化工进展 ›› 2024, Vol. 43 ›› Issue (S1): 443-456.DOI: 10.16085/j.issn.1000-6613.2024-0435
马桂璇1(), 徐子桐2, 肖志华3(), 宁国庆4, 魏强1(), 徐春明1,3
收稿日期:
2024-03-15
修回日期:
2024-05-11
出版日期:
2024-11-20
发布日期:
2024-12-06
通讯作者:
肖志华,魏强
作者简介:
马桂璇(1995—),女,博士研究生,研究方向为硫掺杂碳材料的制备及其在锂离子电池负极中的应用。E-mail:cupmaguixuan@163.com。
基金资助:
MA Guixuan1(), XU Zitong2, XIAO Zhihua3(), Ning Guoqing4, WEI Qiang1(), XU Chunming1,3
Received:
2024-03-15
Revised:
2024-05-11
Online:
2024-11-20
Published:
2024-12-06
Contact:
XIAO Zhihua, WEI Qiang
摘要:
由于石墨具有资源丰富、比容量高和嵌锂电位低等优势,被视为重要的商业化锂离子电池(LIBs)负极材料。然而,石墨较低的理论比容量限制了LIBs能量密度的进一步提升。因此,本文将少量的氧化亚硅(SiO)添加到石墨中,再分散到少量的氧硫掺杂双壁碳纳米管(O,S-DCNTs)水系导电剂中,得到石墨/SiO复合负极。其中,O,S-DCNTs是通过将双壁碳纳米管(DCNTs)在空气中预氧化处理,再通过浸渍法与MgSO4混合后煅烧所得的,具有纳米孔结构丰富、硫含量高和亲水性强等特性。通过电池性能测试发现,引入O,S-DCNTs后石墨/SiO复合负极的比容量、倍率和循环性能得到显著提升。此外,其循环性能是纯硫掺杂碳纳米管(S-DCNTs)石墨/SiO负极的4倍,这主要归因于高分散的O,S-DCNTs能够构筑大量的导电网络,提供丰富的锂离子存储空间和活性位点,解决SiO导电性差和体积膨胀系数大问题,从而显著提高石墨负极的电化学性能。本文为高性能负极材料的制备与储能应用提供了新的思路和方向。
中图分类号:
马桂璇, 徐子桐, 肖志华, 宁国庆, 魏强, 徐春明. 氧硫双掺杂CNTs水系导电剂辅助构筑高性能石墨/SiO负极[J]. 化工进展, 2024, 43(S1): 443-456.
MA Guixuan, XU Zitong, XIAO Zhihua, Ning Guoqing, WEI Qiang, XU Chunming. O,S co-doped carbon nanotube aqueous conductive additive assisted construction of high-performance graphite/SiO anode[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 443-456.
样品名称 | 元素分析 | XPS | ||||
---|---|---|---|---|---|---|
S质量分数/% | O质量分数/% | C质量分数/% | S原子分数/% | O原子分数/% | C原子分数/% | |
S-DCNTs | 1.61 | 1.505 | 91.55 | 0.85 | 1.54 | 97.61 |
O,S-DCNTs | 2.23 | 1.56 | 92.6 | 0.93 | 1.55 | 97.52 |
表1 S-DCNTs和O,S-DCNTs的元素含量
样品名称 | 元素分析 | XPS | ||||
---|---|---|---|---|---|---|
S质量分数/% | O质量分数/% | C质量分数/% | S原子分数/% | O原子分数/% | C原子分数/% | |
S-DCNTs | 1.61 | 1.505 | 91.55 | 0.85 | 1.54 | 97.61 |
O,S-DCNTs | 2.23 | 1.56 | 92.6 | 0.93 | 1.55 | 97.52 |
样品名称 | C—SH原子分数/% | C—S—C原子分数/% | C—SO—C原子分数/% | C—SO2—C原子分数/% | S2-原子分数/% |
---|---|---|---|---|---|
S-DCNTs | 1.81 | 87.30 | 5.57 | 4.84 | 0.48 |
O,S-DCNTs | 19.94 | 56.21 | 8.12 | 9.39 | 6.34 |
表2 S-DCNTs和O,S-DCNTs的成键结构
样品名称 | C—SH原子分数/% | C—S—C原子分数/% | C—SO—C原子分数/% | C—SO2—C原子分数/% | S2-原子分数/% |
---|---|---|---|---|---|
S-DCNTs | 1.81 | 87.30 | 5.57 | 4.84 | 0.48 |
O,S-DCNTs | 19.94 | 56.21 | 8.12 | 9.39 | 6.34 |
样品名称 | d(0.1)/μm | d(0.5)/μm | d(0.9)/μm |
---|---|---|---|
S-DCNTs | 0.053 | 0.086 | 2.222 |
O,S-DCNTs | 0.054 | 0.370 | 1.179 |
表3 S-DCNTs和O,S-DCNTs水系导电剂的粒度分布
样品名称 | d(0.1)/μm | d(0.5)/μm | d(0.9)/μm |
---|---|---|---|
S-DCNTs | 0.053 | 0.086 | 2.222 |
O,S-DCNTs | 0.054 | 0.370 | 1.179 |
样品名称 | Rv(极片)/Ω·cm | ICE(电池)/% |
---|---|---|
SiO/C+O,S-DCNTs | 1.68 | 96.09 |
SiO/C+S-DCNTs | 1.75 | 97.72 |
SiO/C | 2.94 | 96.45 |
表4 极片的Rv和电池的ICE
样品名称 | Rv(极片)/Ω·cm | ICE(电池)/% |
---|---|---|
SiO/C+O,S-DCNTs | 1.68 | 96.09 |
SiO/C+S-DCNTs | 1.75 | 97.72 |
SiO/C | 2.94 | 96.45 |
1 | F M Nizam Uddin KHAN, RASUL Mohammad G, SAYEM A S M, et al. Design and optimization of lithium-ion battery as an efficient energy storage device for electric vehicles: A comprehensive review[J]. Journal of Energy Storage, 2023, 71: 108033. |
2 | ASENBAUER Jakob, EISENMANN Tobias, KUENZEL Matthias, et al. The success story of graphite as a lithium-ion anode material-fundamentals, remaining challenges, and recent developments including silicon (oxide) composites[J]. Sustainable Energy & Fuels, 2020, 4(11): 5387-5416. |
3 | ZHANG Mengxuan, ZHAO Lu, SUN Dong, et al. S doped CNTs scaffolded Si@C spheres anode toward splendid high-temperature performance in lithium-ion battery[J]. Applied Surface Science, 2023, 626: 157254. |
4 | Kyungmin LIM, PARK Heonsoo, Jaeyun HA, et al. Dual-carbon-confined hydrangea-like SiO cluster for high-performance and stable lithium ion batteries[J]. Journal of Industrial and Engineering Chemistry, 2021, 101: 397-404. |
5 | CHEN Tao, WU Ji, ZHANG Qinglin, et al. Recent advancement of SiO x based anodes for lithium-ion batteries[J]. Journal of Power Sources, 2017, 363: 126-144. |
6 | YAO Nana, ZHANG Yu, RAO Xianhui, et al. A review on the critical challenges and progress of SiO x -based anodes for lithium-ion batteries[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(4): 876-895. |
7 | SHI Hebang, ZHANG He, LI Xinxin, et al. In situ fabrication of dual coating structured SiO/1D-C/a-C composite as high-performance lithium ion battery anode by fluidized bed chemical vapor deposition[J]. Carbon, 2020, 168: 113-124. |
8 | LU Wenquan, ZHOU Xinwei, LIU Yuzi, et al. Crack-free silicon monoxide as anodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(51): 57141-57145. |
9 | MIYACHI Mariko, YAMAMOTO Hironori, KAWAI Hidemasa, et al. Analysis of SiO anodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2005, 152(10): A2089. |
10 | LI Zhaohuai, HE Qiu, HE Liang, et al. Self-sacrificed synthesis of carbon-coated SiO x nanowires for high capacity lithium ion battery anodes[J]. Journal of Materials Chemistry A, 2017, 5(8): 4183-4189. |
11 | LIU Zhenhui, YU Qiang, ZHAO Yunlong, et al. Silicon oxides: A promising family of anode materials for lithium-ion batteries[J]. Chemical Society Reviews, 2019, 48(1): 285-309. |
12 | TAN Tian, LEE Pui-Kit, ZETTSU Nobuyuki, et al. Passivating oxygen atoms in SiO through pre-treatment with Na2CO3 to increase its first cycle efficiency for lithium-ion batteries[J]. Electrochimica Acta, 2022, 404: 139777. |
13 | YANG Hyeon-Woo, LEE Dae In, KANG Nayoung, et al. Highly enhancement of the SiO x nanocomposite through Ti-doping and carbon-coating for high-performance Li-ion battery[J]. Journal of Power Sources, 2018, 400: 613-620. |
14 | DOU Fei, SHI Liyi, SONG Pingan, et al. Design of orderly carbon coatings for SiO anodes promoted by TiO2 toward high performance lithium-ion battery[J]. Chemical Engineering Journal, 2018, 338: 488-495. |
15 | GE Jiawei, TANG Quntao, SHEN Honglie, et al. Low-temperature fabrication of porous SiO with carbon shell for high-stability lithium ion battery[J]. Ceramics International, 2020, 46(8): 12507-12516. |
16 | CUI Jinlong, CUI Yongfu, LI Shaohui, et al. Microsized porous SiO x @C composites synthesized through aluminothermic reduction from rice husks and used as anode for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(44): 30239-30247. |
17 | GUO Lingzhi, HE Hongyan, REN Yurong, et al. Core-shell SiO@F-doped C composites with interspaces and voids as anodes for high-performance lithium-ion batteries[J]. Chemical Engineering Journal, 2018, 335: 32-40. |
18 | HAN Jinlong, CHEN Guorong, YAN Tingting, et al. Creating graphene-like carbon layers on SiO anodes via a layer-by-layer strategy for lithium-ion battery[J]. Chemical Engineering Journal, 2018, 347: 273-279. |
19 | LIN Zeheng, LI Jianhui, HUANG Qiming, et al. Insights into the interfacial instability between carbon-coated SiO anode and electrolyte in lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2019, 123(20): 12902-12909. |
20 | SHI Liurong, PANG Chunlei, CHEN Shulin, et al. Vertical graphene growth on SiO microparticles for stable lithium ion battery anodes[J]. Nano Letters, 2017, 17(6): 3681-3687. |
21 | SHI Hebang, ZHANG He, HU Chaoquan, et al. Efficient fluidization intensification process to fabricate in situ dispersed (SiO + G)/CNTs composites for high-performance lithium-ion battery anode applications[J]. Particuology, 2021, 56: 84-90. |
22 | SEHRAWAT Poonam, SHABIR Abgeena, ABID, et al. Recent trends in silicon/graphene nanocomposite anodes for lithium-ion batteries[J]. Journal of Power Sources, 2021, 501: 229709. |
23 | ZHAO Tingkai, SHE Shengfei, JI Xianglin, et al. In-situ growth amorphous carbon nanotube on silicon particles as lithium-ion battery anode materials[J]. Journal of Alloys and Compounds, 2017, 708: 500-507. |
24 | XIA Mao, LI Yiran, XIONG Xiang, et al. Enhancing the electrochemical performance of micron-scale SiO@C/CNTs anode via adding piezoelectric material BaTiO3 for high-power lithium ion battery[J]. Journal of Alloys and Compounds, 2019, 800: 116-124. |
25 | LI Jianbin, WANG Lei, LIU Fangming, et al. In situ wrapping SiO with carbon nanotubes as anode material for high-performance Li-ion batteries[J]. ChemistrySelect, 2019, 4(10): 2918-2925. |
26 | TIAN Hao, TIAN Huajun, YANG Wu, et al. Stable hollow-structured silicon suboxide-based anodes toward high-performance lithium-ion batteries[J]. Advanced Functional Materials, 2021, 31(25): 2101796. |
27 | ZHANG Junying, YANG Gen, WANG Jinao, et al. Graphene and carbon nanotube dual-decorated SiO x composite anode material for lithium-ion batteries[J]. Energy & Fuels, 2021, 35(23): 19784-19790. |
28 | JIANG Jinlong, OUYANG Hao, JIANG Yong, et al. Preparation of SiO x -TiO2/Si/CNTs composite microspheres as novel anodes for lithium-ion battery with good cycle stability[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(14): 11025-11037. |
29 | ZHOU Junhua, WANG Jiaqi, SHI Qitao, et al. Origin of enhanced stability of SiO anode via using carbon nanotubes[J]. Science China Materials, 2023, 66(9): 3461-3467. |
30 | RATHINAVEL S, PRIYADHARSHINI K, PANDA Dhananjaya. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application[J]. Materials Science and Engineering: B, 2021, 268: 115095. |
31 | ZHANG Jianye, HUANG Zhiyong, HE Chengen, et al. Binary carbon-based additives in LiFePO4 cathode with favorable lithium storage[J]. Nanotechnology Reviews, 2020, 9(1): 934-944. |
32 | WANG Guoping, LI Mei, QIAN Yong, et al. Effect of carbon nanotube dispersion on electrochemical behavior of the CNTs/LiCoO2 composite cathode[J]. International Journal of Electrochemical Science, 2021, 16(7): 210765. |
33 | MEDVEDEV O S, WANG Q, POPOVICH A A, et al. Comparison of conductive additives for high-power applications of Li-ion batteries[J]. Ionics, 2020, 26(9): 4277-4286. |
34 | MA Guixuan, NING Guoqing, WEI Qiang. S-doped carbon materials: Synthesis, properties and applications[J]. Carbon, 2022, 195: 328-340. |
35 | HOQUE Md Ariful, HASSAN Fathy M, JAUHAR Altamash M, et al. Web-like 3D architecture of Pt nanowires and sulfur-doped carbon nanotube with superior electrocatalytic performance[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 93-98. |
36 | TAVAKOL Hossein, SHAHABI Dana. DFT, QTAIM, and NBO study of adsorption of rare gases into and on the surface of sulfur-doped, single-wall carbon nanotubes[J]. The Journal of Physical Chemistry C, 2015, 119(12): 6502-6510. |
37 | SAADAT Kayvan, TAVAKOL Hossein. Study of noncovalent interactions of end-caped sulfur-doped carbon nanotubes using DFT, QTAIM, NBO and NCI calculations[J]. Structural Chemistry, 2016, 27(3): 739-751. |
38 | RAO Hanbing, LIU Yiting, ZHONG Ji, et al. Gold nanoparticle/Chitosan@ N , S co-doped multiwalled carbon nanotubes sensor: Fabrication, characterization, and electrochemical detection of catechol and nitrite[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10926-10939. |
39 | KARIKALAN Natarajan, VELMURUGAN Murugan, CHEN Shenming, et al. Modern approach to the synthesis of Ni(OH)2 decorated sulfur doped carbon nanoparticles for the nonenzymatic glucose sensor[J]. ACS Applied Materials & Interfaces, 2016, 8(34): 22545-22553. |
40 | PANCHAKARLA L S, GOVINDARAJ A, RAO C N R. Nitrogen- and boron-doped double-walled carbon nanotubes[J]. ACS Nano, 2007, 1(5): 494-500. |
41 | XU Weilan, TANG Cheng, HUANG Na, et al. Adina rubella-like microsized SiO@N-doped carbon grafted with N-doped carbon nanotubes as anodes for high-performance lithium storage[J]. Small Science, 2022, 2(4): 2100105. |
42 | JIA Guosheng, INNOCENT Mugaanire Tendo, YU Yan, et al. Lignin-based carbon fibers: Insight into structural evolution from lignin pretreatment, fiber forming, to pre-oxidation and carbonization[J]. International Journal of Biological Macromolecules, 2023, 226: 646-659. |
43 | DU Yifeng, SUN Guohua, LI Yan, et al. Pre-oxidation of lignin precursors for hard carbon anode with boosted lithium-ion storage capacity[J]. Carbon, 2021, 178: 243-255. |
44 | PARRA J B, PIS J J, DE SOUSA J C, et al. Effect of coal preoxidation on the development of microporosity in activated carbons[J]. Carbon, 1996, 34(6): 783-787. |
45 | LIU Dongdong, GAO Jihui, CAO Qingxi, et al. Improvement of activated carbon from Jixi bituminous coal by air preoxidation[J]. Energy & Fuels, 2017, 31(2): 1406-1415. |
46 | DAHER Nour, HUO Da, DAVOISNE Carine, et al. Impact of preoxidation treatments on performances of pitch-based hard carbons for sodium-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(7): 6501-6510. |
47 | MA Lingling, QIN Zhihong, ZHANG Lu, et al. Peak fitting methods and parameter settings in XPS analysis for organic sulfur in coal[J]. Journal of Fuel Chemistry and Technology, 2014, 42(3): 277-283. |
48 | ABDELKADER-FERNÁNDEZ V K, DOMINGO-GARCÍA M, LÓPEZ-GARZÓN F J, et al. Expanding graphene properties by a simple S-doping methodology based on cold CS2 plasma[J]. Carbon, 2019, 144: 269-279. |
49 | MA Xinlong, ZHAO Lu, SONG Xinyu, et al. Production of S-doped porous graphene via post-treatment with MgSO4 as sulphur source[J]. Chemical Engineering Journal, 2019, 359: 801-809. |
50 | YANG Qianqian, LIU Lu, XIAO Lu, et al. Co9S8@N, S-codoped carbon core-shell structured nanowires: Constructing a fluffy surface for high-density active sites[J]. Journal of Materials Chemistry A, 2018, 6(30): 14752-14760. |
51 | HONG Zhensheng, ZHEN Yichao, RUAN Yurong, et al. Rational design and general synthesis of S-doped hard carbon with tunable doping sites toward excellent Na-ion storage performance[J]. Advanced Materials, 2018, 30(29): 1802035. |
52 | WAN Liu, WEI Wei, XIE Mingjiang, et al. Nitrogen, sulfur co-doped hierarchically porous carbon from rape pollen as high-performance supercapacitor electrode[J]. Electrochimica Acta, 2019, 311: 72-82. |
53 | SANKARARAMAKRISHNAN Nalini, SHANKHWAR Anil, CHAUHAN Divya. Mechanistic insights on immobilization and decontamination of hexavalent chromium onto nano MgS/FeS doped cellulose nanofibres[J]. Chemosphere, 2019, 228: 390-397. |
54 | BUCKLEY A N, WOODS R. Electrochemical and XPS studies of the surface oxidation of synthetic heazlewoodite (Ni3S2)[J]. Journal of Applied Electrochemistry, 1991, 21(7): 575-582. |
55 | SKINNER William M, Wayne NESBITT H, PRATT Allen R. XPS identification of bulk hole defects and itinerant Fe 3d electrons in natural troilite (FeS)[J]. Geochimica et Cosmochimica Acta, 2004, 68(10): 2259-2263. |
56 | RAMACHANDRAN Rajendran, SARANYA Murugan, GRACE Andrews Nirmala, et al. MnS nanocomposites based on doped graphene: Simple synthesis by a wet chemical route and improved electrochemical properties as an electrode material for supercapacitors[J]. RSC Advances, 2017, 7(4): 2249-2257. |
57 | YOO Dong-Joo, LIU Qian, COHEN Orion, et al. Understanding the role of SEI layer in low-temperature performance of lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11910-11918. |
58 | MA Cheng, CHEN Xueyong, LONG Donghui, et al. High-surface-area and high-nitrogen-content carbon microspheres prepared by a pre-oxidation and mild KOH activation for superior supercapacitor[J]. Carbon, 2017, 118: 699-708. |
59 | XU Kai, LI Yongfeng, YANG Fan, et al. Controllable synthesis of single- and double-walled carbon nanotubes from petroleum coke and their application to solar cells[J]. Carbon, 2014, 68: 511-519. |
60 | WANG Huafeng, LI Zhenhua, GHOSH Kaushik, et al. Synthesis of double-walled carbon nanotube films and their field emission properties[J]. Carbon, 2010, 48(10): 2882-2889. |
61 | LIU Tianyuan, ZHANG Lili, YU Wanjing, et al. Growth of double-walled carbon nanotubes from silicon oxide nanoparticles[J]. Carbon, 2013, 56: 167-172. |
62 | ERKENS Maksiem, Sofie CAMBRÉ, FLAHAUT Emmanuel, et al. Ultrasonication-induced extraction of inner shells from double-wall carbon nanotubes characterized via in situ spectroscopy after density gradient ultracentrifugation[J]. Carbon, 2021, 185: 113-125. |
63 | TAKENAKA Norio, BOUIBES Amine, YAMADA Yuki, et al. Frontiers in theoretical analysis of solid electrolyte interphase formation mechanism[J]. Advanced Materials, 2021, 33(37): 2100574. |
64 | Vikalp JHA, KRISHNAMURTHY Balaji. Modeling the SEI layer formation and its growth in lithium-ion batteries (LiB) during charge-discharge cycling[J]. Ionics, 2022, 28(8): 3661-3670. |
65 | LIU Wei, LIU Pengcheng, MITLIN David. Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes[J]. Advanced Energy Materials, 2020, 10(43): 2002297. |
66 | Hamidreza BEHESHTI S, JAVANBAKHT Mehran, OMIDVAR Hamid, et al. Development, retainment, and assessment of the graphite-electrolyte interphase in Li-ion batteries regarding the functionality of SEI-forming additives[J]. iScience, 2022, 25(3): 103862. |
67 | BLAIR Sarah J, DOUCET Mathieu, NIEMANN Valerie A, et al. Combined, time-resolved, in situ neutron reflectometry and X-ray diffraction analysis of dynamic SEI formation during electrochemical N2 reduction[J]. Energy & Environmental Science, 2023, 16(8): 3391-3406. |
68 | GUO Chenfeng, WANG Dianlong, WANG Qiuming, et al. A SiO/graphene nanocomposite as a high stability anode material for lithium-ion batteries[J]. International Journal of Electrochemical Science, 2012, 7(9): 8745-8752. |
69 | HU Anjun, ZHOU Mingjie, LEI Tianyu, et al. Optimizing redox reactions in aprotic lithium-sulfur batteries[J]. Advanced Energy Materials, 2020, 10(42): 2002180. |
70 | YUAN Hong, PENG Hongjie, LI Boquan, et al. Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries[J]. Advanced Energy Materials, 2019, 9(1): 1802768. |
71 | SHI Zixiong, LI Matthew, SUN Jingyu, et al. Defect engineering for expediting Li-S chemistry: Strategies, mechanisms, and perspectives[J]. Advanced Energy Materials, 2021, 11(23): 2100332. |
72 | TAVAKOL Hossein, HASSANI Fahimeh. Adsorption of molecular iodine on the surface of sulfur-doped carbon nanotubes: Theoretical study on their interactions, sensor properties, and other applications[J]. Structural Chemistry, 2015, 26(1): 151-158. |
73 | HASSANI Fahimeh, TAVAKOL Hossein. A DFT, AIM and NBO study of adsorption and chemical sensing of iodine by S-doped fullerenes[J]. Sensors and Actuators B: Chemical, 2014, 196: 624-630. |
74 | TAVAKOL Hossein, Akram MOLLAEI-RENANI. DFT, AIM, and NBO study of the interaction of simple and sulfur-doped graphenes with molecular halogens, CH3OH, CH3SH, H2O, and H2S[J]. Structural Chemistry, 2014, 25(6): 1659-1667. |
75 | MA Xinlong, NING Guoqing, SUN Yuzhen, et al. High capacity Li storage in sulfur and nitrogen dual-doped graphene networks[J]. Carbon, 2014, 79: 310-320. |
76 | MA Xinlong, NING Guoqing, KAN Yanfang, et al. Synthesis of S-doped mesoporous carbon fibres with ultrahigh S concentration and their application as high performance electrodes in supercapacitors[J]. Electrochimica Acta, 2014, 150: 108-113. |
77 | QI Chuanlei, MA Xinlong, NING Guoqing, et al. Aqueous slurry of S-doped carbon nanotubes as conductive additive for lithium ion batteries[J]. Carbon, 2015, 92: 245-253. |
78 | NING Guoqing, MA Xinlong, ZHU Xiao, et al. Enhancing the Li storage capacity and initial coulombic efficiency for porous carbons by sulfur doping[J]. ACS Applied Materials & Interfaces, 2014, 6(18): 15950-15958. |
79 | DENIS Pablo A, FACCIO Ricardo, MOMBRU Alvaro W. Is it possible to dope single-walled carbon nanotubes and graphene with sulfur?[J]. ChemPhysChem, 2009, 10(4): 715-722. |
[1] | 高觊兴, 丁玉梅, 张超, 谭晶, 丁熙, 李好义, 杨卫民. 熔体微分电纺PLA/PCL微纳米纤维膜的制备及其性能[J]. 化工进展, 2024, 43(S1): 457-468. |
[2] | 朱昊, 刘汉飞, 高源, 黄益平, 费孝诚, 韩卫清. 盐分对电催化降解性能与机理的影响[J]. 化工进展, 2024, 43(S1): 571-580. |
[3] | 林梅洁, 米烁东, 包成. 金属-掺杂氧化铈体系H2/CO电化学反应机理研究进展[J]. 化工进展, 2024, 43(S1): 209-224. |
[4] | 尹少武, 黄若萧, 昝晓君, 童莉葛, 刘传平, 王立. 基于CPCM正六边形砖的蓄热储能系统设计与蓄放热模拟[J]. 化工进展, 2024, 43(S1): 243-254. |
[5] | 杜小聪, 辛春福, 赵钰. 路用复合相变材料及相变改性沥青性能评价[J]. 化工进展, 2024, 43(S1): 419-430. |
[6] | 孙启超, 聂美华, 伍联营, 胡仰栋. 风光储一体化水电联产系统的优化设计及调度[J]. 化工进展, 2024, 43(9): 4882-4891. |
[7] | 王正峰, 谢雨杭, 李伟科, 范永春, 康钟尹, 付乾. 多孔炭修饰的吸附催化一体化电极高效电解碳酸氢盐[J]. 化工进展, 2024, 43(9): 4892-4899. |
[8] | 慕铭, 赵伟伟, 陈光孟, 刘小青. 基于激光诱导石墨烯的应变传感器研究进展[J]. 化工进展, 2024, 43(9): 4970-4979. |
[9] | 申纯宇, 李翠利, 汤建伟, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 纳米氢氧化镁制备及其阻燃应用进展[J]. 化工进展, 2024, 43(9): 4980-4995. |
[10] | 李镇武, 蒲迪, 熊亚春, 吴定莹, 金诚, 郭拥军. 驱油用纳米材料在提高采收率方面研究进展[J]. 化工进展, 2024, 43(9): 5035-5048. |
[11] | 梁宏成, 赵冬妮, 权银, 李敬妮, 胡欣怡. SEI膜形貌与结构对锂离子电池性能的影响[J]. 化工进展, 2024, 43(9): 5049-5062. |
[12] | 刘丽, 冯博, 文洋, 古启雄. 硅基介孔材料的合成、功能化及对金属的吸附研究进展[J]. 化工进展, 2024, 43(9): 5063-5078. |
[13] | 吴剑扬, 王汝娜, 陈耀, 申兰耀, 于永利, 蒋宁, 邱景义, 周恒辉. 锂离子电池高镍正极材料前体的制备工艺[J]. 化工进展, 2024, 43(9): 5079-5085. |
[14] | 李美萱, 成建凤, 黄国勇, 徐盛明, 郁丰善, 翁雅青, 曹才放, 温嘉玮, 王俊莲, 王春霞, 顾斌涛, 张袁华, 刘斌, 王才平, 潘剑明, 徐泽良, 王翀, 王珂. 高电压镍锰酸锂正极材料的合成与电化学机理[J]. 化工进展, 2024, 43(9): 5086-5094. |
[15] | 屈芸, 成丽媛, 代国亮, 王刚, 郭羽晴, 孙洁. PAN/MXene同轴纤维电极的制备及性能[J]. 化工进展, 2024, 43(9): 5113-5122. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |