1 |
蒋博龙, 崔艳艳, 史顺杰, 等. 双金属氮化物NiMoN析氢催化剂制备及其电解海水析氢性能的研究[J]. 化学学报, 2022, 80(10): 1394-1400.
|
|
JIANG Bolong, CUI Yanyan, SHI Shunjie, et al. Preparation of highly active transition bimetallic nitride NiMoN hydrogen evolution reaction(HER) catalyst and its performance study in seawater electrolysis[J]. Acta Chimica Sinica, 2022, 80(10): 1394-1400.
|
2 |
HAO Jinbo, MA Yirong, JIA Baonan, et al. Defect engineering in two-dimensional Janus pentagonal noble metal sulfide MXY (M=Pd, Pt; X, Y—S, Se, Te; X≠Y) materials for highly efficient electrocatalytic hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2024, 62: 462-472.
|
3 |
LIU Jinhua, ZHENG Jie, NIU Mang, et al. Dendritic boron and nitrogen doped high-entropy alloy porous carbon fibers for high-efficiency hydrogen evolution reaction[J]. iScience, 2024, 27(5): 109616.
|
4 |
SMITKOVA Miroslava, František JANÍČEK, RICCARDI Juri. Life cycle analysis of processes for hydrogen production[J]. International Journal of Hydrogen Energy, 2011, 36(13): 7844-7851.
|
5 |
POIMENIDIS Ioannis A, LYKAKI Maria, PAPAKOSTA Nikandra, et al. One-step electrodeposition of NiS heterostructures on nickel foam electrodes for hydrogen evolution reaction: On the impact of thiourea content[J]. Results in Chemistry, 2023, 6: 101216.
|
6 |
JIANG Bolong, LI Jiayou, CUI Yanyan, et al. Controlled growth of highly active NiMoN(100)-decorated porous N-doped carbon nanotubes on carbon cloth as efficient electrodes for alkaline media and seawater electrolysis[J]. Journal of Alloys and Compounds, 2023, 958: 170371.
|
7 |
LI Qin, ZHANG Qiong, YE Qianjin, et al. CoRu alloy synergistically co-catalyzes effective photocatalytic hydrogen evolution reaction of carbon nitride[J]. Applied Surface Science, 2024, 655: 159548.
|
8 |
KHAIRY Mohamed, MAHMOUD Khaled G. In-situ growth of nanostructured nickel sulphides on nickel foam platform for boosting the electrocatalytic activity of overall water splitting[J]. Journal of Alloys and Compounds, 2023, 935: 168056.
|
9 |
ZHANG Yuting, LI Binbin, ZHOU Anhui, et al. Fe-Ni-doped metal-organic framework derived CoSe2 as an efficient and stable electrocatalyst for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2024, 65: 186-195.
|
10 |
KIM Hee Jin, KIM Ho Young, Jinwhan JOO, et al. Recent advances in non-precious group metal-based catalysts for water electrolysis and beyond[J]. Journal of Materials Chemistry A, 2022, 10(1): 50-88.
|
11 |
ZHAO Lin, LI Shubo, YANG Hongshun. Recent advances on research of electrolyzed water and its applications[J]. Current Opinion in Food Science, 2021, 41: 180-188.
|
12 |
YAO Dongxue, GU Lingling, ZUO Bin, et al. A strategy for preparing high-efficiency and economical catalytic electrodes toward overall water splitting[J]. Nanoscale, 2021, 13(24): 10624-10648.
|
13 |
ZHU Jiawei, CHI Jingqi, CUI Tong, et al. F doping and P vacancy engineered FeCoP nanosheets for efficient and stable seawater electrolysis at large current density[J]. Applied Catalysis B: Environmental, 2023, 328: 122487.
|
14 |
GUO Peixi, MUSHARAVATI Farayi, DASTJERDI Sajad Maleki. Design and transient-based analysis of a power to hydrogen (P2H2) system for an off-grid zero energy building with hydrogen energy storage[J]. International Journal of Hydrogen Energy, 2022, 47(62): 26515-26536.
|
15 |
BALAJI Rengarajan, KANNAN Balasingam Suresh, LAKSHMI Jothinathan, et al. An alternative approach to selective sea water oxidation for hydrogen production[J]. Electrochemistry Communications, 2009, 11(8): 1700-1702.
|
16 |
FAHAD ALDOSARI Obaid, HUSSAIN Ijaz, MALAIBARI Zuhair. Emerging trends of electrocatalytic technologies for renewable hydrogen energy from seawater: Recent advances, challenges, and techno-feasible assessment[J]. Journal of Energy Chemistry, 2023, 80: 658-688.
|
17 |
AMIKAM Gidon, NATIV Paz, GENDEL Youri. Chlorine-free alkaline seawater electrolysis for hydrogen production[J]. International Journal of Hydrogen Energy, 2018, 43(13): 6504-6514.
|
18 |
ZENG Hongliang, JI Yuan, WEN Jinfeng, et al. Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook[J]. Chinese Chemical Letters, 2024: 109686.
|
19 |
JIANG Weiyan, GAO Zihan, SHEN Miao, et al. Molten salt N-modified Mo2CT x as a non-precious metal catalyst for efficient hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2024, 57: 1-7.
|
20 |
ZHANG Wei, HAN Ning, LUO Jiangshui, et al. Critical role of phosphorus in hollow structures cobalt-based phosphides as bifunctional catalysts for water splitting[J]. Small, 2022, 18(4): e2103561.
|
21 |
ZHAO Yufei, ZHANG Jinqiang, XIE Yuhan, et al. Constructing atomic heterometallic sites in ultrathin nickel-incorporated cobalt phosphide nanosheets via a boron-assisted strategy for highly efficient water splitting[J]. Nano Letters, 2021, 21(1): 823-832.
|
22 |
GOPI Sivalingam, SELVAMANI Vadivel, YUN Kyusik. MoS2 decoration followed by P inclusion over Ni-Co bimetallic metal-organic framework-derived heterostructures for water splitting[J]. Inorganic Chemistry, 2021, 60(14): 10772-10780.
|
23 |
SHUAI Chao, MO Zunli, NIU Xiaohui, et al. Nickel/cobalt bimetallic phosphides derived metal-organic frameworks as bifunctional electrocatalyst for oxygen and hydrogen evolution reaction[J]. Journal of Alloys and Compounds, 2020, 847: 156514.
|
24 |
王岩, 张树聪, 汪兴坤, 等. 电解海水析氢反应过渡金属基催化剂的研究进展[J]. 应用化学, 2022, 39(6): 927-940.
|
|
WANG Yan, ZHANG Shucong, WANG Xingkun, et al. Research progress on transition metal-based catalysts for hydrogen evolution reaction via seawater electrolysis[J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 927-940.
|
25 |
YE Min, HU Feng, YU Deshuang, et al. Hierarchical FeC/MnO2 composite with in situ grown CNTs as an advanced trifunctional catalyst for water splitting and metal-air batteries[J]. Ceramics International, 2021, 47(13): 18424-18432.
|
26 |
LI Haoyi, CHEN Shuangming, ZHANG Ying, et al. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting[J]. Nature Communications, 2018, 9(1): 2452.
|
27 |
LI Guoqing, ZHANG Du, YU Yifei, et al. Activating MoS2 for pH-universal hydrogen evolution catalysis[J]. Journal of the American Chemical Society, 2017, 139(45): 16194-16200.
|
28 |
YANG Yaqing, ZHANG Kai, LIN Huanlei, et al. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting[J]. ACS Catalysis, 2017, 7(4): 2357-2366.
|
29 |
ZHANG Ruizhi, ZHU Zhaoqiang, LIN Jiahao, et al. Hydrolysis assisted in situ growth of 3D hierarchical FeS/NiS/nickel foam electrode for overall water splitting[J]. Electrochimica Acta, 2020, 332: 135534.
|
30 |
SU Hui, JIANG Jing, SONG Shaojia, et al. Recent progress on design and applications of transition metal chalcogenide-associated electrocatalysts for the overall water splitting[J]. Chinese Journal of Catalysis, 2023, 44: 7-49.
|
31 |
LUO Xu, JI Pengxia, WANG Pengyan, et al. Interface engineering of hierarchical branched Mo-doped Ni3S2/Ni x P y hollow heterostructure nanorods for efficient overall water splitting[J]. Advanced Energy Materials, 2020, 10(17): 1903891.
|
32 |
RILEY John F. Ferroan carrollites, cobaltian violarites, and other members of the linnaeite group: (Co, Ni, Fe, Cu)3S4 [J]. Mineralogical Magazine, 1980, 43(330): 733-739.
|
33 |
董永利, 王佩, 梁雨梦, 等. Mo-Ni3S4复合材料的合成及其析氢性能[J]. 黑龙江科技大学学报, 2022, 32(4): 435-441.
|
|
DONG Yongli, WANG Pei, LIANG Yumeng, et al. Synthesis and hydrogen evolution properties of Mo-Ni3S4 composites[J]. Journal of Heilongjiang University of Science and Technology, 2022, 32(4): 435-441.
|
34 |
QIAO Bo, YAN Haiqing, WANG Chaonan, et al. Ni x S y /NF composites assembled by sulfidation of nickel foam (NF) for highly effective capture of iodine[J]. Chemical Engineering Journal, 2024, 479: 147864.
|