化工进展 ›› 2024, Vol. 43 ›› Issue (7): 3672-3691.DOI: 10.16085/j.issn.1000-6613.2024-0196
• 专栏:热化学反应工程技术 • 上一篇
胡锐1,4,5,6(), 李先如2, 朴玮玲2, 冯盼2, 罗磊3, 罗刚1,4,5,6, 卫皇曌2(), 刘振刚3(), 张士成1,4,5,6()
收稿日期:
2024-01-25
修回日期:
2024-05-07
出版日期:
2024-07-10
发布日期:
2024-08-14
通讯作者:
卫皇曌,刘振刚,张士成
作者简介:
胡锐(1995—),男,博士研究生,研究方向为有机固废污染控制与资源化利用、废水生物脱氮和资源化利用技术。E-mail:21110740028@m.fudan.edu.cn。
基金资助:
HU Rui1,4,5,6(), LI Xianru2, PIAO Weiling2, FENG Pan2, LUO Lei3, LUO Gang1,4,5,6, WEI Huangzhao2(), LIU Zhengang3(), ZHANG Shicheng1,4,5,6()
Received:
2024-01-25
Revised:
2024-05-07
Online:
2024-07-10
Published:
2024-08-14
Contact:
WEI Huangzhao, LIU Zhengang, ZHANG Shicheng
摘要:
热驱动的水热转化技术是一种典型的热化学反应工程技术。该技术可在治理有机废物的同时回收有价资源,是实现双碳目标的重要途经。本文以有机废物为对象,首先梳理了水热技术的整体发展脉络,介绍了水热转化技术在有机废物转化中的典型类别和特征,并阐述了亚临界水和超临界水的性质;随后回顾了水热转换设备的发展,强调了工程应用中的典型水热转化设备并分析了设备研发中需注意的潜在问题;分析了水热转化技术在有机废物治理和资源回收上的典型案例。最后对有机废物水热转化现存挑战作出分析,指出实际环境中复杂水质引发的设备腐蚀、特定产物所需高效催化剂的研制、过程污染物的产生和难以协调的技术经济可行性仍是该技术的制约条件。本文旨在为有机废物水热转化工程实践提供理论和技术参考。
中图分类号:
胡锐, 李先如, 朴玮玲, 冯盼, 罗磊, 罗刚, 卫皇曌, 刘振刚, 张士成. 有机废物水热转化设备与技术研究进展[J]. 化工进展, 2024, 43(7): 3672-3691.
HU Rui, LI Xianru, PIAO Weiling, FENG Pan, LUO Lei, LUO Gang, WEI Huangzhao, LIU Zhengang, ZHANG Shicheng. Progress on the hydrothermal conversion equipment and technology of organic waste[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3672-3691.
条件 | 温度/℃ | 压力/MPa | 密度/kg·m-3 | 静态介电常数/F·m-1 | 离子积(pKw) | 动态黏度/mPa·s |
---|---|---|---|---|---|---|
标准条件 | 25 | 0.1 | 1000 | 78.5 | 14 | 0.89 |
亚临界条件 | 350 | 25 | 600 | 14.07 | 12 | 0.064 |
超临界条件 | 500 | 25 | 78 | 1.46 | 23 | 0.03 |
表1 不同条件下水的性质
条件 | 温度/℃ | 压力/MPa | 密度/kg·m-3 | 静态介电常数/F·m-1 | 离子积(pKw) | 动态黏度/mPa·s |
---|---|---|---|---|---|---|
标准条件 | 25 | 0.1 | 1000 | 78.5 | 14 | 0.89 |
亚临界条件 | 350 | 25 | 600 | 14.07 | 12 | 0.064 |
超临界条件 | 500 | 25 | 78 | 1.46 | 23 | 0.03 |
方法 | 温度/℃ | 压力/MPa | 催化剂 | 主要产物产率 | 优点 | 限制 |
---|---|---|---|---|---|---|
HTC | 120~260 | 2~10 | 过氧化氢、有机酸、无机酸、无机碱、金属氯化物、金属氧化物等 | 水热炭:5%~97% | 高湿度底物、高热值、无NO x 和SO x 释放 | 水热炭灰分含量高、重金属含量高 |
HTL | 200~375 | 5~35 | 碳酸钠、氯化钾、氢氧化钾、氢氧化钠、固体酸/碱等 | 生物油率:9.4%~77.2% | 高的油产率、高热值、应用范围广 | 生物原油含有较多的杂原子、呈酸性、高黏度和高氨氮性质,需要进一步提炼 |
HTG | 300~900 | >22.1 | 氢氧化钾、镍、碳酸钾、碳酸钠、钌基催化剂、金属氯化物等 | H2产率:10%~80% | 消除传质限制、无NO x 和SO x 释放 | 盐沉积、危险性高、催化剂失活、反应器堵塞 |
HTO | >100 | >2 | 氧化剂:如过氧化氢、氧气 | — | 有机物矿化率高 | 盐沉积和堵塞、需要催化剂、高能耗和操作费用 |
表2 水热技术特征比较[7, 24, 32, 37, 43, 87, 103-112]
方法 | 温度/℃ | 压力/MPa | 催化剂 | 主要产物产率 | 优点 | 限制 |
---|---|---|---|---|---|---|
HTC | 120~260 | 2~10 | 过氧化氢、有机酸、无机酸、无机碱、金属氯化物、金属氧化物等 | 水热炭:5%~97% | 高湿度底物、高热值、无NO x 和SO x 释放 | 水热炭灰分含量高、重金属含量高 |
HTL | 200~375 | 5~35 | 碳酸钠、氯化钾、氢氧化钾、氢氧化钠、固体酸/碱等 | 生物油率:9.4%~77.2% | 高的油产率、高热值、应用范围广 | 生物原油含有较多的杂原子、呈酸性、高黏度和高氨氮性质,需要进一步提炼 |
HTG | 300~900 | >22.1 | 氢氧化钾、镍、碳酸钾、碳酸钠、钌基催化剂、金属氯化物等 | H2产率:10%~80% | 消除传质限制、无NO x 和SO x 释放 | 盐沉积、危险性高、催化剂失活、反应器堵塞 |
HTO | >100 | >2 | 氧化剂:如过氧化氢、氧气 | — | 有机物矿化率高 | 盐沉积和堵塞、需要催化剂、高能耗和操作费用 |
废水名称 | 主要有机物 | 接受废水量 /t | 废水COD /mg·L-1 | COD去除率/% |
---|---|---|---|---|
TPU废水 | 四氢呋喃、丙二醇等 | 440 | 15000~40000 | 90~98 |
TMP废水 | 二羟甲基丁醛、 TMP等 | 6 | 90000~110000 | 95~98 |
IP废水 | 异佛尔酮、甲醇等 | 15 | 80000~100000 | 90~96 |
MDBA废水 | 丁酮、仲丁醇等 | 80 | 15000~26000 | 90~95 |
SAP废水 | 丙烯酸等 | 4 | 20000~25000 | 93~95 |
表3 烟台万华CWAO装置运行数据
废水名称 | 主要有机物 | 接受废水量 /t | 废水COD /mg·L-1 | COD去除率/% |
---|---|---|---|---|
TPU废水 | 四氢呋喃、丙二醇等 | 440 | 15000~40000 | 90~98 |
TMP废水 | 二羟甲基丁醛、 TMP等 | 6 | 90000~110000 | 95~98 |
IP废水 | 异佛尔酮、甲醇等 | 15 | 80000~100000 | 90~96 |
MDBA废水 | 丁酮、仲丁醇等 | 80 | 15000~26000 | 90~95 |
SAP废水 | 丙烯酸等 | 4 | 20000~25000 | 93~95 |
1 | STEPHENS Evan, ROSS Ian L, MUSSGNUG Jan H, et al. Future prospects of microalgal biofuel production systems[J]. Trends in Plant Science, 2010, 15(10): 554-564. |
2 | XIONG Jinhui, XU Deyi. Relationship between energy consumption, economic growth and environmental pollution in China[J]. Environmental Research, 2021, 194: 110718. |
3 | SCHLEUSSNER Carl-Friedrich, ROGELJ Joeri, SCHAEFFER Michiel, et al. Science and policy characteristics of the Paris Agreement temperature goal[J]. Nature Climate Change, 2016, 6: 827-835. |
4 | WEI Yiming, CHEN Kaiyuan, KANG Jianing, et al. Policy and management of carbon peaking and carbon neutrality: A literature review[J]. Engineering, 2022, 14: 52-63. |
5 | RAKSASAT Ratchaprapa, Jun Wei LIM, KIATKITTIPONG Worapon, et al. A review of organic waste enrichment for inducing palatability of black soldier fly larvae: Wastes to valuable resources[J]. Environmental Pollution, 2020, 267: 115488. |
6 | MA Dengsheng, YI Huan, LAI Cui, et al. Critical review of advanced oxidation processes in organic wastewater treatment[J]. Chemosphere, 2021, 275: 130104. |
7 | Daniel LACHOS-PEREZ, CÉSAR TORRES-MAYANGA Paulo, ABAIDE Ederson R, et al. Hydrothermal carbonization and liquefaction: Differences, progress, challenges, and opportunities[J]. Bioresource Technology, 2022, 343: 126084. |
8 | BYRAPPA K, YOSHIMURA Masahiro. Hydrothermal technology—Principles and applications[M]//Handbook of hydrothermal technology. Amsterdam: Elsevier, 2001: 1-52. |
9 | RABENAU Albrecht. The role of hydrothermal synthesis in preparative chemistry[J]. Angewandte Chemie International Edition, 1985, 24(12): 1026-1040. |
10 | YU Shijie, HE Jiangkai, ZHANG Zhien, et al. Towards negative emissions: Hydrothermal carbonization of biomass for sustainable carbon materials[J]. Advanced Materials, 2024, 36(18): 2307412. |
11 | SHANDILYA M, RAI R, SINGH J. Review: Hydrothermal technology for smart materials[J]. Advances in Applied Ceramics, 2016, 115(6): 354-376. |
12 | 邹晓新, 王莉, 李光华, 等. 吉林大学无机化学学科:继往开来 砥砺前行[J]. 化学教育(中英文), 2022, 43(14): 26-32. |
ZOU Xiaoxin, WANG Li, LI Guanghua, et al. Inorganic chemistry of Jilin university: Past, present and future[J]. Chinese Journal of Chemical Education, 2022, 43(14): 26-32. | |
13 | XIE Y F, QIAN Y T, WANG W Z, et al. A benzene-thermal synthetic route to nanocrystalline GaN[J]. Science, 1996, 272(5270): 1926-1927. |
14 | LIU Ruili, SHI Yifeng, WAN Ying, et al. Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas[J]. Journal of the American Chemical Society, 2006, 128(35): 11652-11662. |
15 | CHEN Jingwei, LU Youjun, GUO Liejin, et al. Hydrogen production by biomass gasification in supercritical water using concentrated solar energy: System development and proof of concept[J]. International Journal of Hydrogen Energy, 2010, 35(13): 7134-7141. |
16 | REN Limin, WU Qinming, YANG Chengguang, et al. Solvent-free synthesis of zeolites from solid raw materials[J]. Journal of the American Chemical Society, 2012, 134(37): 15173-15176. |
17 | LUO Yi, SMEETS Stef, PENG Fei, et al. Synthesis and structure determination of large-pore zeolite SCM-14[J]. Chemistry, 2017, 23(66): 16829-16834. |
18 | FENG Guodong, CHENG Peng, YAN Wenfu, et al. Accelerated crystallization of zeolites via hydroxyl free radicals[J]. Science, 2016, 351(6278): 1188-1191. |
19 | YU Shijie, DONG Xinyue, ZHAO Peng, et al. Decoupled temperature and pressure hydrothermal synthesis of carbon sub-micron spheres from cellulose[J]. Nature Communications, 2022, 13(1): 3616. |
20 | XU Guangwen, BAI Dingrong, XU Chunming, et al. Challenges and opportunities for engineering thermochemistry in carbon-neutralization technologies[J]. National Science Review, 2022, 10(9): nwac217. |
21 | GUO Zhancheng, WANG Shiwei, BAI Dingrong. Engineering thermochemistry: The science critical for the paradigm shift toward carbon neutrality[J]. Resources Chemicals and Materials, 2023, 2(4): 331-334. |
22 | HAN Zhennan, JIA Xin, SONG Xingfei, et al. Engineering thermochemistry to cope with challenges in carbon neutrality[J]. Journal of Cleaner Production, 2023, 416: 137943. |
23 | HE Mingyuan, ZHANG Kun, GUAN Yejun, et al. Green carbon science: Fundamental aspects[J]. National Science Review, 2023, 10(9): nwad046. |
24 | YANG Chuang, WANG Shuzhong, YANG Jianqiao, et al. Hydrothermal liquefaction and gasification of biomass and model compounds: A review[J]. Green Chemistry, 2020, 22(23): 8210-8232. |
25 | Walter MAY. Hydrothermal oxidation[M]//Holm FW. Mobile alternative demilitarization technologies. Dordrecht: Springer, 1997: 155-181. |
26 | 唐受印, 戴友芝. 废水处理水热氧化技术[M]. 北京: 化学工业出版社, 2002. |
TANG Shouyin, DAI Youzhi. Thermal oxidation technology of wastewater treatment water[M]. Beijing: Chemical Industry Press, 2002. | |
27 | PROESMANS Petra I, LUAN Li, BUELOW Steven J. Hydrothermal oxidation of organic wastes using ammonium nitrate[J]. Industrial & Engineering Chemistry Research, 1997, 36(5): 1559-1566. |
28 | MARIAS F, MANCINI F, CANSELL F, et al. Hydrothermal oxidation treatment of solid particles between 250 and 350℃: Modelling and experiments[J]. The Journal of Supercritical Fluids, 2007, 41(3): 352-360. |
29 | FUNKE Axel, ZIEGLER Felix. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering[J]. Biofuels, Bioproducts and Biorefining, 2010, 4(2): 160-177. |
30 | Anne LOPPINET-SERANI, AYMONIER Cyril. Hydrolysis in near- and Supercritical Water for biomass conversion and Material recycling[M]//Supercritical fluid technology for energy and environmental applications. Amsterdam: Elsevier, 2014: 139-156. |
31 | Leena PAULINE A, JOSEPH Kurian. Hydrothermal carbonization of organic wastes to carbonaceous solid fuel—A review of mechanisms and process parameters[J]. Fuel, 2020, 279: 118472. |
32 | CAO Yang, HE Mingjing, DUTTA Shanta, et al. Hydrothermal carbonization and liquefaction for sustainable production of hydrochar and aromatics[J]. Renewable and Sustainable Energy Reviews, 2021, 152: 111722. |
33 | LUCIAN Michela, VOLPE Maurizio, GAO Lihui, et al. Impact of hydrothermal carbonization conditions on the formation of hydrochars and secondary chars from the organic fraction of municipal solid waste[J]. Fuel, 2018, 233: 257-268. |
34 | BERGIUS Friedrich. Chemical reactions under high pressure[J]. Nobel Lecture, 1932, 33. |
35 | TOOR Saqib Sohail, ROSENDAHL Lasse, RUDOLF Andreas. Hydrothermal liquefaction of biomass: A review of subcritical water technologies[J]. Energy, 2011, 36(5): 2328-2342. |
36 | CHAN Yi Herng, YUSUP Suzana, QUITAIN Armando T, et al. Effect of process parameters on hydrothermal liquefaction of oil palm biomass for bio-oil production and its life cycle assessment[J]. Energy Conversion and Management, 2015, 104: 180-188. |
37 | ELHASSAN Mohamed, ABDULLAH Rosnah, KOOH Muhammad Raziq Rahimi, et al. Hydrothermal liquefaction: A technological review on reactor design and operating parameters[J]. Bioresource Technology Reports, 2023, 21: 101314. |
38 | HUSSIN Farihahusnah, HAZANI Nur Nadira, KHALIL Munawar, et al. Environmental life cycle assessment of biomass conversion using hydrothermal technology: A review[J]. Fuel Processing Technology, 2023, 246: 107747. |
39 | SHARMA Isha, RACKEMANN Darryn, RAMIREZ Jerome, et al. Exploring the potential for biomethane production by the hybrid anaerobic digestion and hydrothermal gasification process: A review[J]. Journal of Cleaner Production, 2022, 362: 132507. |
40 | OKOLIE Jude A, EPELLE Emmanuel I, NANDA Sonil, et al. Modeling and process optimization of hydrothermal gasification for hydrogen production: A comprehensive review[J]. The Journal of Supercritical Fluids, 2021, 173: 105199. |
41 | SHAHBEIK Hossein, PENG Wanxi, KAZEMI SHARIAT PANAHI Hamed, et al. Synthesis of liquid biofuels from biomass by hydrothermal gasification: A critical review[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112833. |
42 | WEI Ning, XU Donghai, HAO Botian, et al. Chemical reactions of organic compounds in supercritical water gasification and oxidation[J]. Water Research, 2021, 190: 116634. |
43 | S V Prasad MYLAPILLI, REDDY Sivamohan N. Sub and supercritical water oxidation of pharmaceutical wastewater[J]. Journal of Environmental Chemical Engineering, 2019, 7(3): 103165. |
44 | Joachim SCHANZENBÄCHER, TAYLOR Joshua D, TESTER Jefferson W. Ethanol oxidation and hydrolysis rates in supercritical water[J]. The Journal of Supercritical Fluids, 2002, 22(2): 139-147. |
45 | ATES Havva, ARGUN Mehmet Emin. Fate of PAHs under subcritical and supercritical conditions in landfill leachate: Removal or formation?[J]. Chemical Engineering Journal, 2021, 414: 128762. |
46 | AL-DURI B, ALSOQYIANI F, KINGS I. Supercritical water oxidation (SCWO) for the removal of N-containing heterocyclic hydrocarbon wastes. Part I: Process enhancement by addition of isopropyl alcohol[J]. The Journal of Supercritical Fluids, 2016, 116: 155-163. |
47 | YANG Bowen, SHEN Zhemin, CHENG Zhiwen, et al. Total nitrogen removal, products and molecular characteristics of 14 N-containing compounds in supercritical water oxidation[J]. Chemosphere, 2017, 188: 642-649. |
48 | VERIANSYAH Bambang, KIM Jae-Duck, LEE Jong-Chol. Supercritical water oxidation of thiodiglycol[J]. Industrial & Engineering Chemistry Research, 2005, 44(24): 9014-9019. |
49 | WANG Fei, LU Xingwen, SHIH Kaimin, et al. Influence of calcium hydroxide on the fate of perfluorooctanesulfonate under thermal conditions[J]. Journal of Hazardous Materials, 2011, 192(3): 1067-1071. |
50 | LIN Chunmian, LIU Huan, ZHEN Wanshun, et al. Study on supercritical water oxidation of o-dichlorobenzene in a quartz micro-reactor with in situ microscope and Raman spectroscopy[J]. Chemical Papers, 2019, 73(5): 1257-1262. |
51 | JAVAID Rahat, QAZI Umair Yaqub, IKHLAQ Amir, et al. Subcritical and supercritical water oxidation for dye decomposition[J]. Journal of Environmental Management, 2021, 290: 112605. |
52 | ZHAN Lu, JIANG Ling, ZHANG Yongliang, et al. Reduction, detoxification and recycling of solid waste by hydrothermal technology: A review[J]. Chemical Engineering Journal, 2020, 390: 124651. |
53 | ZHANG Shicheng, ZHU Xiangdong, ZHOU Shaojie, et al. Hydrothermal carbonization for hydrochar production and its application[M]//Biochar from biomass and waste. Amsterdam: Elsevier, 2019: 275-294. |
54 | 邵钱祺, 罗涛, 张士成, 等. 水热炭与共基质对苯酚厌氧降解的影响[J]. 能源环境保护, 2024, 38(1): 119-127. |
SHAO Qianqi, LUO Tao, ZHANG Shicheng, et al. Effects of hydrochar and co-substrate on phenol anaerobic degradation[J]. Energy Environmental Protection, 2024, 38(1): 119-127. | |
55 | REN Shuang, USMAN Muhammad, TSANG Daniel C W, et al. Hydrochar-facilitated anaerobic digestion: Evidence for direct interspecies electron transfer mediated through surface oxygen-containing functional groups[J]. Environmental Science & Technology, 2020, 54(9): 5755-5766. |
56 | WANG Sike, ISHII Kento, YU Heng, et al. Stable nitrogen removal by anammox process after rapid temperature drops: Insights from metagenomics and metaproteomics[J]. Bioresource Technology, 2021, 320: 124231. |
57 | WANG Fengbo, WANG Jing, HAN Ying, et al. In situ biogas upgrading and fertilizer recovery in anaerobic digestion from Laminaria hydrothermal carbonization process water by Fe-modified hydrochar[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(36): 13623-13633. |
58 | ROTARU Amelia-Elena, SHRESTHA Pravin Malla, LIU Fanghua, et al. A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J]. Energy & Environmental Science, 2014, 7(1): 408-415. |
59 | HOLMES Dawn E, SHRESTHA Pravin M, WALKER David J F, et al. Metatranscriptomic evidence for direct interspecies electron transfer between geobacter and methanothrix species in methanogenic rice paddy soils[J]. Applied and Environmental Microbiology, 2017, 83(9): e00223-e00217. |
60 | WU Bo, YANG Qi, YAO Fubing, et al. Evaluating the effect of biochar on mesophilic anaerobic digestion of waste activated sludge and microbial diversity[J]. Bioresource Technology, 2019, 294: 122235. |
61 | SHI Zhijian, CAMPANARO Stefano, USMAN Muhammad, et al. Genome-centric metatranscriptomics analysis reveals the role of hydrochar in anaerobic digestion of waste activated sludge[J]. Environmental Science & Technology, 2021, 55(12): 8351-8361. |
62 | LI Yin, TSEND Nyamkhand, LI Tikai, et al. Microwave assisted hydrothermal preparation of rice straw hydrochars for adsorption of organics and heavy metals[J]. Bioresource Technology, 2019, 273: 136-143. |
63 | SUN Kejing, TANG Jingchun, GONG Yanyan, et al. Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water[J]. Environmental Science and Pollution Research International, 2015, 22(21): 16640-16651. |
64 | HE Xin, ZHANG Yaxin, SHEN Maocai, et al. Vermicompost as a natural adsorbent: Evaluation of simultaneous metals (Pb, Cd) and tetracycline adsorption by sewage sludge-derived vermicompost[J]. Environmental Science and Pollution Research International, 2017, 24(9): 8375-8384. |
65 | XIA Yu, LIU Hongjun, GUO Yanchuan, et al. Immobilization of heavy metals in contaminated soils by modified hydrochar: Efficiency, risk assessment and potential mechanisms[J]. Science of the Total Environment, 2019, 685: 1201-1208. |
66 | LAN Yibo, DU Qing, TANG Chunyu, et al. Application of typical artificial carbon materials from biomass in environmental remediation and improvement: A review[J]. Journal of Environmental Management, 2021, 296: 113340. |
67 | GASIM Mohamed Faisal, Jun-Wei LIM, Siew-Chun LOW, et al. Can biochar and hydrochar be used as sustainable catalyst for persulfate activation?[J]. Chemosphere, 2022, 287: 132458. |
68 | SHEN Tianchi, YANG Yayong, KANCHANATIP Ekkachai, et al. Persulfate degradation of wastewater from hydrothermal carbonization of food waste catalyzed by activated carbon[J]. Journal of Environmental Chemical Engineering, 2023, 11(1): 109203. |
69 | WEI Jia, LIU Yitao, ZHU Yuhan, et al. Enhanced catalytic degradation of tetracycline antibiotic by persulfate activated with modified sludge bio-hydrochar[J]. Chemosphere, 2020, 247: 125854. |
70 | BAMMINGER C, MARSCHNER B, JÜSCHKE E. An incubation study on the stability and biological effects of pyrogenic and hydrothermal biochar in two soils[J]. European Journal of Soil Science, 2014, 65(1): 72-82. |
71 | NAISSE Christophe, GIRARDIN Cyril, LEFEVRE Romain, et al. Effect of physical weathering on the carbon sequestration potential of biochars and hydrochars in soil[J]. GCB Bioenergy, 2015, 7(3): 488-496. |
72 | LIU Ji, QIU Tianyi, Josep PEÑUELAS, et al. Crop residue return sustains global soil ecological stoichiometry balance[J]. Global Change Biology, 2023, 29(8): 2203-2226. |
73 | LUO Lei, WANG Jiaxiao, LV Jitao, et al. Carbon sequestration strategies in soil using biochar: Advances, challenges, and opportunities[J]. Environmental Science & Technology, 2023, 57(31): 11357-11372. |
74 | LUO Lei, LIU Zhengang, ZHU Yongguan. Hydrochar: A promising activator for legacy phosphorus in soil[J]. Resources, Conservation and Recycling, 2023, 197: 107113. |
75 | NI Jun, QIAN Lili, WANG Yanxin, et al. A review on fast hydrothermal liquefaction of biomass[J]. Fuel, 2022, 327: 125135. |
76 | FENG Jianan, LI Yalin, STRATHMANN Timothy J, et al. Characterizing the opportunity space for sustainable hydrothermal valorization of wet organic wastes[J]. Environmental Science & Technology, 2024, 58(5): 2528-2541. |
77 | FAETH Julia L, VALDEZ Peter J, SAVAGE Phillip E. Fast hydrothermal liquefaction of Nannochloropsis sp. to produce biocrude[J]. Energy & Fuels, 2013, 27(3): 1391-1398. |
78 | BILLER P, ROSS A B. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content[J]. Bioresource Technology, 2011, 102(1): 215-225. |
79 | SHAKYA Rajdeep, ADHIKARI Sushil, MAHADEVAN Ravishankar, et al. Influence of biochemical composition during hydrothermal liquefaction of algae on product yields and fuel properties[J]. Bioresource Technology, 2017, 243: 1112-1120. |
80 | PETERSON Andrew A, VOGEL Frédéric, LACHANCE Russell P, et al. Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies[J]. Energy & Environmental Science, 2008, 1(1): 32-65. |
81 | BAJWA D S, POURHASHEM G, ULLAH A H, et al. A concise review of current lignin production, applications, products and their environmental impact[J]. Industrial Crops and Products, 2019, 139: 111526. |
82 | ZHU Yuting, LIAO Yuhe, LV Wei, et al. Complementing vanillin and cellulose production by oxidation of lignocellulose with stirring control[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(6): 2361-2374. |
83 | HU Rui, ZHAN Jiahui, ZHAO Yuying, et al. Bio-based platform chemicals synthesized from lignin biorefinery[J]. Green Chemistry, 2023, 25(22): 8970-9000. |
84 | AMRULLAH Apip, MATSUMURA Yukihiko. Supercritical water gasification of sewage sludge in continuous reactor[J]. Bioresource Technology, 2018, 249: 276-283. |
85 | ADAR Elanur, INCE Mahir, BILGILI Mehmet Sinan. Supercritical water gasification of sewage sludge by continuous flow tubular reactor: A pilot scale study[J]. Chemical Engineering Journal, 2020, 391: 123499. |
86 | GUO Liejin, JIN Hui. Boiling coal in water: Hydrogen production and power generation system with zero net CO2 emission based on coal and supercritical water gasification[J]. International Journal of Hydrogen Energy, 2013, 38(29): 12953-12967. |
87 | ZHANG Sijie, ZHANG Zhonghua, ZHAO Rui, et al. A review of challenges and recent progress in supercritical water oxidation of wastewater[J]. Chemical Engineering Communications, 2017, 204(2): 265-282. |
88 | LI Jianna, WANG Shuzhong, JIANG Zhuohang, et al. Supercritical water oxidation of dyeing sludge[J]. IOP Conference Series: Earth and Environmental Science, 2019, 233: 052004. |
89 | Sudhir N V K AKI, ABRAHAM Martin A. An economic evaluation of catalytic supercritical water oxidation: Comparison with alternative waste treatment technologies[J]. Environmental Progress, 1998, 17(4): 246-255. |
90 | YU Li, JIANG Wentian, YU Yang, et al. Effects of dilution ratio and Fe0 dosing on biohydrogen production from dewatered sludge by hydrothermal pretreatment[J]. Environmental Technology, 2014, 35(24): 3092-3104. |
91 | RAJPUT Asad Ayub, ZESHAN, VISVANATHAN Chettiyappan. Effect of thermal pretreatment on chemical composition, physical structure and biogas production kinetics of wheat straw[J]. Journal of Environmental Management, 2018, 221: 45-52. |
92 | LI Wei, GUO Jianbin, CHENG Huicai, et al. Two-phase anaerobic digestion of municipal solid wastes enhanced by hydrothermal pretreatment: Viability, performance and microbial community evaluation[J]. Applied Energy, 2017, 189: 613-622. |
93 | AHMAD Fiaz, SILVA Edson Luiz, VARESCHE Maria Bernadete Amâncio. Hydrothermal processing of biomass for anaerobic digestion—A review[J]. Renewable and Sustainable Energy Reviews, 2018, 98: 108-124. |
94 | AHMED Banafsha, ABOUDI Kaoutar, TYAGI Vinay Kumar, et al. Improvement of anaerobic digestion of lignocellulosic biomass by hydrothermal pretreatment[J]. Applied Sciences, 2019, 9(18): 3853. |
95 | KAKAR Farokh Laqa, TADESSE Frew, ELBESHBISHY Elsayed. Comprehensive review of hydrothermal pretreatment parameters affecting fermentation and anaerobic digestion of municipal sludge[J]. Processes, 2022, 10(12): 2518. |
96 | RUIZ Héctor A, SGANZERLA William Gustavo, LARNAUDIE Valeria, et al. Advances in process design, techno-economic assessment and environmental aspects for hydrothermal pretreatment in the fractionation of biomass under biorefinery concept[J]. Bioresource Technology, 2023, 369: 128469. |
97 | ESKICIOGLU Cigdem, MONLAU Florian, BARAKAT Abdellatif, et al. Assessment of hydrothermal pretreatment of various lignocellulosic biomass with CO2 catalyst for enhanced methane and hydrogen production[J]. Water Research, 2017, 120: 32-42. |
98 | PHUTTARO Chettaphong, SAWATDEENARUNAT Chayanon, SURENDRA K C, et al. Anaerobic digestion of hydrothermally-pretreated lignocellulosic biomass: Influence of pretreatment temperatures, inhibitors and soluble organics on methane yield[J]. Bioresource Technology, 2019, 284: 128-138. |
99 | KIM Daegi, LEE Kwanyong, PARK Ki Young. Enhancement of biogas production from anaerobic digestion of waste activated sludge by hydrothermal pre-treatment[J]. International Biodeterioration & Biodegradation, 2015, 101: 42-46. |
100 | YUAN Tian, CHENG Yanfei, ZHANG Zhenya, et al. Comparative study on hydrothermal treatment as pre- and post-treatment of anaerobic digestion of primary sludge: Focus on energy balance, resources transformation and sludge dewaterability[J]. Applied Energy, 2019, 239: 171-180. |
101 | AZIZI A, HOSSEINI KOUPAIE E, HAFEZ H, et al. Improving single- and two-stage anaerobic digestion of source separated organics by hydrothermal pretreatment[J]. Biochemical Engineering Journal, 2019, 148: 77-86. |
102 | Naoki ABE, TANG Yueqin, IWAMURA Makoto, et al. Pretreatment followed by anaerobic digestion of secondary sludge for reduction of sewage sludge volume[J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2013, 67(11): 2527-2533. |
103 | ZHI Youwei, XU Donghai, JIANG Guanyu, et al. A review of hydrothermal carbonization of municipal sludge: Process conditions, physicochemical properties, methods coupling, energy balances and life cycle analyses[J]. Fuel Processing Technology, 2024, 254: 107943. |
104 | RAVICHANDRAN Sathish Raam, VENKATACHALAM Chitra Devi, SENGOTTIAN Mothil, et al. A review on hydrothermal liquefaction of algal biomass on process parameters, purification and applications[J]. Fuel, 2022, 313: 122679. |
105 | OKOLIE Jude A, NANDA Sonil, DALAI Ajay K, et al. A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109546. |
106 | ZHANG Weijin, CHEN Qingyue, CHEN Jiefeng, et al. Machine learning for hydrothermal treatment of biomass: A review[J]. Bioresource Technology, 2023, 370: 128547. |
107 | SHAFIZADEH Alireza, SHAHBEIG Hossein, NADIAN Mohammad Hossein, et al. Machine learning predicts and optimizes hydrothermal liquefaction of biomass[J]. Chemical Engineering Journal, 2022, 445: 136579. |
108 | ZHUANG Xiuzheng, LIU Jianguo, ZHANG Qi, et al. A review on the utilization of industrial biowaste via hydrothermal carbonization[J]. Renewable and Sustainable Energy Reviews, 2022, 154: 111877. |
109 | SHEN Yafei. A review on hydrothermal carbonization of biomass and plastic wastes to energy products[J]. Biomass and Bioenergy, 2020, 134: 105479. |
110 | DJANDJA Oraléou Sangué, LIEW Rock Keey, LIU Chang, et al. Catalytic hydrothermal carbonization of wet organic solid waste: A review[J]. Science of the Total Environment, 2023, 873: 162119. |
111 | WU Yujian, WANG Haoyu, LI Haoyang, et al. Applications of catalysts in thermochemical conversion of biomass (pyrolysis, hydrothermal liquefaction and gasification): A critical review[J]. Renewable Energy, 2022, 196: 462-481. |
112 | CHEN Zhong, ZHENG Zhijian, HE Chunlan, et al. Oily sludge treatment in subcritical and supercritical water: A review[J]. Journal of Hazardous Materials, 2022, 433: 128761. |
113 | ZACCARIELLO L, BATTAGLIA D, MORRONE B, et al. Hydrothermal carbonization: A pilot-scale reactor design for bio-waste and sludge pre-treatment[J]. Waste and Biomass Valorization, 2022, 13(9): 3865-3876. |
114 | 李飞跃, 吴文革, 纪文超, 等. 一种利用畜禽粪便水热液制备液体肥料的装置和方法: CN111689795A[P]. 2020-09-22. |
LI Feiyue, WU Wenge, JI Wenchao, et al. A device and method for preparing liquid fertilizer by using livestock manure hydrothermal solution: CN111689795A[P]. 2020-09-22. | |
115 | 张镭, 高玉君, 王建宏, 等. 一种水热碳化处理污泥制备燃料的方法: CN107010807B[P]. 2022-06-28. |
ZHANG Lei, GAO Yujun, WANG Jianhong, et al. A method for preparing fuel by hydrothermal carbonization of sludge: CN107010807B[P]. 2022-06-28. | |
116 | 宋成芳, 单胜道, 吴胜春, 等. 一种畜禽粪便连续水热碳化系统及其工艺: CN108129001A[P]. 2018-06-08. |
SONG Chengfang, SHAN Shengdao, WU Shengchun, et al. A continuous hydrothermal carbonization system for livestock manure and process: CN108129001A[P]. 2018-06-08. | |
117 | 王广伟, 王川, 宁晓钧, 等. 一种连续式水热炭化装置: CN114432965B[P]. 2023-03-03. |
WANG Guangwei, WANG Chuan, NING Xiaojun,et al. A continuous hydrothermal carbonization device: CN114432965B[P]. 2023-03-03. | |
118 | 仲璐, Buttmann Marc, 王君琦. 污泥水热碳化处理技术及其工程化应用——以济宁中山污泥处理工程项目为例[J]. 环境卫生工程, 2020, 28(2): 66-68. |
ZHONG Lu, BUTTMANN Marc, WANG Junqi. Treatment technology and engineering application of sludge hydrothermal carbonization: A case study on Zhongshan sludge treatment project in Jining[J]. Environmental Sanitation Engineering, 2020, 28(2): 66-68. | |
119 | BILLER Patrick, MADSEN René B, KLEMMER Maika, et al. Effect of hydrothermal liquefaction aqueous phase recycling on bio-crude yields and composition[J]. Bioresource Technology, 2016, 220: 190-199. |
120 | KRISTIANTO Ivan, LIMARTA Susan Olivia, PARK Young-Kwon, et al. Hydrothermal liquefaction of concentrated acid hydrolysis lignin in a bench-scale continuous stirred tank reactor[J]. Energy & Fuels, 2019, 33(7): 6421-6428. |
121 | BASAR Ibrahim Alper, LIU Huan, CARRERE Helene, et al. A review on key design and operational parameters to optimize and develop hydrothermal liquefaction of biomass for biorefinery applications[J]. Green Chemistry, 2021, 23(4): 1404-1446. |
122 | MCKENDRY Peter. Energy production from biomass (part 3): Gasification technologies[J]. Bioresource Technology, 2002, 83(1): 55-63. |
123 | WARNECKE Ragnar. Gasification of biomass: Comparison of fixed bed and fluidized bed gasifier[J]. Biomass and Bioenergy, 2000, 18(6): 489-497. |
124 | 吕路, 王林平, 黄前霖, 等. 一种固定床水热气化反应器及应用: CN113634200B[P]. 2022-06-03. |
Lu LYU, WANG Linping, HUANG Qianlin, et al. A fixed bed water pyrolysis reactor and its application: CN113634200A[P]. 2022-06-03. | |
125 | 高宁博, 李爱民, 曲毅. 生物质气化及其影响因素研究进展[J]. 化工进展, 2010, 29(S1): 52-57. |
GAO Ningbo, LI Aimin, QU Yi. Research progress of biomass gasification and its influencing factors[J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 52-57. | |
126 | 杨剑, 张成, 张小培, 等. 纤维素的催化水热气化特性实验研究[J]. 广东电力, 2018, 31(5): 15-20. |
YANG Jian, ZHANG Cheng, ZHANG Xiaopei, et al. Experimental research on catalyzed hydrothermal gasification of cellulose[J]. Guangdong Electric Power, 2018, 31(5): 15-20. | |
127 | LUTERBACHER Jeremy S, Morgan FRÖLING, VOGEL Frederic, et al. Hydrothermal gasification of waste biomass: Process design and life cycle asessment[J]. Environmental Science & Technology, 2009, 43(5): 1578-1583. |
128 | BOUKIS N, GALLA U, MÜLLER H, et al. Biomass gasification in supercritical water. First results of the pilot plant[J]. Environmental Science, Engineering, 2004, 2: 99738911. |
129 | WEI Huangzhao, WANG Yamin, YU Yang, et al. Effect of TiO2 on Ru/ZrO2 catalysts in the catalytic wet air oxidation of isothiazolone[J]. Catalysis Science & Technology, 2015, 5(3): 1693-1703. |
130 | JIN Chengyu, MA Lei, SUN Wenjing, et al. Single-atom nickel confined nanotube superstructure as support for catalytic wet air oxidation of acetic acid[J]. Communications Chemistry, 2019, 2: 135. |
131 | SUN Wenjing, WEI Huangzhao, AN Luyang, et al. Oxygen vacancy mediated La1- x Ce x FeO3- δ perovskite oxides as efficient catalysts for CWAO of acrylic acid by a-site Ce doping[J]. Applied Catalysis B: Environmental, 2019, 245: 20-28. |
132 | 孙文静, 卫皇曌, 李先如, 等. 催化湿式氧化处理助剂废水工程及过程模拟[J]. 环境工程学报, 2018, 12(8): 2421-2428. |
SUN Wenjing, WEI Huangzhao, LI Xianru, et al. Engineering and process simulation of auxiliary wastewater treated by catalytic wet air oxidation[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2421-2428. | |
133 | SUN Wenjing, WEI Huangzhao, LI Xianru, et al. Effects of different inorganic anions on equipment material corrosion behaviour in subcritical water oxidation[J]. Corrosion Engineering, Science and Technology, 2018, 53(6): 403-412. |
134 | 程鹏, 慎义勇. 催化湿式氧化技术原理与应用[J]. 环境科学与管理, 2005, 30(5): 79-80. |
CHENG Peng, SHEN Yiyong. Catalytic wet air oxidation technology: Theory, process and application[J]. North Environment, 2005, 30(5): 79-80. |
[1] | 宋兴飞, 贾鑫, 安萍, 韩振南, 许光文. 热化学反应工程科学与技术发展与展望[J]. 化工进展, 2024, 43(7): 3513-3533. |
[2] | 曹景沛, 姚乃瑜, 庞新博, 赵小燕, 赵静平, 蔡士杰, 徐敏, 冯晓博, 伊凤娇. 煤热解研究进展及其发展历程[J]. 化工进展, 2024, 43(7): 3620-3636. |
[3] | 孟卫波, 邢宝林, 程松, 冯来宏, 施凤, 曾会会, 雷思乐, 王雪, 赵赛丹, 曾祥旺. 废塑料催化热解制备碳纳米管及其生长机理[J]. 化工进展, 2024, 43(6): 3468-3478. |
[4] | 马栋, 解桂林, 田治华, 王勤辉, 张建国, 宋慧林, 钟晋. 流化床中煤气化细渣高温还原磷石膏过程[J]. 化工进展, 2024, 43(6): 3479-3491. |
[5] | 陈志强, 夏明巍, 杨海平, 陈应泉, 王贤华, 陈汉平. 木质纤维素基碳量子点合成与调控研究进展[J]. 化工进展, 2024, 43(6): 3100-3113. |
[6] | 黄淄博, 周文静, 魏进家. 基于ReaxFF MD模拟的低阶煤热解产物演化规律及反应机理[J]. 化工进展, 2024, 43(5): 2409-2419. |
[7] | 黄坤, 许明, 吴秀娟, 裴思佳, 刘大伟, 马晓迅, 徐龙. 生物质活性炭的制备与微结构特性调控研究进展[J]. 化工进展, 2024, 43(5): 2475-2493. |
[8] | 冯飞飞, 田斌, 马鹏飞, 韦荐昕, 徐龙, 田原宇, 马晓迅. 木质素分离原理与方法研究进展[J]. 化工进展, 2024, 43(5): 2512-2525. |
[9] | 张宝, 王鹏, 安勇攀, 吕平, 蒋建良. 船舶应用燃料电池系统的设计与试验[J]. 化工进展, 2024, 43(5): 2554-2567. |
[10] | 刘世达, 王海燕, 侯栓弟, 刘忠生, 廖昌建, 王宽岭. 我国石化储罐VOCs安全高效深度减排、回收和热氧化技术进展[J]. 化工进展, 2024, 43(4): 2063-2076. |
[11] | 王红妍, 马子然, 李歌, 马静, 赵春林, 周佳丽, 王磊, 彭胜攀. 燃煤耦合可再生燃料烟气多污染物协同催化脱除研究进展[J]. 化工进展, 2024, 43(4): 1783-1795. |
[12] | 张鹏飞, 严张艳, 任亮, 张奎, 梁家林, 赵广乐, 张璠玢, 胡志海. C |
[13] | 钟彩丽, 莫秋莲, 孙建华, 丁宁宁, 廖丹葵, 孙丽霞. CeO2-In2O3异质结复合材料的制备及其在三乙胺气敏监测中的应用[J]. 化工进展, 2024, 43(3): 1446-1455. |
[14] | 彭程, 徐漪琳, 石钰婧, 张玟, 李宇涛, 王皓冉, 张卫, 占绣萍. 生物炭改性及其对除草剂污染水体和土壤修复的研究进展[J]. 化工进展, 2024, 43(2): 1069-1081. |
[15] | 王一棪, 王达锐, 沈震浩, 何俊琳, 孙洪敏, 杨为民. 全结晶MCM-22分子筛催化剂的制备及其催化性能[J]. 化工进展, 2024, 43(1): 285-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |