化工进展 ›› 2024, Vol. 43 ›› Issue (6): 3100-3113.DOI: 10.16085/j.issn.1000-6613.2023-0737
• 材料科学与技术 • 上一篇
陈志强(), 夏明巍, 杨海平(), 陈应泉, 王贤华, 陈汉平
收稿日期:
2023-05-05
修回日期:
2023-06-10
出版日期:
2024-06-15
发布日期:
2024-07-02
通讯作者:
杨海平
作者简介:
陈志强(1999—),男,硕士研究生,研究方向为动力工程及工程热物理。chenzhiqiang1999@foxmail.com。
基金资助:
CHEN Zhiqiang(), XIA Mingwei, YANG Haiping(), CHEN Yingquan, WANG Xianhua, CHEN Hanping
Received:
2023-05-05
Revised:
2023-06-10
Online:
2024-06-15
Published:
2024-07-02
Contact:
YANG Haiping
摘要:
近年各种木质纤维素类生物质被作为绿色碳源制备碳量子点,并广泛应用于防伪、成像、催化等领域。使用木质纤维素类生物质制备碳量子点可以实现其低成本、大规模、快速制备。然而木质纤维素类生物质结构复杂,木质纤维素基碳量子的合成过程受原料种类、制备过程影响,且其荧光特性与其碳的内核结构与表面形态紧密关联。这些因素使木质纤维素基碳量子点的制备与调控过程难以精准进行,因此探究木质纤维素基碳量子点的形成过程机理和调控提质机制十分重要。鉴于此,本文对木质纤维素基量子点的形成方法、过程影响等进行了综述,分析评价了各种制备与改性方法的优缺点,深入讨论了木质纤维素基碳量子点的合成机理与调控方法,并对其存在的问题以及挑战提出了展望。
中图分类号:
陈志强, 夏明巍, 杨海平, 陈应泉, 王贤华, 陈汉平. 木质纤维素基碳量子点合成与调控研究进展[J]. 化工进展, 2024, 43(6): 3100-3113.
CHEN Zhiqiang, XIA Mingwei, YANG Haiping, CHEN Yingquan, WANG Xianhua, CHEN Hanping. Research progress on synthesis and regulation of lignocellulose-based carbon quantum dots[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3100-3113.
序号 | 合成方法 | 碳源 | 前体 | 结构尺寸/nm | 质量产率/% | 量子产率/% | 参考文献 |
---|---|---|---|---|---|---|---|
1 | 热解碳化-氧化剥离 | 枯叶 | 热解焦炭 | 5~6 | — | 1 | [ |
2 | 热解碳化-氧化剥离 | 椰子壳 | 热解焦炭 | 约1 | — | — | [ |
3 | 水热碳化-氧化剥离 | 稻壳 | 热解焦炭 | 约8 | 10 | — | [ |
4 | 水热碳化-氧化剥离 | 纤维素 木质素 半纤维素 | 水热炭 | 1.6~4.1 | 42.5 | 16.6 | [ |
5 | 热解法 | 西瓜皮 | — | 约2 | — | 7.1 | [ |
6 | 热解法 | 树叶 | — | 约3.7 | — | 16.4 | [ |
7 | 热解法 | 花生壳 | — | 0.4~2.4 | — | 9.91 | [ |
8 | 热解法 | 荔枝皮 | — | 0.4~2.4 | — | — | [ |
9 | 热解法 | 胺化木质素 | — | 4~10 | — | 8.1 | [ |
10 | 热解法 | 芒果叶 | — | 2~10 | — | 18.2 | [ |
11 | 热解法 | 螺旋藻 | — | 约10 | — | 23.5 | [ |
12 | 微波热解 | 松果 | — | 约15.2 | — | 17 | [ |
13 | 水热合成 | 烟叶 | — | 约2.14 | — | 27.9 | [ |
14 | 水热合成 | 淀粉 | 葡萄糖 | 2.25~3.5 | — | 21.7 | [ |
15 | 水热合成 | 榴莲肉 | 小分子糖类 | 2~6 | 6.8 | 79 | [ |
16 | 水热合成 | 氧化纤维素 | — | 1~3.4 | 16.1 | 30.3 | [ |
17 | 水热合成 | 玉米芯 | 半纤维素为主的组分 | 约2.54 | 55 | 1.05 | [ |
18 | 微波水热 | 稻草 | — | 2~3 | — | — | [ |
19 | 微波水热 | 壳聚糖 丙烯酰胺 | — | — | 45.9 | 12.7 | [ |
20 | 酸预处理水热合成 | 碱木质素 | 碱木质素酸解产物 | 约4.76 | 45.8 | 30.6 | [ |
表1 LCDs的碳源与制备方法汇总
序号 | 合成方法 | 碳源 | 前体 | 结构尺寸/nm | 质量产率/% | 量子产率/% | 参考文献 |
---|---|---|---|---|---|---|---|
1 | 热解碳化-氧化剥离 | 枯叶 | 热解焦炭 | 5~6 | — | 1 | [ |
2 | 热解碳化-氧化剥离 | 椰子壳 | 热解焦炭 | 约1 | — | — | [ |
3 | 水热碳化-氧化剥离 | 稻壳 | 热解焦炭 | 约8 | 10 | — | [ |
4 | 水热碳化-氧化剥离 | 纤维素 木质素 半纤维素 | 水热炭 | 1.6~4.1 | 42.5 | 16.6 | [ |
5 | 热解法 | 西瓜皮 | — | 约2 | — | 7.1 | [ |
6 | 热解法 | 树叶 | — | 约3.7 | — | 16.4 | [ |
7 | 热解法 | 花生壳 | — | 0.4~2.4 | — | 9.91 | [ |
8 | 热解法 | 荔枝皮 | — | 0.4~2.4 | — | — | [ |
9 | 热解法 | 胺化木质素 | — | 4~10 | — | 8.1 | [ |
10 | 热解法 | 芒果叶 | — | 2~10 | — | 18.2 | [ |
11 | 热解法 | 螺旋藻 | — | 约10 | — | 23.5 | [ |
12 | 微波热解 | 松果 | — | 约15.2 | — | 17 | [ |
13 | 水热合成 | 烟叶 | — | 约2.14 | — | 27.9 | [ |
14 | 水热合成 | 淀粉 | 葡萄糖 | 2.25~3.5 | — | 21.7 | [ |
15 | 水热合成 | 榴莲肉 | 小分子糖类 | 2~6 | 6.8 | 79 | [ |
16 | 水热合成 | 氧化纤维素 | — | 1~3.4 | 16.1 | 30.3 | [ |
17 | 水热合成 | 玉米芯 | 半纤维素为主的组分 | 约2.54 | 55 | 1.05 | [ |
18 | 微波水热 | 稻草 | — | 2~3 | — | — | [ |
19 | 微波水热 | 壳聚糖 丙烯酰胺 | — | — | 45.9 | 12.7 | [ |
20 | 酸预处理水热合成 | 碱木质素 | 碱木质素酸解产物 | 约4.76 | 45.8 | 30.6 | [ |
序号 | 碳源 | 制备方法 | 改性方式 | 量子产率/% | (激发/发射)/nm | 应用 | 参考文献 |
---|---|---|---|---|---|---|---|
1 | 小白菜 | 水热合成 | 钝化/功能化 | 10.28 | 413/488/678 | 细胞成像 | [ |
2 | 木聚糖 | 水热合成 | 钝化/功能化 | 16.18 | 320/415 | 细胞成像 | [ |
3 | 大米 | 热解法 | 钝化/功能化 | 54 | 340/440 | 细胞成像 | [ |
4 | 青稞 | 水热合成 | 钝化/功能化 | 14.4 | 400/480 | 汞离子检测 | [ |
5 | 悬铃木 | 热解碳化 激光烧蚀 | 钝化/功能化 | 32.4 | 377/447 397/476 | 细胞成像 | [ |
6 | 玫瑰花瓣 | 微波水热 | 磷掺杂 | — | 390/435 | 四环素检测 | [ |
7 | 毛尖茶叶 | 水热合成 | 氮掺杂 | 12.79 | 290/385 | 汞离子检测 | [ |
8 | 柚子皮 | 水热合成 | 氮自掺杂 | 6.9 | 365/444 | 汞离子检测 | [ |
9 | 麦秸 | 水热合成 | 氮自掺杂 | 9.2 | 304/418 364/464 | 细胞成像 | [ |
10 | 纤维素 | 水热合成 | 氮掺杂 | 10.9 | 360/438 | 亚铁离子检测 | [ |
11 | 绿茶叶 | 热解碳化 氧化剥离 | 氮、硫共掺杂 | 14.8 | 320/410 | 吉非替尼检测 | [ |
12 | 预水解木质素 | 水热合成 | 硫掺杂 | 13.5 | 320/410 | 苏丹Ⅰ检测 | [ |
13 | 玉米芯木质素 | 水热合成 | 氮、镁共掺杂 | 46.38 | 405/510 | pH检测 | [ |
14 | 碱木质素 | 水热合成 | 氮、硫共掺杂 | 21 | 380/488 | 过氧化氢检测 | [ |
15 | 碱木质素 | 水热合成 | 氮、硫共掺杂 | 30.5 | 450/520 | 荧光防伪 | [ |
16 | 碱木质素 | 水热合成 | 氮、硼共掺杂 | 7.4 | 300/346 330/428 490/514 | 荧光防伪 | [ |
17 | 木质素 | 水热合成 | 磷掺杂 | — | 310/388 | 光催化 | [ |
表2 LCDs改性方法及光学特性汇总
序号 | 碳源 | 制备方法 | 改性方式 | 量子产率/% | (激发/发射)/nm | 应用 | 参考文献 |
---|---|---|---|---|---|---|---|
1 | 小白菜 | 水热合成 | 钝化/功能化 | 10.28 | 413/488/678 | 细胞成像 | [ |
2 | 木聚糖 | 水热合成 | 钝化/功能化 | 16.18 | 320/415 | 细胞成像 | [ |
3 | 大米 | 热解法 | 钝化/功能化 | 54 | 340/440 | 细胞成像 | [ |
4 | 青稞 | 水热合成 | 钝化/功能化 | 14.4 | 400/480 | 汞离子检测 | [ |
5 | 悬铃木 | 热解碳化 激光烧蚀 | 钝化/功能化 | 32.4 | 377/447 397/476 | 细胞成像 | [ |
6 | 玫瑰花瓣 | 微波水热 | 磷掺杂 | — | 390/435 | 四环素检测 | [ |
7 | 毛尖茶叶 | 水热合成 | 氮掺杂 | 12.79 | 290/385 | 汞离子检测 | [ |
8 | 柚子皮 | 水热合成 | 氮自掺杂 | 6.9 | 365/444 | 汞离子检测 | [ |
9 | 麦秸 | 水热合成 | 氮自掺杂 | 9.2 | 304/418 364/464 | 细胞成像 | [ |
10 | 纤维素 | 水热合成 | 氮掺杂 | 10.9 | 360/438 | 亚铁离子检测 | [ |
11 | 绿茶叶 | 热解碳化 氧化剥离 | 氮、硫共掺杂 | 14.8 | 320/410 | 吉非替尼检测 | [ |
12 | 预水解木质素 | 水热合成 | 硫掺杂 | 13.5 | 320/410 | 苏丹Ⅰ检测 | [ |
13 | 玉米芯木质素 | 水热合成 | 氮、镁共掺杂 | 46.38 | 405/510 | pH检测 | [ |
14 | 碱木质素 | 水热合成 | 氮、硫共掺杂 | 21 | 380/488 | 过氧化氢检测 | [ |
15 | 碱木质素 | 水热合成 | 氮、硫共掺杂 | 30.5 | 450/520 | 荧光防伪 | [ |
16 | 碱木质素 | 水热合成 | 氮、硼共掺杂 | 7.4 | 300/346 330/428 490/514 | 荧光防伪 | [ |
17 | 木质素 | 水热合成 | 磷掺杂 | — | 310/388 | 光催化 | [ |
32 | SHI Yixin, LIU Xin, WANG Meng, et al. Synthesis of N-doped carbon quantum dots from bio-waste lignin for selective irons detection and cellular imaging[J]. International Journal of Biological Macromolecules, 2019, 128: 537-545. |
33 | SINGH Jagpreet, KAUR Sukhmeen, LEE Jechan, et al. Highly fluorescent carbon dots derived from Mangifera indica leaves for selective detection of metal ions[J]. Science of the Total Environment, 2020, 720: 137604. |
34 | AGNOL Lucas Dall, NEVES Roberta Motta, MARASCHIN Marcelo, et al. Green synthesis of Spirulina-based carbon dots for stimulating agricultural plant growth[J]. Sustainable Materials and Technologies, 2021, 30: e00347. |
35 | SANNI Saheed O, MOUNDZOUNGA Theo H G, OSEGHE Ekemena O, et al. One-step green synthesis of water-soluble fluorescent carbon dots and its application in the detection of Cu2+ [J]. Nanomaterials, 2022, 12(6): 958. |
36 | MIAO Hong, WANG Yingyi, YANG Xiaoming. Carbon dots derived from tobacco for visually distinguishing and detecting three kinds of tetracyclines[J]. Nanoscale, 2018, 10(17): 8139-8145. |
37 | CHEN Weifeng, LI Dejiang, TIAN Li, et al. Synthesis of graphene quantum dots from natural polymer starch for cell imaging[J]. Green Chemistry, 2018, 20(19): 4438-4442. |
38 | WANG Gang, GUO Qinglei, CHEN Da, et al. Facile and highly effective synthesis of controllable lattice sulfur-doped graphene quantum dots via hydrothermal treatment of durian[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5750-5759. |
39 | LIU Zhenzhen, CHEN Mingjie, GUO Yanzhu, et al. Oxidized nanocellulose facilitates preparing photoluminescent nitrogen-doped fluorescent carbon dots for Fe3+ ions detection and bioimaging[J]. Chemical Engineering Journal, 2020, 384: 123260. |
40 | WU Ying, LI Yadong, PAN Xiaoqin, et al. Hemicellulose-triggered high-yield synthesis of carbon dots from biomass[J]. New Journal of Chemistry, 2021, 45(12): 5484-5490. |
41 | SI Mengying, ZHANG Jin, HE Yuyang, et al. Synchronous and rapid preparation of lignin nanoparticles and carbon quantum dots from natural lignocellulose[J]. Green Chemistry, 2018, 20(15): 3414-3419. |
42 | LIU Guanxiong, LI Baoqiang, LIU Ying, et al. Rapid and high yield synthesis of carbon dots with chelating ability derived from acrylamide/chitosan for selective detection of ferrous ions[J]. Applied Surface Science, 2019, 487: 1167-1175. |
43 | ZHU Lingli, SHEN Dekui, LIU Qian, et al. Mild acidolysis-assisted hydrothermal carbonization of lignin for simultaneous preparation of green and blue fluorescent carbon quantum dots[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(30): 9888-9898. |
44 | CHEN Wenxin, HU Chaofan, YANG Yunhua, et al. Rapid synthesis of carbon dots by hydrothermal treatment of lignin[J]. Materials, 2016, 9(3): 184. |
45 | JING Shuangshuang, ZHAO Yushuang, SUN Runcang, et al. Facile and high-yield synthesis of carbon quantum dots from biomass-derived carbons at mild condition[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(8): 7833-7843. |
46 | LUO Binhua, YANG Hang, ZHOU Boxun, et al. Facile synthesis of luffa sponge activated carbon fiber based carbon quantum dots with green fluorescence and their application in Cr(Ⅵ) determination[J]. ACS Omega, 2020, 5(10): 5540-5547. |
47 | QIN Fuwei, LI Qiqi, TANG Tingting, et al. Functional carbon dots from a mild oxidation of coal liquefaction residue[J]. Fuel, 2022, 322: 124216. |
48 | WANG Xin, CAO Li, YANG Shengtao, et al. Bandgap-like strong fluorescence in functionalized carbon nanoparticles[J]. Angewandte Chemie (International Ed in English), 2010, 49(31): 5310-5314. |
49 | QIAO Zhen’an, WANG Yifan, GAO Yang, et al. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation[J]. Chemical Communications (Cambridge, England), 2010, 46(46): 8812-8814. |
50 | KANG Chao, HUANG Ying, YANG Hui, et al. A review of carbon dots produced from biomass wastes[J]. Nanomaterials, 2020, 10(11): 2316. |
51 | DEKA Manash Jyoti, DUTTA Parlie, SARMA Sewaljyoti, et al. Carbon dots derived from water hyacinth and their application as a sensor for pretilachlor[J]. Heliyon, 2019, 5(6): e01985. |
52 | REN Ruibo, ZHANG Zeyu, ZHAO Pinhui, et al. Facile and one-step preparation carbon quantum dots from biomass residue and their applications as efficient surfactants[J]. Journal of Dispersion Science and Technology, 2019, 40(5): 627-633. |
53 | LUO Hui, LARI Leonardo, KIM Hyunjeong, et al. Structural evolution of carbon dots during low temperature pyrolysis[J]. Nanoscale, 2022, 14(3): 910-918. |
54 | 王颖. 木质素水热炭化制备碳量子点及其性能研究[D]. 哈尔滨: 东北林业大学, 2022. |
WANG Ying. Properties of carbon quantum dots prepared from lignin via hydrothermal method[D]. Harbin: Northeast Forestry University, 2022. | |
55 | LI Weidong, LIU Yuan, WANG Boyang, et al. Kilogram-scale synthesis of carbon quantum dots for hydrogen evolution, sensing and bioimaging[J]. Chinese Chemical Letters, 2019, 30(12): 2323-2327. |
56 | MENG Weixue, BAI Xue, WANG Boyang, et al. Biomass-derived carbon dots and their applications[J]. Energy & Environmental Materials, 2019, 2(3): 172-192. |
57 | CHAI Xinyu, HE Hui, FAN Hanhan, et al. A hydrothermal-carbonization process for simultaneously production of sugars, graphene quantum dots, and porous carbon from sugarcane bagasse[J]. Bioresource Technology, 2019, 282: 142-147. |
58 | LI Yuehai, LIU Fengjiao, CAI Jiabai, et al. Nitrogen and sulfur co-doped carbon dots synthesis via one step hydrothermal carbonization of green alga and their multifunctional applications[J]. Microchemical Journal, 2019, 147: 1038-1047. |
59 | LIU Yinghui, ZHU Chong, GAO Ying, et al. Biomass-derived nitrogen self-doped carbon dots via a simple one-pot method: Physicochemical, structural, and luminescence properties[J]. Applied Surface Science, 2020, 510: 145437. |
60 | DING Zheyuan, LI Fengfeng, WEN Jialong, et al. Gram-scale synthesis of single-crystalline graphene quantum dots derived from lignin biomass[J]. Green Chemistry, 2018, 20(6): 1383-1390. |
61 | ZHU Lingli, SHEN Dekui, LIU Qian, et al. Sustainable synthesis of bright green fluorescent carbon quantum dots from lignin for highly sensitive detection of Fe3+ ions[J]. Applied Surface Science, 2021, 565: 150526. |
62 | ZHU Lingli, SHEN Dekui, Hong luo KAI. Triple-emission nitrogen and boron co-doped carbon quantum dots from lignin: Highly fluorescent sensing platform for detection of hexavalent chromium ions[J]. Journal of Colloid and Interface Science, 2022, 617: 557-567. |
63 | AI Lin, YANG Yisen, WANG Boyang, et al. Insights into photoluminescence mechanisms of carbon dots: Advances and perspectives[J]. Science Bulletin, 2021, 66(8): 839-856. |
64 | Vasilica ŢUCUREANU, MATEI Alina, AVRAM Andrei Marius. FTIR spectroscopy for carbon family study[J]. Critical Reviews in Analytical Chemistry, 2016, 46(6): 502-520. |
65 | ZUO Pengli, LU Xiuhua, SUN Zhigang, et al. A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots[J]. Microchimica Acta, 2016, 183(2): 519-542. |
66 | ZHU Lingli, SHEN Dekui, WU Chunfei, et al. State-of-the-art on the preparation, modification, and application of biomass-derived carbon quantum dots[J]. Industrial & Engineering Chemistry Research, 2020, 59(51): 22017-22039. |
67 | ZHANG Hao, YOU Jiajian, WANG Jiahui, et al. Highly luminescent carbon dots as temperature sensors and “off-on” sensing of Hg2+ and biothiols[J]. Dyes and Pigments, 2020, 173: 107950. |
68 | 程朝歌. 生物质纤维素基碳量子点的功能化制备及应用研究[D]. 上海: 东华大学, 2019. |
CHENG Chaoge. Functional preparation and applications of biomass cellulose-based carbon quantum dots[D]. Shanghai: Donghua University, 2019. | |
69 | YANG Zhengchun, WANG Miao, YONG Anna Marie, et al. Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate[J]. Chemical Communications, 2011, 47(42): 11615-11617. |
70 | Mahasin Alam SK, ANANTHANARAYANAN Arundithi, HUANG Lin, et al. Revealing the tunable photoluminescence properties of graphene quantum dots[J]. Journal of Materials Chemistry C, 2014, 2(34): 6954-6960. |
71 | PEI Yixian, CHANG Anyi, LIU Xuan, et al. Nitrogen-doped carbon dots from Kraft lignin waste with inorganic acid catalyst and their brain cell imaging applications[J]. AIChE Journal, 2021, 67(5): e17132. |
72 | WANG Ruibin, GUO Ziyu, LIU Yuqian, et al. Concentration-dependent emissive lignin-derived graphene quantum dots for bioimaging and anti-counterfeiting[J]. Diamond and Related Materials, 2021, 117: 108482. |
73 | CHEN Menglin, ZHAI Jichao, AN Yulong, et al. Solvent-free pyrolysis strategy for the preparation of biomass carbon dots for the selective detection of Fe3+ ions[J]. Frontiers in Chemistry, 2022, 10: 940398. |
74 | Peggy Zhen Zhen NGU, CHIA Stephanie Pei Phing, FONG Jessica Fung Yee, et al. Synthesis of carbon nanoparticles from waste rice husk used for the optical sensing of metal ions[J]. New Carbon Materials, 2016, 31(2): 135-143. |
75 | 李敏, 徐梦, 程朝歌, 等. 氨基功能化荧光碳量子点的制备及对铜离子的检测[J]. 材料导报, 2017, 31(S2): 157-160. |
LI Min, XU Meng, CHENG Chaoge, et al. Preparation of amine-functionalized fluorescent carbon quantum dots and its application for cooper ions detection[J]. Materials Review, 2017, 31(S2): 157-160. | |
76 | LI Feng, YANG Dayong, XU Huaping. Non-metal-heteroatom-doped carbon dots: Synthesis and properties[J]. Chemistry: A European Journal, 2019, 25(5): 1165-1176. |
77 | CUI Yong, LIU Rongjun, YE Fanggui, et al. Single-excitation, dual-emission biomass quantum dots: Preparation and application for ratiometric fluorescence imaging of coenzyme A in living cells[J]. Nanoscale, 2019, 11(19): 9270-9275. |
78 | LIANG Zicheng, ZENG Lei, CAO Xiaodong, et al. Sustainable carbon quantum dots from forestry and agricultural biomass with amplified photoluminescence by simple NH4OH passivation[J]. Journal of Materials Chemistry C, 2014, 2(45): 9760-9766. |
79 | KALITA Hemen, MOHAPATRA Jeotikanta, PRADHAN Lina, et al. Efficient synthesis of rice based graphene quantum dots and their fluorescent properties[J]. RSC Advances, 2016, 6(28): 23518-23524. |
80 | XIE Yadian, CHENG Dandan, LIU Xingliang, et al. Green hydrothermal synthesis of N-doped carbon dots from biomass highland barley for the detection of Hg2+ [J]. Sensors, 2019, 19(14): 3169. |
81 | REN Xin, ZHANG Fang, GUO Bingpeng, et al. Synthesis of N-doped micropore carbon quantum dots with high quantum yield and dual-wavelength photoluminescence emission from biomass for cellular imaging[J]. Nanomaterials, 2019, 9(4): 495. |
82 | FENG Yuanjiao, ZHONG Dan, MIAO Hong, et al. Carbon dots derived from rose flowers for tetracycline sensing[J]. Talanta, 2015, 140: 128-133. |
83 | XU Ying, FAN Yao, ZHANG Lei, et al. A novel enhanced fluorescence method based on multifunctional carbon dots for specific detection of Hg2+ in complex samples[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 220: 117109. |
84 | LU Wenbo, QIN Xiaoyun, LIU Sen, et al. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(Ⅱ) ions[J]. Analytical Chemistry, 2012, 84(12): 5351-5357. |
85 | YUAN Ming, ZHONG Ruibo, GAO Haiyang, et al. One-step, green, and economic synthesis of water-soluble photoluminescent carbon dots by hydrothermal treatment of wheat straw, and their bio-applications in labeling, imaging, and sensing[J]. Applied Surface Science, 2015, 355: 1136-1144. |
86 | SU Hui, BI Zhihao, NI Yong, et al. One-pot degradation of cellulose into carbon dots and organic acids in its homogeneous aqueous solution[J]. Green Energy & Environment, 2019, 4(4): 391-399. |
87 | HU Zhixiong, JIAO Xinyue, XU Li. The N, S co-doped carbon dots with excellent luminescent properties from green tea leaf residue and its sensing of gefitinib[J]. Microchemical Journal, 2020, 154: 104588. |
88 | YANG Xiaoxu, GUO Yanzhu, LIANG Shuang, et al. Preparation of sulfur-doped carbon quantum dots from lignin as a sensor to detect Sudan Ⅰ in an acidic environment[J]. Journal of Materials Chemistry B, 2020, 8(47): 10788-10796. |
89 | YANG Xiaoxu, HOU Shiyao, CHU Tingting, et al. Preparation of magnesium, nitrogen-codoped carbon quantum dots from lignin with bright green fluorescence and sensitive pH response[J]. Industrial Crops and Products, 2021, 167: 113507. |
90 | WANG Ruibin, XIA Guangjie, ZHONG Wentao, et al. Direct transformation of lignin into fluorescence-switchable graphene quantum dots and their application in ultrasensitive profiling of a physiological oxidant[J]. Green Chemistry, 2019, 21(12): 3343-3352. |
91 | ZHU Lingli, SHEN Dekui, WANG Qi, et al. Green synthesis of tunable fluorescent carbon quantum dots from lignin and their application in anti-counterfeit printing[J]. ACS Applied Materials & Interfaces, 2021, 13(47): 56465-56475. |
92 | GU Xuexin, ZHU Lingli, SHEN Dekui, et al. Facile synthesis of multi-emission nitrogen/boron co-doped carbon dots from lignin for anti-counterfeiting printing[J]. Polymers, 2022, 14(14): 2779. |
93 | LIU Wei, NING Chenxi, SANG Ranran, et al. Lignin-derived graphene quantum dots from phosphous acid-assisted hydrothermal pretreatment and their application in photocatalysis[J]. Industrial Crops and Products, 2021, 171: 113963. |
94 | ZHANG Baohua, LIU Yijian, REN Muqing, et al. Sustainable synthesis of bright green fluorescent nitrogen-doped carbon quantum dots from alkali lignin[J]. ChemSusChem, 2019, 12(18): 4202-4210. |
95 | MANIOUDAKIS John, VICTORIA Florence, THOMPSON Christine A, et al. Effects of nitrogen-doping on the photophysical properties of carbon dots[J]. Journal of Materials Chemistry C, 2019, 7(4): 853-862. |
96 | LI Xiaoming, ZHANG Shengli, KULINICH Sergei A, et al. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection[J]. Scientific Reports, 2014, 4: 4976. |
97 | KWON Woosung, Sungan DO, KIM Ji Hee, et al. Control of photoluminescence of carbon nanodots via surface functionalization using para-substituted anilines[J]. Scientific Reports, 2015, 5: 12604. |
98 | LIU Liqin, LI Yuanfang, ZHAN Lei, et al. One-step synthesis of fluorescent hydroxyls-coated carbon dots with hydrothermal reaction and its application to optical sensing of metal ions[J]. Science China Chemistry, 2011, 54(8): 1342-1347. |
99 | PAN Jiahong, ZHENG Zengyao, YANG Jianying, et al. A novel and sensitive fluorescence sensor for glutathione detection by controlling the surface passivation degree of carbon quantum dots[J]. Talanta, 2017, 166: 1-7. |
100 | MIAO Shihai, LIANG Kang, ZHU Junjie, et al. Hetero-atom-doped carbon dots: Doping strategies, properties and applications[J]. Nano Today, 2020, 33: 100879. |
101 | 朱锋利, 杨玲, 王亚虎, 等. 掺杂型碳量子点的制备及其在重金属离子检测中的应用[J]. 分析化学, 2023, 51(1): 22-33. |
ZHU Fengli, YANG Ling, WANG Yahu, et al. Preparation of doped carbon quantum dots and its application in detection of heavy metal ions[J]. Chinese Journal of Analytical Chemistry, 2023, 51(1): 22-33. | |
102 | LIAO Xiufen, CHEN Congjin, ZHOU Ruxia, et al. Comparison of N-doped carbon dots synthesized from the main components of plants including cellulose, lignin, and xylose: Characterized, fluorescence mechanism, and potential applications[J]. Dyes and Pigments, 2020, 183: 108725. |
103 | LIU Yinghui, YONG Chao, TONG Bihai, et al. Modification of carbon dots derived from biomass by exogenous nitrogen doping: Action mechanism and difference analysis[J]. Optical Materials, 2022, 134: 113144. |
104 | HE Chuang, XU Peng, ZHANG Xuanhan, et al. The synthetic strategies, photoluminescence mechanisms and promising applications of carbon dots: Current state and future perspective[J]. Carbon, 2022, 186: 91-127. |
105 | ZHUANG Jiandong, REN Shiming, ZHU Bowen, et al. Lignin-based carbon dots as high-performance support of Pt single atoms for photocatalytic H2 evolution[J]. Chemical Engineering Journal, 2022, 446: 136873. |
106 | CHAO Weixiang, LI Yudong, SUN Xiaohan, et al. Enhanced wood-derived photothermal evaporation system by in situ incorporated lignin carbon quantum dots[J]. Chemical Engineering Journal, 2021, 405: 126703. |
107 | MIAO Xiang, QU Dan, YANG Dongxue, et al. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization[J]. Advanced Materials (Deerfield Beach, Fla), 2018, 30(1): 1704740. |
108 | Bowen LYU, LI Huijun, XUE Fengfeng, et al. Facile, gram-scale and eco-friendly synthesis of multi-color graphene quantum dots by thermal-driven advanced oxidation process[J]. Chemical Engineering Journal, 2020, 388: 124285. |
1 | SUN Yaping, ZHOU Bing, LIN Yi, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society, 2006, 128(24): 7756-7757. |
2 | XU Xiaoyou, Robert RAY, GU Yunlong, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004, 126(40): 12736-12737. |
3 | 张文博, 石建丽, 马建中, 等. 荧光碳量子点及其在防伪中的应用[J]. 材料导报, 2022, 36(7): 139-149. |
ZHANG Wenbo, SHI Jianli, MA Jianzhong, et al. Fluorescent carbon quantum dots and their applications in anti-counterfeiting[J]. Materials Review, 2022, 36(7): 139-149. | |
4 | JEONG Yoon, MOON Kyunghwan, JEONG Soohyun, et al. Converting waste papers to fluorescent carbon dots in the recycling process without loss of ionic liquids and bioimaging applications[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4510-4515. |
5 | ZHU Lingyan, LI Dongbing, LU Heng, et al. Lignin-based fluorescence-switchable graphene quantum dots for Fe3+ and ascorbic acid detection[J]. International Journal of Biological Macromolecules, 2022, 194: 254-263. |
6 | LI Xiaoming, RUI Muchen, SONG Jizhong, et al. Carbon and graphene quantum dots for optoelectronic and energy devices: A review[J]. Advanced Functional Materials, 2015, 25(31): 4929-4947. |
7 | GAO Qichao, YUAN Zhimin, YANG Guihua, et al. Enhancement of lignin-based carbon quantum dots from poplar pre-hydrolysis liquor on photocatalytic CO2 reduction via TiO2 nanosheets[J]. Industrial Crops and Products, 2021, 160: 113161. |
8 | 张睿哲, 李可可, 张凯博, 等. 煤基碳量子点/氮化碳复合材料制备及其光催化还原CO2性能[J]. 化工学报, 2020, 71(6): 2788-2794. |
ZHANG Ruizhe, LI Keke, ZHANG Kaibo, et al. Coal-based carbon quantum dots/carbon nitride composites for photocatalytic CO2 reduction[J]. CIESC Journal, 2020, 71(6): 2788-2794. | |
9 | DONG Yongqiang, CHEN Congqiang, ZHENG Xinting, et al. One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black[J]. Journal of Materials Chemistry, 2012, 22(18): 8764-8766. |
10 | SHI Wenquan, HAN Qiurui, WU Jiajia, et al. Synthesis mechanisms, structural models, and photothermal therapy applications of top-down carbon dots from carbon powder, graphite, graphene, and carbon nanotubes[J]. International Journal of Molecular Sciences, 2022, 23(3): 1456. |
11 | KACZMAREK Agata, HOFFMAN Jacek, MORGIEL Jerzy, et al. Luminescent carbon dots synthesized by the laser ablation of graphite in polyethylenimine and ethylenediamine[J]. Materials, 2021, 14(4): 729. |
12 | 刘标. 基于二维相关红外光谱的生物质中低温热解机理研究[D]. 武汉: 华中科技大学, 2018. |
LIU Biao. Mechanisms of lignocellulosic biomass pyrolysis at low temperature with generalized two-dimensional correlation Infrared spectroscopy[D]. Wuhan: Huazhong University of Science and Technology, 2018. | |
13 | JOSELIN HERBERT G M, UNNI KRISHNAN A. Quantifying environmental performance of biomass energy[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 292-308. |
14 | PRASANNAN Adhimoorthy, IMAE Toyoko. One-pot synthesis of fluorescent carbon dots from orange waste peels[J]. Industrial & Engineering Chemistry Research, 2013, 52(44): 15673-15678. |
15 | SACHDEV Abhay, GOPINATH P. Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents[J]. Analyst, 2015, 140(12): 4260-4269. |
16 | THANGARAJ Baskar, SOLOMON Pravin Raj, CHUANGCHOTE Surawut, et al. Biomass-derived carbon quantum dots: A review. Part 1: Preparation and characterization[J]. ChemBioEng Reviews, 2021, 8(4): 265-301. |
17 | LIU Haochi, DING Jie, ZHANG Kun, et al. Construction of biomass carbon dots based fluorescence sensors and their applications in chemical and biological analysis[J]. TrAC Trends in Analytical Chemistry, 2019, 118: 315-337. |
18 | ZHANG Xinyue, JIANG Mingyue, NIU Na, et al. Natural-product-derived carbon dots: From natural products to functional materials[J]. ChemSusChem, 2018, 11(1): 11-24. |
19 | 高雪, 孙靖, 刘晓, 等. 碳量子点的合成、性质及应用[J]. 化工进展, 2017, 36(5): 1734-1742. |
GAO Xue, SUN Jing, LIU Xiao, et al. Carbon quantum dots: Synthesis, properties and applications[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1734-1742. | |
20 | DONG Yongqiang, WANG Ruixue, LI Hao, et al. Polyamine-functionalized carbon quantum dots for chemical sensing[J]. Carbon, 2012, 50(8): 2810-2815. |
21 | WANG Hui, ZHUANG Jianqin, VELADO David, et al. Near-infrared- and visible-light-enhanced metal-free catalytic degradation of organic pollutants over carbon-dot-based carbocatalysts synthesized from biomass[J]. ACS Applied Materials & Interfaces, 2015, 7(50): 27703-27712. |
22 | CUI Xiaobiao, WANG Yinglin, LIU Jie, et al. Dual functional N- and S-co-doped carbon dots as the sensor for temperature and Fe3+ ions[J]. Sensors and Actuators B: Chemical, 2017, 242: 1272-1280. |
23 | CAGLAYAN Mustafa Oguzhan, MINDIVAN Ferda, Samet ŞAHIN. Sensor and bioimaging studies based on carbon quantum dots: The green chemistry approach[J]. Critical Reviews in Analytical Chemistry, 2022, 52(4): 814-847. |
24 | SURYAWANSHI Anil, BISWAL Mandakini, MHAMANE Dattakumar, et al. Large scale synthesis of graphene quantum dots (GQDs) from waste biomass and their use as an efficient and selective photoluminescence on-off-on probe for Ag+ ions[J]. Nanoscale, 2014, 6(20): 11664-11670. |
25 | BARVIN Rasul Khan Barsana, PRAKASH Periakaruppan, GANESH Venkatachalam, et al. Highly selective and sensitive sensing of toxic mercury ions utilizing carbon quantum dot-modified glassy carbon electrode[J]. International Journal of Environmental Research, 2019, 13(6): 1015-1023. |
26 | WANG Zhaofeng, LIU Jingjing, WANG Weilin, et al. Photoluminescent carbon quantum dot grafted silica nanoparticles directly synthesized from rice husk biomass[J]. Journal of Materials Chemistry B, 2017, 5(24): 4679-4689. |
27 | ZHAO Yushuang, JING Shuangshuang, PENG Xinwen, et al. Synthesizing green carbon dots with exceptionally high yield from biomass hydrothermal carbon[J]. Cellulose, 2020, 27(1): 415-428. |
28 | ZHOU Jiaojiao, SHENG Zonghai, HAN Heyou, et al. Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source[J]. Materials Letters, 2012, 66(1): 222-224. |
29 | ZHU Liangliang, YIN Yongjin, WANG Caifeng, et al. Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding[J]. Journal of Materials Chemistry C, 2013, 1(32): 4925-4932. |
30 | XUE Mingyue, ZHAN Zhihua, ZOU Mengbing, et al. Green synthesis of stable and biocompatible fluorescent carbon dots from peanut shells for multicolor living cell imaging[J]. New Journal of Chemistry, 2016, 40(2): 1698-1703. |
31 | XUE Mingyue, ZHAO Jingjin, ZHAN Zhihua, et al. Dual functionalized natural biomass carbon dots from lychee exocarp for cancer cell targetable near-infrared fluorescence imaging and photodynamic therapy[J]. Nanoscale, 2018, 10(38): 18124-18130. |
[1] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[2] | 曹瑾, 朱玲莉, 沈德魁. 生物质基碳量子点的绿色合成及其LED应用[J]. 化工进展, 2023, 42(11): 5852-5860. |
[3] | 章萍萍, 丁书海, 高晶晶, 赵敏, 俞海祥, 刘玥宏, 谷麟. 碳量子点修饰半导体复合光催化剂降解水中有机污染物[J]. 化工进展, 2023, 42(10): 5487-5500. |
[4] | 黄岳峰, 马丽莎, 张莉莉, 王志国. 木质纤维素复合生物质薄膜材料的功能化应用研究进展[J]. 化工进展, 2022, 41(9): 4840-4854. |
[5] | 韩明阳, 乔慧, 付佳铭, 马泽雯, 王妍, 欧阳嘉. 非水溶剂预处理木质纤维原料研究进展[J]. 化工进展, 2022, 41(8): 4086-4097. |
[6] | 杨晓芳, 魏铭, 孙力. 聚丙烯酰胺/碳量子点/氧化石墨烯复合水凝胶制备及其性能分析[J]. 化工进展, 2021, 40(S2): 301-308. |
[7] | 董艳梅, 安艳霞, 马阳阳, 张剑, 李梦琴. 深度共熔溶剂预处理木质纤维素生物质研究进展[J]. 化工进展, 2021, 40(3): 1594-1603. |
[8] | 何源, 许磊, 夏仡, 王学谦, 刚瑞奇, 王郎郎. 碳量子点修饰g-C3N4/SnO2复合材料光催化性能[J]. 化工进展, 2021, 40(2): 908-916. |
[9] | 曹运齐,解先利,郭振强,王严严,刘云云,吴蔼民,赵于. 木质纤维素预处理技术研究进展[J]. 化工进展, 2020, 39(2): 489-495. |
[10] | 李浩, 邢婉茹, 许国超, 倪晔. 低共熔溶剂和次氯酸钠组合预处理秸秆及在丁醇发酵中的应用[J]. 化工进展, 2020, 39(12): 5211-5218. |
[11] | 高学霞, 周希, 刘美红, 马玉峰, 王基夫, 王春鹏, 储富祥. 碳量子点/Fe3+复合材料用于生物传感检测抗坏血酸[J]. 化工进展, 2019, 38(07): 3326-3331. |
[12] | 曹愉酒, 张兴. Fenton试剂去除木质纤维素典型酸解产物[J]. 化工进展, 2018, 37(11): 4265-4272. |
[13] | 刘清浩, 何艳飞, 梁丽娜, 念继鹏, 胡志勇, 郭金春, 梁栋, 刘红彦. 基于氮掺杂碳量子点的荧光微球制备和Fe3+检测[J]. 化工进展, 2018, 37(10): 3936-3942. |
[14] | 唐瑞琪, 熊亮, 程诚, 赵心清, 白凤武. 纤维素乙醇生产重组酿酒酵母菌株的构建与优化研究进展[J]. 化工进展, 2018, 37(08): 3119-3128. |
[15] | 孙明荣, 刘晓欣, 谢文华, 宗保宁, 郜亮. 生物炼制经济的发展思路和展望[J]. 化工进展, 2017, 36(09): 3250-3256. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |