1 |
WANG Zhihong, LAI Cui, QIN Lei, et al. ZIF-8-modified MnFe2O4 with high crystallinity and superior photo-Fenton catalytic activity by Zn-O-Fe structure for TC degradation[J]. Chemical Engineering Journal, 2020, 392: 124851.
|
2 |
胡晓峰, 彭清琪, 张文华, 等. g-C3N4纳米片光电极的制备及其光电催化降解四环素性能[J]. 材料工程, 2020, 48(12): 82-89.
|
|
HU Xiaofeng, PENG Qingqi, ZHANG Wenhua, et al. Preparation of g-C3N4 nanosheets photoelectrode and its photoelectrocatalytic activity for tetracycline degradation[J]. Journal of Materials Engineering, 2020, 48(12): 82-89.
|
3 |
LIU Caihua, DAI Hongling, TAN Chaoqun, et al. Photo-Fenton degradation of tetracycline over Z-scheme Fe-g-C3N4/Bi2WO6 heterojunctions: Mechanism insight, degradation pathways and DFT calculation[J]. Applied Catalysis B: Environmental, 2022, 310: 121326.
|
4 |
ABINAYA Manickavasagan, GOVINDAN Kadarkarai, KALPANA Murugesan, et al. Reduction of hexavalent chromium and degradation of tetracycline using a novel indium-doped Mn2O3 nanorod photocatalyst[J]. Journal of Hazardous Materials, 2020, 397: 122885.
|
5 |
刘华瑜. 碳材料对土壤及水体中四环素迁移及环境行为影响的研究[D]. 济南: 山东大学, 2020.
|
|
LIU Huayu. Effects of carbon materials on migration and environmental behavior of tetracycline in soil and water[D]. Jinan: Shandong University, 2020.
|
6 |
石宇, 杨晓婷, 兰贵红, 等. MnO x 掺杂纳米石墨阴极的制备及其对盐酸四环素的降解[J]. 精细化工, 2022, 39(4): 798-805.
|
|
SHI Yu, YANG Xiaoting, LAN Guihong, et al. Preparation of nano graphite cathode doped with MnO x and its degradation for tetracycline hydrochloride[J]. Fine Chemicals, 2022, 39(4): 798-805.
|
7 |
FU Junwei, YU Jiaguo, JIANG Chuanjia, et al. g-C3N4-based heterostructured photocatalysts[J]. Advanced Energy Materials, 2018, 8(3): 1701503.
|
8 |
徐文媛, 秦晓丹, 况熙. TiO2/RGO和Fe3O4/RGO催化处理模拟废水的研究[J]. 华东交通大学学报, 2019, 36(5): 109-114.
|
|
XU Wenyuan, QIN Xiaodan, KUANG Xi. Study on catalytic treatment of simulated wastewater by TiO2/RGO and Fe3O4/RGO[J]. Journal of East China Jiaotong University, 2019, 36(5): 109-114.
|
9 |
ZHANG Yanan, ZHAO Yangguo, YANG Dexiang, et al. Insight into the removal of tetracycline-resistant bacteria and resistance genes from mariculture wastewater by ultraviolet/persulfate advanced oxidation process[J]. Journal of Hazardous Materials Advances, 2022, 7: 100129.
|
10 |
郭丰. 化学氧化法处理抗生素制药废水[J]. 世界最新医学信息文摘, 2016, 16(59): 249.
|
|
GUO Feng. Chemical oxidation method for the treatment of antibiotic pharmaceutical wastewater[J]. World Latest Medicine Information, 2016, 16(59): 249.
|
11 |
ZHU Ying, LIU Kun, MUHAMMAD Yaseen, et al. Effects of divalent copper on tetracycline degradation and the proposed transformation pathway[J]. Environmental Science and Pollution Research, 2020, 27(5): 5155-5167.
|
12 |
华方霞. 半导体导带能级电位对Ag@AgX/半导体复合材料光催化性能影响研究[D]. 青岛: 青岛科技大学, 2016.
|
|
HUA Fangxia. Effect of semiconductor conduction band on the photocatalytic property of Ag@AgX/semiconductor composite[D]. Qingdao: Qingdao University of Science & Technology, 2016.
|
13 |
CIONTI C, PARGOLETTI E, FALLETTA E, et al. Combining pH triggered adsorption and photocatalysis for the remediation of complex water matrices[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108468.
|
14 |
RATHI Anuj K, Hana KMENTOVÁ, NALDONI Alberto, et al. Significant enhancement of photoactivity in hybrid TiO2/g-C3N4 nanorod catalysts modified with Cu-Ni-based nanostructures[J]. ACS Applied Nano Materials, 2018, 1(6): 2526-2535.
|
15 |
黑梦云, 顾彦, 彭钦天, 等. Triton X-100/正戊醇/环己烷微乳液条件下BiOBr制备及其光催化性能[J]. 武汉大学学报(理学版), 2021, 67(1): 52-60.
|
|
Mengyun HEI, GU Yan, PENG Qintian, et al. Preparation of BiOBr under triton X-100/n-pentanol/cyclohexane microemulsion and its photocatalytic performance[J]. Journal of Wuhan University (Natural Science Edition), 2021, 67(1): 52-60.
|
16 |
GONG Yinan, WANG Ying, TANG Miaomiao, et al. A two-step process coupling photocatalysis with adsorption to treat tetracycline copper(Ⅱ) hybrid wastewaters[J]. Journal of Water Process Engineering, 2022, 47: 102710.
|
17 |
SUN Jianhua, ZHANG Jinshui, ZHANG Mingwen, et al. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles[J]. Nature Communications, 2012, 3: 1139.
|
18 |
XIAO Xin, WANG Yihui, BO Qiu, et al. One-step preparation of sulfur-doped porous g-C3N4 for enhanced visible light photocatalytic performance[J]. Dalton Transactions, 2020, 49(24): 8041-8050.
|
19 |
Y Ashok Kumar REDDY, AJITHA B, SREEDHAR Adem, et al. Enhanced UV photodetector performance in bi-layer TiO2/WO3 sputtered films[J]. Applied Surface Science, 2019, 494: 575-582.
|
20 |
FU Ze, WANG Hua, WANG Yinuo, et al. Construction of three-dimensional g-C3N4/Gr-CNTs/TiO2 Z-scheme catalyst with enhanced photocatalytic activity[J]. Applied Surface Science, 2020, 510: 145494.
|
21 |
CHEN Tianjun, SONG Chengjie, FAN Mingshan, et al. In-situ fabrication of CuS/g-C3N4 nanocomposites with enhanced photocatalytic H2-production activity via photoinduced interfacial charge transfer[J]. International Journal of Hydrogen Energy, 2017, 42(17): 12210-12219.
|
22 |
VILLARREAL R C, LUQUE-MORALES M, CHINCHILLAS-CHINCHILLAS M J, et al. Langmuir-Hinshelwood-Hougen-Watson model for the study of photodegradation properties of zinc oxide semiconductor nanoparticles synthetized by Peumus boldus [J]. Results in Physics, 2022, 36: 105421.
|
23 |
SAFAEI Javad, ULLAH Habib, MOHAMED Nurul Aida, et al. Enhanced photoelectrochemical performance of Z-scheme g-C3N4/BiVO4 photocatalyst[J]. Applied Catalysis B: Environmental, 2018, 234: 296-310.
|
24 |
陈晴空. 基于·SO4 -的非均相类Fenton-光催化协同氧化体系研究[D]. 重庆: 重庆大学, 2014.
|
|
CHEN Qingkong. Study on synergistic heterogeneous Fenton-photocatalytic oxidation system based on sulfate radicals[D]. Chongqing: Chongqing University, 2014.
|
25 |
JIANG Yong, LIAO Jinfeng, CHEN Hongyan, et al. All-solid-state Z-scheme α-Fe2O3/amine-RGO/CsPbBr3 hybrids for visible-light-driven photocatalytic CO2 reduction[J]. Chem, 2020, 6(3): 766-780.
|
26 |
HU Xiaolin, LIU Xiang, TIAN Jian, et al. Towards full-spectrum (UV, visible, and near-infrared) photocatalysis: Achieving an all-solid-state Z-scheme between Ag2O and TiO2 using reduced graphene oxide as the electron mediator[J]. Catalysis Science & Technology, 2017, 7(18): 4193-4205.
|
27 |
LIU Zhangsheng, WANG Jinxiang. Face-to-face BiOCl/BiO2- x heterojunction composites with highly efficient charge separation and photocatalytic activity[J]. Journal of Alloys and Compounds, 2020, 832: 153771.
|
28 |
MA Ran, ZHANG Sai, LI Lei, et al. Enhanced visible-light-induced photoactivity of type-Ⅱ CeO2/g-C3N4 nanosheet toward organic pollutants degradation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9699-9708.
|
29 |
ZHAO Wei, SHE Tiantian, ZHANG Jingyi, et al. A novel Z-scheme CeO2/g-C3N4 heterojunction photocatalyst for degradation of Bisphenol A and hydrogen evolution and insight of the photocatalysis mechanism[J]. Journal of Materials Science & Technology, 2021, 85: 18-29.
|
30 |
HUANG Kelei, LI Chunhu, ZHANG Xiuli, et al. Self-assembly synthesis of phosphorus-doped tubular g-C3N4/Ti3C2 MXene Schottky junction for boosting photocatalytic hydrogen evolution[J]. Green Energy & Environment, 2023, 8(1): 233-245.
|