化工进展 ›› 2024, Vol. 43 ›› Issue (S1): 443-456.DOI: 10.16085/j.issn.1000-6613.2024-0435

• 材料科学与技术 • 上一篇    下一篇

氧硫双掺杂CNTs水系导电剂辅助构筑高性能石墨/SiO负极

马桂璇1(), 徐子桐2, 肖志华3(), 宁国庆4, 魏强1(), 徐春明1,3   

  1. 1.中国石油大学(北京)重质油全国重点实验室,北京 102249
    2.渥太华大学化学与生物工程系,渥太华 K1N 6N5
    3.中国石油大学(北京)碳中和未来技术学院,北京 102249
    4.江苏天奈科技股份有限公司,江苏 镇江 212001
  • 收稿日期:2024-03-15 修回日期:2024-05-11 出版日期:2024-11-20 发布日期:2024-12-06
  • 通讯作者: 肖志华,魏强
  • 作者简介:马桂璇(1995—),女,博士研究生,研究方向为硫掺杂碳材料的制备及其在锂离子电池负极中的应用。E-mail:cupmaguixuan@163.com
  • 基金资助:
    中国石油大学(北京)校青年拔尖人才科研启动基金(ZX20230047);国家自然科学基金(21706283)

O,S co-doped carbon nanotube aqueous conductive additive assisted construction of high-performance graphite/SiO anode

MA Guixuan1(), XU Zitong2, XIAO Zhihua3(), Ning Guoqing4, WEI Qiang1(), XU Chunming1,3   

  1. 1.State Key Laboratory of Heavy Oil, China University of Petroleum(Beijing), Beijing 102249, China
    2.Department of Chemical and Biological Engineering, University of Ottawa, Ottawa K1N 6N5, Ontario, Canada
    3.College of Carbon Neutrality Future Technology, China University of Petroleum(Beijing), Beijing 102249, China
    4.Jiangsu Cnano Technology Company Limited, Zhenjiang 212001, Jiangsu, China
  • Received:2024-03-15 Revised:2024-05-11 Online:2024-11-20 Published:2024-12-06
  • Contact: XIAO Zhihua, WEI Qiang

摘要:

由于石墨具有资源丰富、比容量高和嵌锂电位低等优势,被视为重要的商业化锂离子电池(LIBs)负极材料。然而,石墨较低的理论比容量限制了LIBs能量密度的进一步提升。因此,本文将少量的氧化亚硅(SiO)添加到石墨中,再分散到少量的氧硫掺杂双壁碳纳米管(O,S-DCNTs)水系导电剂中,得到石墨/SiO复合负极。其中,O,S-DCNTs是通过将双壁碳纳米管(DCNTs)在空气中预氧化处理,再通过浸渍法与MgSO4混合后煅烧所得的,具有纳米孔结构丰富、硫含量高和亲水性强等特性。通过电池性能测试发现,引入O,S-DCNTs后石墨/SiO复合负极的比容量、倍率和循环性能得到显著提升。此外,其循环性能是纯硫掺杂碳纳米管(S-DCNTs)石墨/SiO负极的4倍,这主要归因于高分散的O,S-DCNTs能够构筑大量的导电网络,提供丰富的锂离子存储空间和活性位点,解决SiO导电性差和体积膨胀系数大问题,从而显著提高石墨负极的电化学性能。本文为高性能负极材料的制备与储能应用提供了新的思路和方向。

关键词: 双壁碳纳米管, 氧化亚硅, 石墨负极, 水系导电剂, 储能, 纳米材料, 复合材料, 电化学

Abstract:

Due to graphite's advantages such as abundant resources, high specific capacity and low lithium intercalation voltage, it is considered an important commercial anode for lithium-ion batteries (LIBs). However, the lower theoretical specific capacity of graphite limits further improvement in the energy density of LIBs. Therefore, in this study, a graphite/SiO composite anode was obtained by adding a small amount of silicon oxide (SiO) to graphite, which was then dispersed into a small amount of O,S co-doped double-walled carbon nanotube (O,S-DCNTs) aqueous conductive additive. The O,S-DCNTs were prepared by pre-oxidizing double-walled carbon nanotubes (DCNTs) in air and then mixing and calcining them with MgSO4, possessing abundant nanoscale pore structures, high sulfur content and strong hydrophilicity. Battery performance tests revealed that the introduction of O,S-DCNTs significantly improved the specific capacity, rate capability and cycling stability of the graphite/SiO composite anodes. Additionally, its cycling stability was four times that of graphite/SiO anodes containing pure sulfur-doped carbon nanotubes (S-DCNTs). This improvement was mainly attributed to the highly dispersed O,S-DCNTs, which can construct numerous conductive networks, provide abundant Li+ storage space and active sites, and address the issues of poor conductivity and large volume expansion coefficient of SiO, thereby significantly enhancing the electrochemical performance of the graphite anode. This work provided new insights and directions for the preparation and energy storage applications of high-performance anode materials.

Key words: double-walled carbon nanotubes, silicon monoxide, graphite anode, aqueous conductive additive, energy storage, nanomaterials, composites, electrochemistry

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn