(1): 289-297. |
26 | SINGH Sunpreet, PRAKASH Chander, RAMAKRISHNA Seeram. 3D printing of polyether-ether-ketone for biomedical applications[J]. European Polymer Journal, 2019, 114: 234-248. |
27 | YANG Weiwei, ZHAO Wei, LI Qiushi, et al. Fabrication of smart components by 3D printing and laser-scribing technologies[J]. ACS Applied Materials & Interfaces, 2020, 12(3): 3928-3935. |
28 | YE Ruquan, CHYAN Yieu, ZHANG Jibo, et al. Laser-induced graphene formation on wood[J]. Advanced Materials, 2017, 29(37): 1702211. |
29 | CHYAN Yieu, YE Ruquan, LI Yilun, et al. Laser-induced graphene by multiple lasing: Toward electronics on cloth, paper, and food[J]. ACS Nano, 2018, 12(3): 2176-2183. |
30 | BASU Aniruddha, ROY Kingshuk, SHARMA Neha, et al. CO2 laser direct written MOF-based metal-decorated and heteroatom-doped porous graphene for flexible all-solid-state microsupercapacitor with extremely high cycling stability[J]. ACS Applied Materials & Interfaces, 2016, 8(46): 31841-31848. |
31 | YU Zeqi, YU Wenjie, JIANG Ye, et al. Upcycling of polybenzoxazine to magnetic metal nanoparticle-doped laser-induced graphene for electromagnetic interference shielding[J]. ACS Applied Nano Materials, 2022, 5(9): 13158-13170. |
32 | ZANG Xining, SHEN Caiwei, CHU Yao, et al. Laser-induced molybdenum carbide-graphene composites for 3D foldable paper electronics[J]. Advanced Materials, 2018, 30(26): 1800062. |
33 | YANG Weiwei, LIU Ying, LI Qiushi, et al. In situ formation of phosphorus-doped porous graphene via laser induction[J]. RSC Advances, 2020, 10(40): 23953-23958. |
34 | YE Ruquan, PENG Zhiwei, WANG Tuo, et al. In situ formation of metal oxide nanocrystals embedded in laser-induced graphene[J]. ACS Nano, 2015, 9(9): 9244-9251. |
35 | YU Wenjie, PENG Yunyan, CAO Lijun, et al. Free-standing laser-induced graphene films for high-performance electromagnetic interference shielding[J]. Carbon, 2021, 183: 600-611. |
36 | YUAN Min, LUO Feng, RAO Yifan, et al. SWCNT-bridged laser-induced graphene fibers decorated with MnO2 nanoparticles for high-performance flexible micro-supercapacitors[J]. Carbon, 2021, 183: 128-137. |
37 | JIANG Ye, WAN Sijie, ZHAO Weiwei, et al. Reusable, magnetic laser-induced graphene for efficient removal of organic pollutants from water[J]. Carbon Letters, 2022, 32(4): 1047-1064. |
38 | LI Qi, BAI Ruijie, GAO Yang, et al. Laser direct writing of flexible sensor arrays based on carbonized carboxymethylcellulose and its composites for simultaneous mechanical and thermal stimuli detection[J]. ACS Applied Materials & Interfaces, 2021, 13(8): 10171-10180. |
39 | LIU Wen, HUANG Yihe, PENG Yudong, et al. Stable wearable strain sensors on textiles by direct laser writing of graphene[J]. ACS Applied Nano Materials, 2020, 3(1): 283-293. |
40 | LUO Sida, HOANG Phong Tran, LIU Tao. Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays[J]. Carbon, 2016, 96: 522-531. |
41 | WANG Hao, ZHAO Zifen, LIU Panpan, et al. A soft and stretchable electronics using laser-induced graphene on polyimide/PDMS composite substrate[J]. NPJ Flexible Electronics, 2022, 6(1): 26. |
42 | RAHIMI Rahim, OCHOA Manuel, TAMAYOL Ali, et al. Highly stretchable potentiometric pH sensor fabricated via laser carbonization and machining of carbon-polyaniline composite[J]. ACS Applied Materials & Interfaces, 2017, 9(10): 9015-9023. |
43 | CHHETRY Ashok, SHARIFUZZAMAN Md, YOON Hyosang, et al. MoS2-decorated laser-induced graphene for a highly sensitive, hysteresis-free, and reliable piezoresistive strain sensor[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22531-22542. |
44 | CHHETRY Ashok, SHARMA Sudeep, BARMAN Sharat Chandra, et al. Black phosphorus@Laser-engraved graphene heterostructure-based temperature-strain hybridized sensor for electronic-skin applications[J]. Advanced Functional Materials, 2021, 31(10): 2007661. |
45 | RAZA Tahir, TUFAIL Muhammad Khurram, Afzal ALI, et al. Wearable and flexible multifunctional sensor based on laser-induced graphene for the sports monitoring system[J]. ACS Applied Materials & Interfaces, 2022, 14(48): 54170-54181. |
46 | RAHIMI Rahim, OCHOA Manuel, YU Wuyang, et al. Highly stretchable and sensitive unidirectional strain sensor via laser carbonization[J]. ACS Applied Materials & Interfaces, 2015, 7(8): 4463-4470. |
47 | LIU Wen, CHEN Qian, HUANG Yihe, et al. In situ laser synthesis of Pt nanoparticles embedded in graphene films for wearable strain sensors with ultra-high sensitivity and stability[J]. Carbon, 2022, 190: 245-254. |
48 | QIAO Yancong, WANG Yunfan, TIAN He, et al. Multilayer graphene epidermal electronic skin[J]. ACS Nano, 2018, 12(9): 8839-8846. |
49 | WANG Zhongbao, WU Yigen, ZHU Bin, et al. Self-patterning of highly stretchable and electrically conductive liquid metal conductors by direct-write super-hydrophilic laser-induced graphene and electroless copper plating[J]. ACS Applied Materials & Interfaces, 2023, 15(3): 4713-4723. |
50 | ZHENG Hehui, WANG Han, YI Kunran, et al. Wearable LIG flexible stress sensor based on spider web bionic structure[J]. Coatings, 2023, 13(1): 155. |
51 | ZHAO Jing, ZHANG Guangyu, SHI Dongxia. Review of graphene-based strain sensors[J]. Chinese Physics B, 2013, 22(5): 057701. |
52 | LUONG Duy Xuan, YANG Kaichun, YOON Jongwon, et al. Laser-induced graphene composites as multifunctional surfaces[J]. ACS Nano, 2019, 13(2): 2579-2586. . |
53 | PINHEIRO Tomás, CORREIA Ricardo, MORAIS Maria, et al. Water peel-off transfer of electronically enhanced, paper-based laser-induced graphene for wearable electronics[J]. ACS Nano, 2022, 16(12): 20633-20646. |
[1] | 孙忻茹, 张秋怡, 卓建坤, 杨润, 姚强. CaCl2复合热化学储热材料的研究进展[J]. 化工进展, 2024, 43(8): 4506-4515. |
[2] | 杨光, 姜瑞婷, 张玥, 符子剑, 刘伟. 五氧化二钒/碳纳米复合材料在超级电容器中的应用[J]. 化工进展, 2024, 43(7): 3857-3871. |
[3] | 赵伟刚, 张倩倩, 蓝钰玲, 闫雯, 周晓剑, 范毜仔, 杜官本. 真空绝热板芯材的研究进展与展望[J]. 化工进展, 2024, 43(7): 3910-3922. |
[4] | 江慧珍, 罗凯, 王艳, 费华, 吴登科, 叶卓铖, 曹雄金. 废弃生物质复合相变材料的构建与应用[J]. 化工进展, 2024, 43(7): 3934-3945. |
[5] | 杜倩, 侯明, 高冀芸, 杨黎, 鲁元佳, 郭胜惠. f-Ti3C2T x /ZIF-8异质结构增强NO2气体传感器的敏感性能[J]. 化工进展, 2024, 43(7): 3946-3954. |
[6] | 张世蕊, 范朕连, 宋慧平, 张丽娜, 高宏宇, 程淑艳, 程芳琴. 粉煤灰负载光催化材料的研究进展[J]. 化工进展, 2024, 43(7): 4043-4058. |
[7] | 刘梦凡, 王华伟, 王亚楠, 张艳茹, 蒋旭彤, 孙英杰. Bio-FeMnCeO x 活化PMS降解四环素效能与机制[J]. 化工进展, 2024, 43(6): 3492-3502. |
[8] | 杨磊, 邱广薇, 李思言, 葛宏程, 孙园园, 王菲, 范晓光. 基于温度和葡萄糖双重响应性共聚物微囊的胰岛素控释载体[J]. 化工进展, 2024, 43(6): 3277-3284. |
[9] | 曾浩桀, 周媚, 邹镇远, 熊峰, 曾星星, 刘宝玉. 表面钝化型二维ZSM-5分子筛的制备及甲苯与甲醇烷基化性能[J]. 化工进展, 2024, 43(5): 2696-2704. |
[10] | 刘雨蓉, 王兴宝, 李文英. 分子筛负载Pt催化剂酸性位点调控及对蒽深度加氢性能的影响[J]. 化工进展, 2024, 43(4): 1832-1839. |
[11] | 熊文婷, 罗启基, 鄢春根. 二氧化硅基气凝胶材料及其制备技术的专利分析[J]. 化工进展, 2024, 43(4): 1912-1922. |
[12] | 郭迎春, 梁晓怿. 柠檬酸改性球形活性炭对氨气吸附性能的影响[J]. 化工进展, 2024, 43(2): 1082-1088. |
[13] | 见禹, 陈宝明, 宫晗语. 基于分级结构骨架相变储热系统强化传热特性[J]. 化工进展, 2024, 43(2): 649-658. |
[14] | 代洪静, 马学虎, 王四芳. 低中放射性废水处理吸附技术及材料[J]. 化工进展, 2024, 43(1): 529-540. |
[15] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |