化工进展 ›› 2024, Vol. 43 ›› Issue (11): 6412-6427.DOI: 10.16085/j.issn.1000-6613.2023-1773
• 资源与环境化工 • 上一篇
周添红1,2(), 王金怡1,2, 苏旭1,2, 曾虹霖1,2, 翟天骄1,2()
收稿日期:
2023-10-10
修回日期:
2023-11-28
出版日期:
2024-11-15
发布日期:
2024-12-07
通讯作者:
翟天骄
作者简介:
周添红(1984—),男,副教授,研究方向为水污染控制。E-mail:zhouth@163.com。
基金资助:
ZHOU Tianhong1,2(), WANG Jinyi1,2, SU Xu1,2, ZENG Honglin1,2, ZHAI Tianjiao1,2()
Received:
2023-10-10
Revised:
2023-11-28
Online:
2024-11-15
Published:
2024-12-07
Contact:
ZHAI Tianjiao
摘要:
基于自由基反应的高级氧化技术(AOPs)作为一种简单、高效、清洁的有机污染物去除技术得到了广泛研究。尖晶石型钴铁氧体(CoFe2O4)具有催化性能好、金属浸出率低和回收再利用率高等特点,被广泛用作高级氧化过程中驱动自由基生成的催化剂。本文以尖晶石型CoFe2O4为研究对象,概述了CoFe2O4的结构与性质;归纳总结了包括形貌调控、元素掺杂、耦合复合材料在内的CoFe2O4改性方法;重点综述了CoFe2O4及其复合材料光催化氧化、非均相类芬顿氧化、过一硫酸盐氧化与臭氧催化氧化降解水中有机污染物的基本原理及研究进展;最后指出当前研究存在的问题,并对其后续研究方向进行展望。
中图分类号:
周添红, 王金怡, 苏旭, 曾虹霖, 翟天骄. 基于尖晶石型CoFe2O4高级氧化降解水中有机污染物研究进展[J]. 化工进展, 2024, 43(11): 6412-6427.
ZHOU Tianhong, WANG Jinyi, SU Xu, ZENG Honglin, ZHAI Tianjiao. Research progress on advanced oxidation degradation of organic pollutants in water based on spinel type CoFe2O4[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6412-6427.
催化剂 | 制备方法 | 异质结类型 | 光源 | 污染物 | 降解效率 | 稳定性 | 参考文献 |
---|---|---|---|---|---|---|---|
MoS2/CoFe2O4 | 水热法 | Z型 | 氙灯光源 (300W,λ>420nm) | 罗丹明B (20mg/L) | 93.8% (90min) | 7次循环 (>82.1%) | [ |
刚果红 (30mg/L) | 94.43% (50min) | 7次循环 (>83.5%) | |||||
CoFe2O4@CoWO4 | 共沉淀法 | Ⅱ型 | 可见光 (10W LED灯) | 亚甲基蓝 (20mg/L) | 96.3% (120min) | 6次循环 (87.6%) | [ |
CoFe2O4-Bi2O3 | 共沉淀法 | Ⅰ型 | 卤素灯 (9500lm) | 亚甲基蓝 (10mg/L) | 80.0% (200min) | 6次循环 (约80.0%) | [ |
BiOI/CoFe2O4 | 共沉淀法 | Z型 | 模拟太阳光 光源 | 罗丹明B (5mg/L) | 91.3% (90min) | 3次循环 (80.2%) | [ |
CoFe2O4/MIL-101(Fe) | 溶剂热法 | S型 | 氙灯光源 (300W,λ>420nm) | 四环素 (10mg/L) | 90.0% (120min) | 4次循环 (约75.0%) | [ |
CoFe2O4/NiFe2O4 | 水热法 | S型 | 模拟太阳光 光源 | 盐酸四环素 (10mg/L) | 76.1% (60min) | — | [ |
CoFe2O4/g-C3N4 | 水热法 | Z型 | 可见光 (10W LED灯) | 亚甲基蓝 (10mg/L) | 98.86% (140min) | 5次循环 (约82.5%) | [ |
ZnIn2S4/CoFe2O4/BC | 溶剂热法 | p-n型 | 氙灯光源 (150W) | 环丙沙星 (20mg/L) | 96.9% (120min) | 6次循环 (约96.9%) | [ |
CoFe2O4/g-C3N4/Bi4Ti3O12 | 超声辅助热处理法 | 双Z型 | 可见光 (45W节能灯) | 孔雀石绿 (10mg/L) | 98.05% (120min) | 3次循环 (约98.05%) | [ |
表1 基于CoFe2O4异质结的相关光催化降解有机污染物研究
催化剂 | 制备方法 | 异质结类型 | 光源 | 污染物 | 降解效率 | 稳定性 | 参考文献 |
---|---|---|---|---|---|---|---|
MoS2/CoFe2O4 | 水热法 | Z型 | 氙灯光源 (300W,λ>420nm) | 罗丹明B (20mg/L) | 93.8% (90min) | 7次循环 (>82.1%) | [ |
刚果红 (30mg/L) | 94.43% (50min) | 7次循环 (>83.5%) | |||||
CoFe2O4@CoWO4 | 共沉淀法 | Ⅱ型 | 可见光 (10W LED灯) | 亚甲基蓝 (20mg/L) | 96.3% (120min) | 6次循环 (87.6%) | [ |
CoFe2O4-Bi2O3 | 共沉淀法 | Ⅰ型 | 卤素灯 (9500lm) | 亚甲基蓝 (10mg/L) | 80.0% (200min) | 6次循环 (约80.0%) | [ |
BiOI/CoFe2O4 | 共沉淀法 | Z型 | 模拟太阳光 光源 | 罗丹明B (5mg/L) | 91.3% (90min) | 3次循环 (80.2%) | [ |
CoFe2O4/MIL-101(Fe) | 溶剂热法 | S型 | 氙灯光源 (300W,λ>420nm) | 四环素 (10mg/L) | 90.0% (120min) | 4次循环 (约75.0%) | [ |
CoFe2O4/NiFe2O4 | 水热法 | S型 | 模拟太阳光 光源 | 盐酸四环素 (10mg/L) | 76.1% (60min) | — | [ |
CoFe2O4/g-C3N4 | 水热法 | Z型 | 可见光 (10W LED灯) | 亚甲基蓝 (10mg/L) | 98.86% (140min) | 5次循环 (约82.5%) | [ |
ZnIn2S4/CoFe2O4/BC | 溶剂热法 | p-n型 | 氙灯光源 (150W) | 环丙沙星 (20mg/L) | 96.9% (120min) | 6次循环 (约96.9%) | [ |
CoFe2O4/g-C3N4/Bi4Ti3O12 | 超声辅助热处理法 | 双Z型 | 可见光 (45W节能灯) | 孔雀石绿 (10mg/L) | 98.05% (120min) | 3次循环 (约98.05%) | [ |
催化剂 | 制备方法 | 污染物 | 催化剂用量 | PMS用量 | 降解效率 | 稳定性 | 参考文献 |
---|---|---|---|---|---|---|---|
CoFe2O4@NPC | 水热碳化法 | 罗丹明B (100mg/L) | 0.06g/L | 0.3g/L | 99.05% (20min) | 5次循环 (约83.2%) | [ |
CoFe2O4/OMt | 改性水热法 | 卡马西平 (5mg/L) | 0.4g/L | 0.5mmol/L | 93% (60min) | 3次循环 (73.0%) | [ |
CoFe2O4@BC | 溶胶-凝胶法 | 对硝基氯苯 (10mg/L) | 0.1g/L | 1mmol/L | 89% (240min) | 5次循环 (87.8%) | [ |
CoFe2O4/Al2O3 | 溶胶-凝胶法 | 磺胺氯吡啶 (5mg/L) | 1.0mmol/L | 0.5mmol/L | 97.8% (15min) | 4次循环 (97.6%) | [ |
CoFe2O4-SAC | 水热法 | 诺氟沙星 (10mg/L) | 0.1g/L | 0.15g/L | >92% (60min) | 5次循环 (>90.0%) | [ |
CoFe2O4@MoS2 | 一锅水热法 | 四环素 (10mg/L) | 0.2g/L | 0.5mmol/L | 94.45% (30min) | 5次循环 (约90.0%) | [ |
CoFe2O4/ZIF-8 | 溶剂热法 | 亚甲基蓝 (20mg/L) | 0.04g/L | 0.3g/L | 97.9% (60min) | 4次循环 (80.4%) | [ |
CoFe2O4@3DG | 水热法 | 苯并三唑 (100mg/L) | 0.2g/L | 16mmol/L | 100% (150min) | 7次循环 (90.4%) | [ |
表2 基于CoFe2O4的过一硫酸盐氧化降解有机污染物研究
催化剂 | 制备方法 | 污染物 | 催化剂用量 | PMS用量 | 降解效率 | 稳定性 | 参考文献 |
---|---|---|---|---|---|---|---|
CoFe2O4@NPC | 水热碳化法 | 罗丹明B (100mg/L) | 0.06g/L | 0.3g/L | 99.05% (20min) | 5次循环 (约83.2%) | [ |
CoFe2O4/OMt | 改性水热法 | 卡马西平 (5mg/L) | 0.4g/L | 0.5mmol/L | 93% (60min) | 3次循环 (73.0%) | [ |
CoFe2O4@BC | 溶胶-凝胶法 | 对硝基氯苯 (10mg/L) | 0.1g/L | 1mmol/L | 89% (240min) | 5次循环 (87.8%) | [ |
CoFe2O4/Al2O3 | 溶胶-凝胶法 | 磺胺氯吡啶 (5mg/L) | 1.0mmol/L | 0.5mmol/L | 97.8% (15min) | 4次循环 (97.6%) | [ |
CoFe2O4-SAC | 水热法 | 诺氟沙星 (10mg/L) | 0.1g/L | 0.15g/L | >92% (60min) | 5次循环 (>90.0%) | [ |
CoFe2O4@MoS2 | 一锅水热法 | 四环素 (10mg/L) | 0.2g/L | 0.5mmol/L | 94.45% (30min) | 5次循环 (约90.0%) | [ |
CoFe2O4/ZIF-8 | 溶剂热法 | 亚甲基蓝 (20mg/L) | 0.04g/L | 0.3g/L | 97.9% (60min) | 4次循环 (80.4%) | [ |
CoFe2O4@3DG | 水热法 | 苯并三唑 (100mg/L) | 0.2g/L | 16mmol/L | 100% (150min) | 7次循环 (90.4%) | [ |
1 | 王庆宏, 姜晨旭, 王鑫, 等. 天然矿物催化氧化水中难降解有机污染物研究进展[J]. 化工进展, 2023, 42(1): 417-434. |
WANG Qinghong, JIANG Chenxu, WANG Xin, et al. An overview of natural mineral catalytic oxidation of refractory organic contaminants in wastewater[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 417-434. | |
2 | KRISHNAN Athira, SWARNALAL Anna, Divine DAS, et al. A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants[J]. Journal of Environmental Sciences, 2024, 139: 389-417. |
3 | 吴悦, 赖永忠, 陆国永, 等. 对水体中挥发性有机物分析的空白污染来源及解决措施的探讨[J]. 冶金分析, 2023, 43(2): 14-22. |
WU Yue, LAI Yongzhong, LU Guoyong, et al. Discussion on the sources and countermeasures of blank pollution in determination of volatile organic compounds in water samples[J]. Metallurgical Analysis, 2023, 43(2): 14-22. | |
4 | ZEGHIOUD Hicham, FRYDA Lydia, DJELAL Hayet, et al. A comprehensive review of biochar in removal of organic pollutants from wastewater: Characterization, toxicity, activation/functionalization and influencing treatment factors[J]. Journal of Water Process Engineering, 2022, 47: 102801. |
5 | TANG Lei, MA Xiaoyan Y, WANG Yongkun K, et al. Removal of trace organic pollutants (pharmaceuticals and pesticides) and reduction of biological effects from secondary effluent by typical granular activated carbon[J]. Science of The Total Environment, 2020, 749: 141611. |
6 | MIAO Miao, LU Qingchen, WANG Xinqi, et al. Removal of micro-organic contaminants from wastewater: A critical review of treatment technology[J]. Next Materials, 2023, 1(2): 100016. |
7 | 孙普, 李恩泽, 王淑军, 等. 聚硅酸钛强化混凝焦化废水预处理性能研究[J]. 应用化工, 2019, 48(2): 341-344. |
SUN Pu, LI Enze, WANG Shujun, et al. The investigation of the enhanced coagulation pretreatment performances on coking wastewater via poly titanium-silicate-chloride[J]. Applied Chemical Industry, 2019, 48(2): 341-344. | |
8 | KUMARI Preeti, KUMAR Aditya. Advanced oxidation process: A remediation technique for organic and non-biodegradable pollutant[J]. Results in Surfaces and Interfaces, 2023, 11: 100122. |
9 | MA Dengsheng, YI Huan, LAI Cui, et al. Critical review of advanced oxidation processes in organic wastewater treatment[J]. Chemosphere, 2021, 275: 130104. |
10 | LIU Bingzhi, HUANG Baorong, WANG Zizeng, et al. Homogeneous/heterogeneous metal-catalyzed persulfate oxidation technology for organic pollutants elimination: A review[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109586. |
11 | 曹勇. 高级氧化技术处理抗生素污染的研究现状[J]. 安徽化工, 2023, 49(3): 28-32. |
CAO Yong. Research status of advanced oxidation technology in treating antibiotic pollution[J]. Anhui Chemical Industry, 2023, 49(3): 28-32. | |
12 | LIU Yong, WANG Jianlong. Multivalent metal catalysts in Fenton/Fenton-like oxidation system: A critical review[J]. Chemical Engineering Journal, 2023, 466: 143147. |
13 | XING Mingyang, XU Wenjing, DONG Chencheng, et al. Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes[J]. Chem, 2018, 4(6): 1359-1372. |
14 | PATTNAIK Amruta, SAHU J N, POONIA Anil Kumar, et al. Current perspective of nano-engineered metal oxide based photocatalysts in advanced oxidation processes for degradation of organic pollutants in wastewater[J]. Chemical Engineering Research and Design, 2023, 190: 667-686. |
15 | WANG Shizong, WANG Jianlong. Decomposition of carbon-based catalysts in advanced oxidation processes: A neglected but noteworthy problem[J]. Chemical Engineering Journal, 2023, 456: 141086. |
16 | 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664. |
GE Ming, HU Zheng, HE Quanbao. Application of spinel ferrite-based advanced oxidation processes in organic wastewater treatment[J]. Progress in Chemistry, 2021, 33(9): 1648-1664. | |
17 | Annie VINOSHA P, MANIKANDAN A, Christy PREETHA A, et al. Review on recent advances of synthesis, magnetic properties, and water treatment applications of cobalt ferrite nanoparticles and nanocomposites[J]. Journal of Superconductivity and Novel Magnetism, 2021, 34(4): 995-1018. |
18 | DASGUPTA Subho, Bijoy DAS, LI Qiang, et al. Toward on-and-off magnetism: Reversible electrochemistry to control magnetic phase transitions in spinel ferrites[J]. Advanced Functional Materials, 2016, 26(41): 7507-7515. |
19 | ATIQ Shahid, MAJEED Maria, AHMAD Aqsa, et al. Synthesis and investigation of structural, morphological, magnetic, dielectric and impedance spectroscopic characteristics of Ni-Zn ferrite nanoparticles[J]. Ceramics International, 2017, 43(2): 2486-2494. |
20 | YAN Zhu, LUO Juhua. Effects of Ce Zn co-substitution on structure, magnetic and microwave absorption properties of nickel ferrite nanoparticles[J]. Journal of Alloys and Compounds, 2017, 695: 1185-1195. |
21 | BORHAN Adrian Iulian, Daniel GHERCĂ, IORDAN Alexandra Raluca, et al. Classification and types of ferrites[M]//Ferrite Nanostructured Magnetic Materials. Amsterdam: Elsevier, 2023: 17-34. |
22 | QIN Hong, HE Yangzhuo, XU Piao, et al. Spinel ferrites (MFe2O4): Synthesis, improvement and catalytic application in environment and energy field[J]. Advances in Colloid and Interface Science, 2021, 294: 102486. |
23 | HARRIS Vincent G, GEILER Anton, CHEN Yajie, et al. Recent advances in processing and applications of microwave ferrites[J]. Journal of Magnetism and Magnetic Materials, 2009, 321(14): 2035-2047. |
24 | HOUSHIAR Mahboubeh, ZEBHI Fatemeh, RAZI Zahra Jafari, et al. Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties[J]. Journal of Magnetism and Magnetic Materials, 2014, 371: 43-48. |
25 | JAVAID Shaghraf, AKHYAR FARRUKH Muhammad, MUNEER Iqra, et al. Influence of optical band gap and particle size on the catalytic properties of Sm/SnO2-TiO2 nanoparticles[J]. Superlattices and Microstructures, 2015, 82: 234-247. |
26 | Dina FATTAKHOVA-ROHLFING, ZALESKA Adriana, BEIN Thomas. Three-dimensional titanium dioxide nanomaterials[J]. Chemical Reviews, 2014, 114(19): 9487-9558. |
27 | AL-MAMUN M R, KADER S, ISLAM M S, et al. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103248. |
28 | 张竞哲, 苑高千, 解厚波, 等. 尖晶石型铁氧体处理废水中Cr(Ⅵ)研究现状与进展[J]. 环境化学, 2023, 42(6): 2048-2063. |
ZHANG Jingzhe, YUAN Gaoqian, XIE Houbo, et al. Current status and prospects of aqueous Cr(Ⅵ) removal by spinel ferrites[J]. Environmental Chemistry, 2023, 42(6): 2048-2063. | |
29 | NEMIWAL Meena, ZHANG Tian C, KUMAR Dinesh. Recent progress in g-C3N4, TiO2 and ZnO based photocatalysts for dye degradation: Strategies to improve photocatalytic activity[J]. Science of the Total Environment, 2021, 767: 144896. |
30 | SONU, DUTTA Vishal, SHARMA Sheetal, et al. Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water[J]. Journal of Saudi Chemical Society, 2019, 23(8): 1119-1136. |
31 | HOLINSWORTH B S, MAZUMDAR D, SIMS H, et al. Chemical tuning of the optical band gap in spinel ferrites: CoFe2O4 vs. NiFe2O4 [J]. Applied Physics Letters, 2013, 103(8): 082406. |
32 | AHMAD LONE Gulzar, IKRAM Mohd. Role of Ni doping in magnetic dilution of Fe sublattice and in tailoring optical properties of CoFe2O4 [J]. Journal of Alloys and Compounds, 2023, 934: 167891. |
33 | BASHA Beriham, IKRAM Mustabshira, ALROWAILI Z A, et al. Wet chemical route synthesis of Cr doped CoFe2O4@rGO nanocomposite for photodegradation of organic effluents present in drinking water[J]. Ceramics International, 2023, 49(18): 30049-30059. |
34 | REVATHI J, John ABEL M, ARCHANA V, et al. Synthesis and characterization of CoFe2O4 and Ni-doped CoFe2O4 nanoparticles by chemical co-precipitation technique for photo-degradation of organic dyestuffs under direct sunlight[J]. Physica B: Condensed Matter, 2020, 587: 412136. |
35 | SHI Weilong, LIU Yanan, SHI Yuxing, et al. Realization of photocatalytic hydrogen production by optimizing energy band structure and promoting charges separation over the S-doped CoFe2O4 microrods[J]. Materials Today Communications, 2023, 35: 105588. |
36 | FERDOSI E, BAHIRAEI H, GHANBARI D. Investigation the photocatalytic activity of CoFe2O4/ZnO and CoFe2O4/ZnO/Ag nanocomposites for purification of dye pollutants[J]. Separation and Purification Technology, 2018, 211: 35-39. |
37 | USHA P, HARI PRASAD K, RAMESH Somoju. Combustion-synthesized CoFe2O4 nanoparticles: Structure and electrical conductivity studies[J]. Materials Today: Proceedings, 2023, 92: 1246-1249. |
38 | GAO Wenkun, QIN Junfeng, WANG Kai, et al. Facile synthesis of Fe-doped Co9S8 nano-microspheres grown on nickel foam for efficient oxygen evolution reaction[J]. Applied Surface Science, 2018, 454: 46-53. |
39 | WANG Yanyong, LIU Dongdong, LIU Zhijuan, et al. Porous cobalt-iron nitride nanowires as excellent bifunctional electrocatalysts for overall water splitting[J]. Chemical Communications, 2016, 52(85): 12614-12617. |
40 | THAKUR Priyanka, THAKUR Prashant, KISHORE Kamal, et al. Structural, morphological, and magnetic properties of CoFe2O4 nano-ferrites synthesized via co-precipitation route[J]. Materials Today: Proceedings, DOI: 10.1016/j.matpr.2022.12.233 . |
41 | XI Guoxi, HENG Xiaoying, Changwei DUN, et al. The influence of MgO on the magnetic and magnetostrictive properties of CoFe2O4 nanoparticles synthesized using spent LIBs[J]. Physica B: Condensed Matter, 2020, 589: 412182. |
42 | OMELYANCHIK Alexander, SINGH Gurvinder, VOLOCHAEV Mikhail, et al. Tunable magnetic properties of Ni-doped CoFe2O4 nanoparticles prepared by the sol-gel citrate self-combustion method[J]. Journal of Magnetism and Magnetic Materials, 2019, 476: 387-391. |
43 | 黄豹. 钴铁氧体纳米磁性材料的制备及磁性能研究[D]. 杭州: 中国计量学院, 2012. |
HUANG Bao. Preparation and magnetic properties of cobalt ferrite nano-magnetic materials[D]. Hangzhou: China University of Metrology, 2012. | |
44 | KUMAR Manish, KUMAR Arvind, SINGH Abhishek, et al. Low temperature magnetic study and first principle calculation in ‘Mo’ doped CoFe2O4 for magnetic information storage applications[J]. Journal of Alloys and Compounds, 2022, 896: 163074. |
45 | WANG Xunliang, ZHANG Chen, ZHANG Yizhong, et al. Activation of peroxymonosulfate by an Enteromorpha prolifera derived biochar supported CoFe2O4 catalyst for highly efficient lomefloxacin hydrochloride degradation under a wide pH range[J]. Separation and Purification Technology, 2023, 316: 123846. |
46 | DEBNATH Bharati, SALUNKE Hemant G, BHATTACHARYYA Sayan. Spin disorder and particle size effects in cobalt ferrite nanoparticles with unidirectional anisotropy and permanent magnet-like characteristics[J]. The Journal of Physical Chemistry C, 2020, 124(47): 25992-26000. |
47 | LI Dichen, YUN Hongseok, DIROLL Benjamin T, et al. Synthesis and size-selective precipitation of monodisperse nonstoichiometric M x Fe3– x O4 (M=Mn, Co) nanocrystals and their DC and AC magnetic properties[J]. Chemistry of Materials, 2016, 28(2): 480-489. |
48 | KHAN Usman, NAIRAN Adeela, Shafaq NAZ, et al. Optical and temperature-dependent magnetic properties of Mn-doped CoFe2O4 nanostructures[J]. Materials Today Communications, 2023, 35: 106276. |
49 | LI Xinyuan, SUN Yong, ZONG Yan, et al. Size-effect induced cation redistribution on the magnetic properties of well-dispersed CoFe2O4 nanocrystals[J]. Journal of Alloys and Compounds, 2020, 841: 155710. |
50 | MAHHOUTI Z, MOUSSAOUI H EL, MAHFOUD T, et al. Chemical synthesis and magnetic properties of monodisperse cobalt ferrite nanoparticles[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(16): 14913-14922. |
51 | CONG KHIEM Ta, DINH TUAN Duong, KWON Eilhann, et al. Degradation of dihydroxybenzophenone through monopersulfate activation over nanostructured cobalt ferrites with various morphologies: A comparative study[J]. Chemical Engineering Journal, 2022, 450: 137798. |
52 | MO Yuanmin, ZHANG Xiaoping. Insights into the mechanism of multiple Cu-doped CoFe2O4 nanocatalyst activated peroxymonosulfate for efficient degradation of Rhodamine B[J]. Journal of Environmental Sciences, 2024, 137: 382-394. |
53 | NGUYEN Loan T T, NGUYEN Hang T T, NGUYEN Lan T H, et al. Efficient and recyclable Nd3+-doped CoFe2O4 for boosted visible light-driven photocatalytic degradation of Rhodamine B dye[J]. RSC Advances, 2023, 13(16): 10650-10656. |
54 | GAO Y, ZHU W H, LIU J W, et al. Mesoporous sulfur-doped CoFe2O4 as a new Fenton catalyst for the highly efficient pollutants removal[J]. Applied Catalysis B: Environmental, 2021, 295: 120273. |
55 | LI Yongjie, HUANG Mingjie, Wen-Da OH, et al. Efficient activation of sulfite for reductive-oxidative degradation of chloramphenicol by carbon-supported cobalt ferrite catalysts[J]. Chinese Chemical Letters, 2023, 34(10): 108247. |
56 | URBAIN Félix, DU Ruifeng, TANG Pengyi, et al. Upscaling high activity oxygen evolution catalysts based on CoFe2O4 nanoparticles supported on nickel foam for power-to-gas electrochemical conversion with energy efficiencies above 80%[J]. Applied Catalysis B: Environmental, 2019, 259: 118055. |
57 | 李英豪, 郑向前, 高晓亚, 等. CoFe2O4的制备及其活化过一硫酸盐降解磺胺甲𫫇唑[J]. 精细化工, 2022, 39(5): 1020-1027. |
LI Yinghao, ZHENG Xiangqian, GAO Xiaoya, et al. Preparation of CoFe2O4 and its peroxymonosulfate activation for degradation of sulfamethoxazole[J]. Fine Chemicals, 2022, 39(5): 1020-1027. | |
58 | ZHANG Sai, WU Jia, LI Fangyun, et al. Enhanced photocatalytic performance of spinel ferrite (MFe2O4, M=Zn, Mn, Co, Fe, Ni) catalysts: The correlation between morphology-microstructure and photogenerated charge efficiency[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107702. |
59 | TONG Yongchun, FENG Min, WEI Jihong, et al. One-step synthesis of CoFe2O4 nanomaterials by solvothermal method[J]. Bulletin of the Chemical Society of Japan, 2022, 95(7): 1086-1090. |
60 | GERBALDO María Verónica, MARCHETTI Sergio Gustavo, ELÍAS Verónica Rita, et al. Degradation of anti-inflammatory drug diclofenac using cobalt ferrite as photocatalyst[J]. Chemical Engineering Research and Design, 2021, 166: 237-247. |
61 | FOROUGHI Firoozeh, HASSANZADEH-TABRIZI S A, AMIGHIAN Jamshid. Microemulsion synthesis and magnetic properties of hydroxyapatite-encapsulated nano CoFe2O4 [J]. Journal of Magnetism and Magnetic Materials, 2015, 382: 182-187. |
62 | Esther NIMSHI R, Judith VIJAYA J, John KENNEDY L, et al. Effective microwave assisted synthesis of CoFe2O4@TiO2@rGO ternary nanocomposites for the synergic sonophotocatalytic degradation of tetracycline and c antibiotics[J]. Ceramics International, 2023, 49(9): 13762-13773. |
63 | TATARCHUK Tetiana, DANYLIUK Nazarii, KOTSYUBYNSKY Volodymyr, et al. Eco-friendly synthesis of cobalt-zinc ferrites using quince extract for adsorption and catalytic applications: An approach towards environmental remediation[J]. Chemosphere, 2022, 294: 133565. |
64 | KAZEMI Mosstafa, GHOBADI Massoud, MIRZAIE Ali. Cobalt ferrite nanoparticles (CoFe2O4 MNPs) as catalyst and support: Magnetically recoverable nanocatalysts in organic synthesis[J]. Nanotechnology Reviews, 2018, 7(1): 43-68. |
65 | YANG Jinhui, WANG Donge, HAN Hongxian, et al. Roles of cocatalysts in photocatalysis and photoelectrocatalysis[J]. Accounts of Chemical Research, 2013, 46(8): 1900-1909. |
66 | 马晓佳, 唐学静, 靳凤先, 等. 二氧化钛基材料光催化降解VOCs的研究进展[J]. 工程科学学报, 2023, 45(4): 590-601. |
MA Xiaojia, TANG Xuejing, JIN Fengxian, et al. Research advancements in the use of TiO2-based materials for the photocatalytic degradation of volatile organic compounds[J]. Chinese Journal of Engineering, 2023, 45(4): 590-601. | |
67 | 李宁, 张伟, 李贵贤, 等. TiO2光催化剂的研究进展[J]. 精细化工, 2021, 38(11): 2181-2188. |
LI Ning, ZHANG Wei, LI Guixian, et al. Research progress of TiO2 photocatalysts[J]. Fine Chemicals, 2021, 38(11): 2181-2188. | |
68 | SHYAMALDAS, BOUOUDINA M, MANOHARAN C. Dependence of structure/morphology on electrical/magnetic properties of hydrothermally synthesised cobalt ferrite nanoparticles[J]. Journal of Magnetism and Magnetic Materials, 2020, 493: 165703. |
69 | Patricia GARCIA-MUÑOZ, FRESNO Fernando, DE LA PEÑA O’SHEA Víctor A, et al. Ferrite materials for photoassisted environmental and solar fuels applications[J]. Topics in Current Chemistry, 2020, 378(1): 6. |
70 | ZENG Y, GUO N, SONG Y J, et al. Fabrication of Z-scheme magnetic MoS2/CoFe2O4 nanocomposites with highly efficient photocatalytic activity[J]. Journal of Colloid and Interface Science, 2018, 514: 664-674. |
71 | ABDUL KADER Huda D, MOHAMMED Israa SH, AMMAR Saad H. Synthesis of recyclable core/shell CoFe2O4@CoWO4 photocatalysts for efficient visible-light photocatalytic degradation of environmental pollutants[J]. Environmental Nanotechnology, Monitoring & Management, 2022, 17: 100664. |
72 | SYED Asad, AHMED Bilal, ELGORBAN Abdallah M, et al. Designing spinel CoFe2O4 loaded sheet-like Bi2O3 nano-heterostructure for synergetic white-light photocatalysis with recombination delay and antibacterial applications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629: 127449. |
73 | HUANG Shangpan, WEI Zhiqiang, DING Meijie, et al. Photo-electrochemical and photocatalytic properties of hierarchical flower-like BiOI/CoFe2O4 nanocomposites synthesized by co-precipitation method[J]. Optical Materials, 2021, 111: 110643. |
74 | SHI Weilong, FU Yongming, SUN Haoran, et al. Construction of 0D/3D CoFe2O4/MIL-101(Fe) complement each other S-scheme heterojunction for effectively boosted photocatalytic degradation of tetracycline[J]. Inorganic Chemistry Communications, 2022, 146: 110140. |
75 | SONG Jiahe, ZHANG Jingjing, ZADA Amir, et al. CoFe2O4/NiFe2O4 S-scheme composite for photocatalytic decomposition of antibiotic contaminants[J]. Ceramics International, 2023, 49(8): 12327-12333. |
76 | GEBRESLASSIE Gebrehiwot, GEBREZGIABHER Mamo, LIN Bin, et al. Direct Z-scheme CoFe2O4-loaded g-C3N4 photocatalyst with high degradation efficiency of methylene blue under visible-light irradiation[J]. Inorganics, 2023, 11(3): 119. |
77 | WANG Xinruo, CHEN Yan. ZnIn2S4/CoFe2O4 P-N junction-decorated biochar as magnetic recyclable nanocomposite for efficient photocatalytic degradation of ciprofloxacin under simulated sunlight[J]. Separation and Purification Technology, 2022, 303: 122156. |
78 | ZHU Pengfei, LUO Dan, DUAN Ming, et al. Based on a dual Z-scheme heterojunction and magnetically separable CoFe2O4/g-C3N4/Bi4Ti3O12 flower-like composite for efficient visible-light photocatalytic degradation of organic pollutants[J]. Journal of Alloys and Compounds, 2022, 911: 164907. |
79 | 周添红, 翟天骄, 王金怡, 等. 外场辅助光催化机理及降解有机污染物研究进展[J]. 精细化工, 2023, 40(6): 1202-1213. |
ZHOU Tianhong, ZHAI Tianjiao, WANG Jinyi, et al. Field-assisted photocatalysis mechanism and degradation of organic pollutants: A review[J]. Fine Chemicals, 2023, 40(6): 1202-1213. | |
80 | AL-MUSAWI Tariq J, MCKAY Gordon, RAJIV Periakaruppan, et al. Efficient sonophotocatalytic degradation of acid blue 113 dye using a hybrid nanocomposite of CoFe2O4 nanoparticles loaded on multi-walled carbon nanotubes[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 424: 113617. |
81 | MUSHTAQ Fajer, CHEN Xiangzhong, TORLAKCIK Harun, et al. Enhanced catalytic degradation of organic pollutants by multi-stimuli activated multiferroic nanoarchitectures[J]. Nano Research, 2020, 13(8): 2183-2191. |
82 | SHOKRI Aref, FARD Mahdi Sanavi. A critical review in Fenton-like approach for the removal of pollutants in the aqueous environment[J]. Environmental Challenges, 2022, 7: 100534. |
83 | VILARDI Giorgio, OCHANDO-PULIDO Javier Miguel, STOLLER Marco, et al. Fenton oxidation and chromium recovery from tannery wastewater by means of iron-based coated biomass as heterogeneous catalyst in fixed-bed columns[J]. Chemical Engineering Journal, 2018, 351: 1-11. |
84 | JAIN Bhawana, SINGH Ajaya Kumar, KIM Hyunook, et al. Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes[J]. Environmental Chemistry Letters, 2018, 16(3): 947-967. |
85 | HONG Peidong, LI Yulian, HE Junyong, et al. Rapid degradation of aqueous doxycycline by surface CoFe2O4/H2O2 system: Behaviors, mechanisms, pathways and DFT calculation[J]. Applied Surface Science, 2020, 526: 146557. |
86 | PIGNATELLO Joseph J, OLIVEROS Esther, MACKAY Allison. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry[J]. Critical Reviews in Environmental Science and Technology, 2006, 36(1): 1-84. |
87 | 贺框, 黄凯华, 胡小英, 等. 用尖晶石CoFe2O4磁性颗粒非均相芬顿氧化废水中的柠檬酸镍[J]. 电镀与涂饰, 2022, 41(21): 1552-1557. |
HE Kuang, HUANG Kaihua, HU Xiaoying, et al. Heterogeneous Fenton oxidation of nickel citrate in wastewater by using magnetic spinel CoFe2O4 particles[J]. Electroplating & Finishing, 2022, 41(21): 1552-1557. | |
88 | WANG Zhiwei, YOU Junhua, LI Jingjing, et al. Review on cobalt ferrite as photo-Fenton catalysts for degradation of organic wastewater[J]. Catalysis Science & Technology, 2023, 13(2): 274-296. |
89 | MAZARJI Mahmoud, ESMAILI Hassan, BIDHENDI Gholamreza Nabi, et al. Green synthesis of reduced graphene oxide-CoFe2O4 nanocomposite as a highly efficient visible-light-driven catalyst in photocatalysis and photo Fenton-like reaction[J]. Materials Science and Engineering: B, 2021, 270: 115223. |
90 | BAGHERZADEH Seyed Behnam, KAZEMEINI Mohammad, MAHMOODI Niyaz Mohammad. Preparation of novel and highly active magnetic ternary structures (metal-organic framework/cobalt ferrite/graphene oxide) for effective visible-light-driven photocatalytic and photo-Fenton-like degradation of organic contaminants[J]. Journal of Colloid and Interface Science, 2021, 602: 73-94. |
91 | GUO Meiting, LU Mingjie, ZHAO Heng, et al. Efficient electro-Fenton catalysis by self-supported CFP@CoFe2O4 electrode[J]. Journal of Hazardous Materials, 2022, 423: 127033. |
92 | 蔡鹏程. 钴镍双金属催化剂活化过氧单硫酸盐降解诺氟沙星的协同机制研究[D]. 青岛: 青岛大学, 2022. |
CAI Pengcheng. Study on synergistic mechanism of norfloxacin degradation by activated peroxymonosulfate with Co-Ni bimetallic catalyst[D]. Qingdao: Qingdao University, 2022. | |
93 | LEE Juhyeok, SINGH Bhupendra Kumar, HAFEEZ Muhammad Aamir, et al. Comparative study of PMS oxidation with Fenton oxidation as an advanced oxidation process for Co-EDTA de complexation[J]. Chemosphere, 2022, 300: 134494. |
94 | 时旭. 钴基双金属催化剂活化过一硫酸盐处理典型染料废水及其机制研究[D]. 合肥: 中国科学技术大学, 2022. |
SHI Xu. Treatment of typical dye wastewater by activating persulfate with cobalt-based bimetallic catalyst and its mechanism[D]. Hefei: University of Science and Technology of China, 2022. | |
95 | ZHAO Wenjia, SHEN Qiwen, Tingting NAN, et al. Cobalt-based catalysts for heterogeneous peroxymonosulfate (PMS) activation in degradation of organic contaminants: Recent advances and perspectives[J]. Journal of Alloys and Compounds, 2023, 958: 170370. |
96 | ZHU Shijun, XU Yongpeng, ZHU Zhigao, et al. Activation of peroxymonosulfate by magnetic Co-Fe/SiO2 layered catalyst derived from iron sludge for ciprofloxacin degradation[J]. Chemical Engineering Journal, 2020, 384: 123298. |
97 | LIU Lili, MI Haosheng, ZHANG Meng, et al. Efficient moxifloxacin degradation by CoFe2O4 magnetic nanoparticles activated peroxymonosulfate: Kinetics, pathways and mechanisms[J]. Chemical Engineering Journal, 2021, 407: 127201. |
98 | LI Jun, XU Mengjuan, YAO Gang, et al. Enhancement of the degradation of atrazine through CoFe2O4 activated peroxymonosulfate (PMS) process: Kinetic, degradation intermediates, and toxicity evaluation[J]. Chemical Engineering Journal, 2018, 348: 1012-1024. |
99 | GAN Lu, ZHONG Qiang, GENG Aobo, et al. Cellulose derived carbon nanofiber: A promising biochar support to enhance the catalytic performance of CoFe2O4 in activating peroxymonosulfate for recycled dimethyl phthalate degradation[J]. Science of the Total Environment, 2019, 694: 133705. |
100 | LIANG Yu, LI Lihua, YANG Chunmeng, et al. Bimetallic zeolitic imidazolate framework-derived nitrogen-doped porous carbon-coated CoFe2O4 core-shell composite with high catalytic performance for peroxymonosulfate activation in Rhodamine B degradation[J]. Journal of Alloys and Compounds, 2022, 907: 164504. |
101 | WU Junxue, CAGNETTA Giovanni, WANG Bin, et al. Efficient degradation of carbamazepine by organo-montmorillonite supported nCoFe2O4-activated peroxymonosulfate process[J]. Chemical Engineering Journal, 2019, 368: 824-836. |
102 | ZHI Zejian, WU Di, MENG Fanyue, et al. Facile synthesis of CoFe2O4@BC activated peroxymonosulfate for p-nitrochlorobenzene degradation: Matrix effect and toxicity evaluation[J]. Science of the Total Environment, 2022, 828: 154275. |
103 | WANG Qiongfang, SHAO Yisheng, GAO Naiyun, et al. Activation of peroxymonosulfate by Al2O3-based CoFe2O4 for the degradation of sulfachloropyridazine sodium: Kinetics and mechanism[J]. Separation and Purification Technology, 2017, 189: 176-185. |
104 | YANG Zhiquan, LI Ying, ZHANG Xinyi, et al. Sludge activated carbon-based CoFe2O4-SAC nanocomposites used as heterogeneous catalysts for degrading antibiotic norfloxacin through activating peroxymonosulfate[J]. Chemical Engineering Journal, 2020, 384: 123319. |
105 | PENG Xiaoming, YANG Zhanhong, HU Fengping, et al. Mechanistic investigation of rapid catalytic degradation of tetracycline using CoFe2O4@MoS2 by activation of peroxymonosulfate[J]. Separation and Purification Technology, 2022, 287: 120525. |
106 | ZHANG Ke, SUN Dedong, MA Chun, et al. Activation of peroxymonosulfate by CoFe2O4 loaded on metal-organic framework for the degradation of organic dye[J]. Chemosphere, 2020, 241: 125021. |
107 | LI Xinran, LIU Zhehua, ZHU Yongjuan, et al. Facile synthesis and synergistic mechanism of CoFe2O4@three-dimensional graphene aerogels towards peroxymonosulfate activation for highly efficient degradation of recalcitrant organic pollutants[J]. Science of the Total Environment, 2020, 749: 141466. |
108 | HNAMTE Malsawmdawngkima, PULIKKAL Ajmal Koya. Clay-polymer nanocomposites for water and wastewater treatment: A comprehensivereview[J]. Chemosphere, 2022, 307: 135869. |
109 | HUANG Na, WANG Tong, WU Yingxuan, et al. Preparation of magnetically recyclable hierarchical porous sludge-pine needle derived biochar loaded CoFe2O4 nanoparticles for rapid degradation of tetracycline by activated PMS[J]. Materials Today Communications, 2023, 35: 106313. |
110 | TAN Ye, LI Chunquan, SUN Zhiming, et al. Natural diatomite mediated spherically monodispersed CoFe2O4 nanoparticles for efficient catalytic oxidation of bisphenol A through activating peroxymonosulfate[J]. Chemical Engineering Journal, 2020, 388: 124386. |
111 | WANG Fuxue, ZHANG Ziyue, WANG Chongchen. Selective oxidation of aqueous organic pollutants over MOFs-based catalysts: A mini review[J]. Chemical Engineering Journal, 2023, 459: 141538. |
112 | YANG Shengjiong, QIU Xiaojie, JIN Pengkang, et al. MOF-templated synthesis of CoFe2O4 nanocrystals and its coupling with peroxymonosulfate for degradation of bisphenol A[J]. Chemical Engineering Journal, 2018, 353: 329-339. |
113 | HASSANI Aydin, EGHBALI Paria, MAHDIPOUR Fayyaz, et al. Insights into the synergistic role of photocatalytic activation of peroxymonosulfate by UVA-LED irradiation over CoFe2O4-rGO nanocomposite towards effective bisphenol A degradation: Performance, mineralization, and activation mechanism[J]. Chemical Engineering Journal, 2023, 453: 139556. |
114 | DEHVARI Mahboobeh, BABAEI Ali Akbar, ESMAEILI Shirin. Amplification of oxidative elimination of atrazine by ultrasound/ultraviolet-assisted sono/photocatalyst using a spinel cobalt ferrite-anchored MWCNT as peroxymonosulfate activator[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 437: 114452. |
115 | ISSAKA Eliasu, AMU-DARKO Jesse Nii-Okai, YAKUBU Salome, et al. Advanced catalytic ozonation for degradation of pharmaceutical pollutants-A review[J]. Chemosphere, 2022, 289: 133208. |
116 | 孔涛, 任诺, 陈春茂, 等. 多金属氧化物催化臭氧氧化有机污染物的研究进展[J]. 工业水处理, 2021, 41(7): 1-18. |
KONG Tao, REN Nuo, CHEN Chunmao, et al. Research progress of catalytic ozonation of organic contaminants by poly-metallic oxides[J]. Industrial Water Treatment, 2021, 41(7): 1-18. | |
117 | DE OLIVEIRA Jivago Schumacher, SILVEIRA SALLA Julia DA, KUHN Raquel Cristine, et al. Catalytic ozonation of melanoidin in aqueous solution over CoFe2O4 catalyst[J]. Materials Research, 2018, 22(1): e20180405. |
118 | CAI C, DUAN X D, XIE J, et al. Efficient degradation of clofibric acid by heterogeneous catalytic ozonation using CoFe2O4 catalyst in water[J]. Journal of Hazardous Materials, 2021, 410: 124604. |
119 | ZHANG Fengzhen, WEI Chaohai, WU Kaiyi, et al. Mechanistic evaluation of ferrite AFe2O4 (A=Co, Ni, Cu, and Zn) catalytic performance in oxalic acid ozonation[J]. Applied Catalysis A: General, 2017, 547: 60-68. |
120 | 徐俐, 刘东方, 安晓静, 等. CoFe2O4@MS活化过一硫酸盐处理6-硝氧体废水的研究[J]. 水处理技术, 2022, 48(8): 48-53. |
XU Li, LIU Dongfang, AN Xiaojing, et al. Treatment of 6-nitrogen wastewater by CoFe2O4@MS activated peroxymonosulfate[J]. Technology of Water Treatment, 2022, 48(8): 48-53. | |
121 | HU Zheng, GE Ming, GUO Changsheng. Efficient removal of levofloxacin from different water matrices via simultaneous adsorption and photocatalysis using a magnetic Ag3PO4/rGO/CoFe2O4 catalyst[J]. Chemosphere, 2021, 268: 128834. |
[1] | 林梅洁, 米烁东, 包成. 金属-掺杂氧化铈体系H2/CO电化学反应机理研究进展[J]. 化工进展, 2024, 43(S1): 209-224. |
[2] | 李帅哲, 聂懿宸, PHIDSAVARD Keomeesay, 顾雯, 张伟, 刘娜, 徐高翔, 刘莹, 李兴勇, 陈玉保. 非贵金属催化生物质加氢脱氧制备烃基生物燃料的研究进展[J]. 化工进展, 2024, 43(S1): 225-242. |
[3] | 石磊, 王倩, 赵晓胜, 刘宏臣, 车远军, 段玉, 李庆. 油页岩灰基分子筛的制备及对亚甲基蓝的吸附[J]. 化工进展, 2024, 43(S1): 650-661. |
[4] | 张政, 刘琳, 李子晨, 王梦琦, 黄春燕, 葛圆圆. 载铜地质聚合物微球的制备及其催化降解双酚S的性能[J]. 化工进展, 2024, 43(9): 5290-5301. |
[5] | 吴宇琦, 李江涛, 丁建智, 宋秀兰, 苏冰琴. 焙烧镁铝水滑石脱除厌氧消化沼气中CO2的效果及机制[J]. 化工进展, 2024, 43(9): 5250-5261. |
[6] | 李镇武, 蒲迪, 熊亚春, 吴定莹, 金诚, 郭拥军. 驱油用纳米材料在提高采收率方面研究进展[J]. 化工进展, 2024, 43(9): 5035-5048. |
[7] | 焦文磊, 刘震, 陈俊先, 张天钰, 姬忠礼. 叶片式分离元件结构及性能影响因素研究进展[J]. 化工进展, 2024, 43(8): 4187-4202. |
[8] | 张茜, 李皓芯, 张天阳, 李子富, 孙文俊, 敖秀玮. 基于紫外线的高级氧化或高级还原技术降解水中全氟或多氟烷基化合物[J]. 化工进展, 2024, 43(8): 4587-4600. |
[9] | 刘玉灿, 高中鲁, 徐心怡, 纪现国, 张岩, 孙洪伟, 王港. 钙改性水葫芦基生物炭吸附水中敌草隆的效能与机理[J]. 化工进展, 2024, 43(8): 4630-4641. |
[10] | 曹景沛, 姚乃瑜, 庞新博, 赵小燕, 赵静平, 蔡士杰, 徐敏, 冯晓博, 伊凤娇. 煤热解研究进展及其发展历程[J]. 化工进展, 2024, 43(7): 3620-3636. |
[11] | 胡锐, 李先如, 朴玮玲, 冯盼, 罗磊, 罗刚, 卫皇曌, 刘振刚, 张士成. 有机废物水热转化设备与技术研究进展[J]. 化工进展, 2024, 43(7): 3672-3691. |
[12] | 龚德成, 沈倩, 朱贤青, 黄云, 夏奡, 张敬苗, 朱恂, 廖强. 微藻超临界水气化制取富氢合成气的研究进展[J]. 化工进展, 2024, 43(7): 3709-3728. |
[13] | 林翔, 焦芬, 魏茜, 张政权. 菱锌矿硫化浮选机理及影响因素研究进展[J]. 化工进展, 2024, 43(7): 4015-4031. |
[14] | 何弈雪, 秦先超, 马伟芳. 过硫酸盐高级氧化原位修复地下水中卤代烃污染研究进展[J]. 化工进展, 2024, 43(7): 4072-4088. |
[15] | 孟卫波, 邢宝林, 程松, 冯来宏, 施凤, 曾会会, 雷思乐, 王雪, 赵赛丹, 曾祥旺. 废塑料催化热解制备碳纳米管及其生长机理[J]. 化工进展, 2024, 43(6): 3468-3478. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |