化工进展 ›› 2025, Vol. 44 ›› Issue (1): 445-464.DOI: 10.16085/j.issn.1000-6613.2023-2255
王宁1,2,3(), 陆诗建1,2,3(
), 刘玲1,2,3(
), 梁静3, 刘苗苗1,2,3, 孙梦圆1,2,3, 康国俊1,2,3
收稿日期:
2023-12-23
修回日期:
2024-03-01
出版日期:
2025-01-15
发布日期:
2025-02-13
通讯作者:
陆诗建,刘玲
作者简介:
王宁(1997—),女,硕士研究生,研究方向为CCUS技术。E-mail:ts21040014a31@cumt.edu.cn。
基金资助:
WANG Ning1,2,3(), LU Shijian1,2,3(
), LIU Ling1,2,3(
), LIANG Jing3, LIU Miaomiao1,2,3, SUN Mengyuan1,2,3, KANG Guojun1,2,3
Received:
2023-12-23
Revised:
2024-03-01
Online:
2025-01-15
Published:
2025-02-13
Contact:
LU Shijian, LIU Ling
摘要:
人类工业活动造成大气中CO2含量逐渐增加,形成温室效应,导致全球气候异常。碳捕集、利用与封存(CCUS)技术,尤其是CO2化学吸收过程,是实现大规模CO2减排和遏制全球气候变化的最有效的方法之一。然而,由于CO2捕集技术的高能耗高成本是导致CCUS技术无法大规模推广和商业化应用的瓶颈之一。近年来,胺吸收剂催化再生技术作为一种具有大规模应用潜力的CO2捕集节能新技术引起了国内外研究者的广泛关注。本文综述了胺吸收体系中CO2催化解吸再生技术的研究现状,详细介绍了非均相催化剂的种类、特点、优缺点和面临的挑战,阐述了胺溶液中CO2催化解吸反应机理以及Lewis酸、Brønsted酸和碱性活性位点等在催化反应过程中的作用机制,总结了影响催化剂解吸再生性能的主要因素。最后,全面分析了催化解吸再生技术用于燃烧后CO2捕集的现状,并对未来的研究趋势进行了展望。
中图分类号:
王宁, 陆诗建, 刘玲, 梁静, 刘苗苗, 孙梦圆, 康国俊. 胺吸收体系中CO2催化解吸再生技术的研究进展[J]. 化工进展, 2025, 44(1): 445-464.
WANG Ning, LU Shijian, LIU Ling, LIANG Jing, LIU Miaomiao, SUN Mengyuan, KANG Guojun. Research progress of catalytic regeneration for energy-efficient CO2 capture in amine absorption system[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 445-464.
1 | Se-Young OH, YUN Seokwon, KIM Jin-Kuk. Process integration and design for maximizing energy efficiency of a coal-fired power plant integrated with amine-based CO2 capture process[J]. Applied Energy, 2018, 216: 311-322. |
2 | WANG Peng, GUO Yafei, ZHAO Chuanwen, et al. Biomass derived wood ash with amine modification for post-combustion CO2 capture[J]. Applied Energy, 2017, 201: 34-44. |
3 | LIANG Zhiwu, FU Kaiyun, IDEM Raphael, et al. Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents[J]. Chinese Journal of Chemical Engineering, 2016, 24(2): 278-288. |
4 | CHENG Chin-hung, LI Kangkang, YU Hai, et al. Amine-based post-combustion CO2 capture mediated by metal ions: Advancement of CO2 desorption using copper ions[J]. Applied Energy, 2018, 211: 1030-1038. |
5 | BARZAGLI Francesco, GIORGI Claudia, MANI Fabrizio, et al. Reversible carbon dioxide capture by aqueous and non-aqueous amine-based absorbents: A comparative analysis carried out by 13C NMR spectroscopy[J]. Applied Energy, 2018, 220: 208-219. |
6 | 李晓静. 固体材料对AEE水溶液解吸CO2过程的强化[D]. 大连: 大连理工大学, 2020. |
LI Xiaojing. Enhancement of CO2 desorption from 2-(2-aminoethylamine) ethanol aqueous solution by solid materials[D]. Dalian: Dalian University of Technology, 2020. | |
7 | ZHANG Weidong, JIN Xianhang, TU Weiwei, et al. Development of MEA-based CO2 phase change absorbent[J]. Applied Energy, 2017, 195: 316-323. |
8 | Se-Young OH, BINNS Michael, CHO Habin, et al. Energy minimization of MEA-based CO2 capture process[J]. Applied Energy, 2016, 169: 353-362. |
9 | ZHANG Zhien, BORHANI Tohid N, OLABI Abdul G. Status and perspective of CO2 absorption process[J]. Energy, 2020, 205: 118057. |
10 | SACHDE Darshan, ROCHELLE Gary T. Absorber intercooling configurations using aqueous piperazine for capture from sources with 4% to 27% CO2 [J]. Energy Procedia, 2014, 63: 1637-1656. |
11 | LIN Yu-Jeng, MADAN Tarun, ROCHELLE Gary T. Regeneration with rich bypass of aqueous piperazine and monoethanolamine for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2014, 53(10): 4067-4074. |
12 | JIANG Kaiqi, LI Kangkang, YU Hai, et al. Piperazine-promoted aqueous-ammonia-based CO2 capture: Process optimisation and modification[J]. Chemical Engineering Journal, 2018, 347: 334-342. |
13 | LIN Yu-Jeng, ROCHELLE Gary T. Optimum heat of absorption for CO2 capture using the advanced flash stripper[J]. International Journal of Greenhouse Gas Control, 2016, 53: 169-177. |
14 | ZHANG Xiaowen, HUANG Yufei, YANG Jian, et al. Amine-based CO2 capture aided by acid-basic bifunctional catalyst: Advancement of amine regeneration using metal modified MCM-41[J]. Chemical Engineering Journal, 2020, 383: 123077. |
15 | WASEEM Muhammad, Mohamed AL-MARZOUQI, GHASEM Nayef. A review of catalytically enhanced CO2-rich amine solutions regeneration[J]. Journal of Environmental Chemical Engineering, 2023, 11(4): 110188. |
16 | 张芯. 固体酸型催化剂降低醇胺溶液解吸能耗的实验研究[D]. 长沙: 湖南大学, 2017. |
ZHANG Xin. Experimental study on the single and blended solvents regeneration of a CO2-loaded solution using different solid acid catalysts[D]. Changsha: Hunan University, 2017. | |
17 | ALIVAND Masood S, MAZAHERI Omid, WU Yue, et al. Catalytic solvent regeneration for energy-efficient CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(51): 18755-18788. |
18 | IDEM Raphael, SHI Huancong, GELOWITZ Don, et al. Catalytic method and apparatus for separating a gaseous component from an incoming gas stream: US20130108532[P]. 2017-03-07. |
19 | BHATTI Umair H, SHAH Abdul K, KIM Jeong Nam, et al. Effects of transition metal oxide catalysts on MEA solvent regeneration for the post-combustion carbon capture process[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 5862-5868. |
20 | BHATTI Umair H, SIVANESAN Dharmalingam, Dae Ho LIM, et al. Metal oxide catalyst-aided solvent regeneration: A promising method to economize post-combustion CO2 capture process[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93: 150-157. |
21 | 崔梦星. 固体材料对非水吸收液捕集CO2的强化研究[D]. 大连: 大连理工大学, 2018. |
CUI Mengxing. The reinforcement of CO2 capture in non-aqueous absorbent with solid materials[D]. Dalian: Dalian University of Technology, 2018. | |
22 | AKACHUKU Ananda, OSEI Priscilla Anima, Benjamin DECARDI-NELSON, et al. Experimental and kinetic study of the catalytic desorption of CO2 from CO2-loaded monoethanolamine (MEA) and blended monoethanolamine—Methyl-diethanolamine (MEA-MDEA) solutions[J]. Energy, 2019, 179: 475-489. |
23 | 李晨旭. 新型CO2捕集吸收体系构建及其再生过程的研究[D]. 石家庄: 河北科技大学, 2020. |
LI Chenxu. Study on novel absorbent systems for CO2 capture and its regeneration characteristics[D]. Shijiazhuang: Hebei University of Science and Technology, 2020. | |
24 | JI Long, LI Jiabi, ZHAI Rongrong, et al. Metal oxyhydroxide catalysts promoted CO2 absorption and desorption in amine-based carbon capture: A feasibility study[J]. ACS Omega, 2022, 7(49): 44620-44630. |
25 | YU Yanan, SHEN Yao, WANG Ke, et al. A facile synthesized robust catalyst for efficient regeneration of biphasic solvent in CO2 capture: Characterization, performance, and mechanism[J]. Separation and Purification Technology, 2023, 319: 124057. |
26 | LIU Shenghua, MAO Xudong, CHEN Hao, et al. Catalytic-CO2-desorption studies of BZA-AEP mixed absorbent by the Lewis acid catalyst CeO2-γ-Al2O3 [J]. Molecules, 2023, 28(11): 4438. |
27 | LAI Qinghua, TOAN Sam, ASSIRI Mohammed. A,et al. Catalyst-TiO(OH)2 could drastically reduce the energy consumption of CO2 capture[J]. Nature Communications, 2018, 9(1): 2672. |
28 | 李晓静, 张永春, 陈绍云. 改性氧化钛对羟乙基乙二胺水溶液解吸CO2的强化[J]. 化工进展, 2020, 39(5): 2026-2032. |
LI Xiaojing, ZHANG Yongchun, CHEN Shaoyun. Enhancement of CO2 desorption from 2-(2-aminoethylamino) ethanol aqueous solution by modified titanium oxide[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 2026-2032. | |
29 | JIANG Cong, FAN Maohong, GAO Ge, et al. Nanostructured AlOOH—A promising catalyst to reduce energy consumption for amine-based CO2 capture[J]. Separation and Purification Technology, 2022, 303: 122232. |
30 | ZHANG Xiaowen, ZHANG Xin, LIU Helei, et al. Reduction of energy requirement of CO2 desorption from a rich CO2-loaded MEA solution by using solid acid catalysts[J]. Applied Energy, 2017, 202: 673-684. |
31 | ZHANG Xin, LIU Helei, LIANG Zhiwu. CO2 desorption in single and blended amine solvents with and without catalyst[J]. Energy Procedia, 2017, 114: 1862-1868. |
32 | PRASONGTHUM Natthawan, NATEWONG Paweesuda, REUBROY CHAROEN Prasert, et al. Solvent regeneration of a CO2-loaded BEA—AMP Bi-blend amine solvent with the aid of a solid Brønsted Ce(SO4)2/ZrO2 superacid catalyst[J]. Energy & Fuels, 2019, 33(2): 1334-1343. |
33 | LI Lijun, LIU Yingying, WU Kejing, et al. Catalytic solvent regeneration of a CO2-loaded MEA solution using an acidic catalyst from industrial rough metatitanic acid[J]. Greenhouse Gases: Science and Technology, 2020, 10(2): 449-460. |
34 | GENG Zanbu, YANG Yang, WANG Yixi, et al. Catalytic regeneration of amine-based absorbents for CO2 capture: The effect of acidic sites and accessibility[J]. Separation and Purification Technology, 2023, 327: 124889. |
35 | WEI Ying, PARMENTIER Tanja E, DE JONG Krijn P, et al. Tailoring and visualizing the pore architecture of hierarchical zeolites[J]. Chemical Society Reviews, 2015, 44(20): 7234-7261. |
36 | JAVAD KALBASI Roozbeh, MANSOURI Sanaz, MAZAHERI Omid. In situ polymerization of poly(vinylimidazole) into the pores of hierarchical MFI zeolite as an acid–base bifunctional catalyst for one-pot C—C bond cascade reactions[J]. Research on Chemical Intermediates, 2018, 44(5): 3279-3291. |
37 | ZHOU Cheng, KHALIL Ibrahim, RAMMAL Fatima, et al. A critical revisit of zeolites for CO2 desorption in primary amine solution argues its genuine catalytic function[J]. ACS Catalysis, 2022, 12(18): 11485-11493. |
38 | ZHANG Xiaowen, HUANG Yufei, GAO Hongxia, et al. Zeolite catalyst-aided tri-solvent blend amine regeneration: An alternative pathway to reduce the energy consumption in amine-based CO2 capture process[J]. Applied Energy, 2019, 240: 827-841. |
39 | KIM Yong Tae, JUNG Kwang-Deog, PARK Eun Duck. A comparative study for gas-phase dehydration of glycerol over H-zeolites[J]. Applied Catalysis A: General, 2011, 393(1/2): 275-287. |
40 | LI Jiyang, CORMA Avelino, YU Jihong. Synthesis of new zeolite structures[J]. Chemical Society Reviews, 2015, 44(20): 7112-7127. |
41 | Karin MÖLLER, BEIN Thomas. Mesoporosity—A new dimension for zeolites[J]. Chemical Society Reviews, 2013, 42(9): 3689-3707. |
42 | ZHANG Ke, OSTRAAT Michele L. Innovations in hierarchical zeolite synthesis[J]. Catalysis Today, 2016, 264: 3-15. |
43 | SCHREIBER Moritz W, PLAISANCE Craig P, Martin BAUMGÄRTL, et al. Lewis-Brønsted acid pairs in Ga/H-ZSM-5 to catalyze dehydrogenation of light alkanes[J]. Journal of the American Chemical Society, 2018, 140(14): 4849-4859. |
44 | WANG Chuanfu, ZHANG Lei, HUANG Xin, et al. Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene[J]. Nature Communications, 2019, 10(1): 4348. |
45 | SHI Huancong, NAAMI Abdulaziz, IDEM Raphael, et al. Catalytic and non catalytic solvent regeneration during absorption-based CO2 capture with single and blended reactive amine solvents[J]. International Journal of Greenhouse Gas Control, 2014, 26: 39-50. |
46 | AFARI Daniel B, COKER James, Jessica NARKU-TETTEH, et al. Comparative kinetic studies of solid absorber catalyst (K/MgO) and solid desorber catalyst (HZSM-5)-aided CO2 absorption and desorption from aqueous solutions of MEA and blended solutions of BEA-AMP and MEA-MDEA[J]. Industrial & Engineering Chemistry Research, 2018, 57(46): 15824-15839. |
47 | COKER James, AFARI Daniel Boafo, Jessica NARKU-TETTEH, et al. Mass-transfer studies of solid-base catalyst-aided CO2 absorption and solid-acid catalyst-aided CO2 desorption for CO2 capture in a pilot plant using aqueous solutions of MEA and blends of MEA-MDEA and BEA-AMP[J]. Clean Energy, 2019, 3(4): 263-277. |
48 | 王皓, 唐思扬, 钟山, 等. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
WANG Hao, Tang Siyang, Zhong Shan, et al. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution[J]. CIESC Journal, 2023, 74(4): 1539-1548. | |
49 | SUN Qiang, GAO Hongxia, SEMA Teerawat, et al. Enhanced CO2 desorption rate for rich amine solution regeneration over hierarchical HZSM-5 catalyst[J]. Chemical Engineering Journal, 2023, 469: 143871. |
50 | LIANG Zhiwu, IDEM Raphael, TONTIWACHWUTHIKUL Paitoon, et al. Experimental study on the solvent regeneration of a CO2-loaded MEA solution using single and hybrid solid acid catalysts[J]. AIChE Journal, 2016, 62(3): 753-765. |
51 | MOLINER Manuel, Cristina MARTíNEZ, CORMA Avelino. Synthesis strategies for preparing useful small pore zeolites and zeotypes for gas separations and catalysis[J]. Chemistry of Materials, 2014, 26(1): 246-258. |
52 | YANG Yannan, YU Chengzhong. Advances in silica based nanoparticles for targeted cancer therapy[J]. Nanomedicine, 2016, 12(2): 317-332. |
53 | GIRALDO L F, LÓPEZ B L, PÉREZ L, et al. Mesoporous silica applications[J]. Macromolecular Symposia, 2007, 258(1): 129-141. |
54 | LIU Helei, ZHANG Xin, GAO Hongxia, et al. Investigation of CO2 regeneration in single and blended amine solvents with and without catalyst[J]. Industrial & Engineering Chemistry Research, 2017, 56(27): 7656-7664. |
55 | CUI Mengxing, CHEN Siming, QI Tianqinji, et al. Investigation of CO2 capture in nonaqueous ethylethanolamine solution mixed with porous solids[J]. Journal of Chemical & Engineering Data, 2018, 63(5): 1198-1205. |
56 | GAO Hongxia, HUANG Yufei, ZHANG Xiaowen, et al. Catalytic performance and mechanism of SO4 2-/ZrO2/SBA-15 catalyst for CO2 desorption in CO2-loaded monoethanolamine solution[J]. Applied Energy, 2020, 259. |
57 | 王玉龙. 酸性催化剂强化单乙醇胺CO2解吸的动力学与热力学研究[D]. 北京: 华北电力大学, 2021. |
WANG Yulong. Study on kinetics and thermodynamics of CO2 desorption of monoethanolamine enhanced by acid catalysts[D]. Beijing: North China Electric Power University, 2021. | |
58 | SHI Huancong, PENG Jiacheng, CHENG Xiaofang, et al. The CO2 desorption analysis of tri-solvent MEA+BEA+DEEA with several commercial solid acid catalysts[J]. International Journal of Greenhouse Gas Control, 2022, 116: 103647. |
59 | SHI Huancong, FU Junxing, WU Qiming, et al. Studies of the coordination effect of DEA-MEA blended amines (within 1+4 to 2+3M) under heterogeneous catalysis by means of absorption and desorption parameters[J]. Separation and Purification Technology, 2020, 236: 116179. |
60 | XING Lei, WEI Kexin, LI Qiangwei, et al. One-step synthesized SO4 2-/ZrO2-HZSM-5 solid acid catalyst for carbamate decomposition in CO2 capture[J]. Environmental Science & Technology, 2020, 54(21): 13944-13952. |
61 | SUN Qiang, GAO Hongxia, MAO Yu, et al. Efficient nickel-based catalysts for amine regeneration of CO2 capture: From experimental to calculations verifications[J]. AIChE Journal, 2022, 68(8): e17706. |
62 | LI Mingyue, XING Lei, XU Zhongfei, et al. Embedded Mo/Mn atomic regulation for durable acidity-reinforced HZSM-5 catalyst toward energy-efficient amine regeneration[J]. Environmental Science and Technology, 2023, 57(41): 15465-15474. |
63 | KAWI S, LAI M W. Supercritical fluid extraction of surfactant from Si-MCM-41[J]. AIChE Journal, 2002, 48(7): 1572-1580. |
64 | ATANGA Marktus A, REZAEI Fateme, JAWAD Abbas, et al. Oxidative dehydrogenation of propane to propylene with carbon dioxide[J]. Applied Catalysis B: Environmental, 2018, 220: 429-445. |
65 | DE MORAIS BATISTA Andressa H, DE SOUSA Francisco F, HONORATO Sara B, et al. Ethylbenzene to chemicals: Catalytic conversion of ethylbenzene into styrene over metal-containing MCM-41[J]. Journal of Molecular Catalysis A: Chemical, 2010, 315(1): 86-98. |
66 | ZHANG Xiaowen, ZHU Zhiqing, SUN Xiaoyu, et al. Reducing energy penalty of CO2 capture using Fe promoted SO4 2-/ZrO2/MCM-41 catalyst[J]. Environmental Science & Technology, 2019, 53(10): 6094-6102. |
67 | SUN Qiang, LI Tianhao, MAO Yu, et al. Reducing heat duty of MEA regeneration using a sulfonic acid-functionalized mesoporous MCM-41 catalyst[J]. Industrial & Engineering Chemistry Research, 2021, 60(50): 18304-18315. |
68 | MORALES Gabriel, OSATIASHTIANI Amin, Blanca HERNÁNDEZ, et al. Conformal sulfated zirconia monolayer catalysts for the one-pot synthesis of ethyl levulinate from glucose[J]. Chemical Communications, 2014, 50(79): 11742-11745. |
69 | OSATIASHTIANI Amin, LEE Adam F, GRANOLLERS Marta, et al. Hydrothermally stable, conformal, sulfated zirconia monolayer catalysts for glucose conversion to 5-HMF[J]. ACS Catalysis, 2015, 5(7): 4345-4352. |
70 | HUANG Yufei, ZHANG Xiaowen, LUO Xiao, et al. Catalytic performance and mechanism of meso-microporous material β-SBA-15-supported FeZr catalysts for CO2 desorption in CO2-loaded aqueous amine solution[J]. Industrial & Engineering Chemistry Research, 2021, 60(6): 2698-2709. |
71 | LIU Yamin, YE Qing, SHEN Mei, et al. Carbon dioxide capture by functionalized solid amine sorbents with simulated flue gas conditions[J]. Environmental Science & Technology, 2011, 45(13): 5710-5716. |
72 | KISHOR Rupak, GHOSHAL Aloke Kumar. Understanding the hydrothermal, thermal, mechanical and hydrolytic stability of mesoporous KIT-6: A comprehensive study[J]. Microporous and Mesoporous Materials, 2017, 242: 127-135. |
73 | ZHANG Rui, LI Ting, ZHANG Yiming, et al. CuO modified KIT-6 as a high-efficiency catalyst for energy-efficient amine solvent regeneration[J]. Separation and Purification Technology, 2022, 300: 121702. |
74 | WANG Qi, ASTRUC Didier. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis[J]. Chemical Reviews, 2020, 120(2): 1438-1511. |
75 | WEI Yong sheng, ZHANG Mei, ZOU Ruqiang, et al. Metal-organic framework-based catalysts with single metal sites[J]. Chemical Reviews, 2020, 120(21): 12089-12174. |
76 | LI Yuchen, CHEN Zhen, ZHAN Guoxiong, et al. Inducing efficient proton transfer through Fe/Ni@COF to promote amine-based solvent regeneration for achieving low-cost capture of CO2 from industrial flue gas[J]. Separation and Purification Technology, 2022, 298: 121676. |
77 | DING Huimin, LI Jian, XIE Guohua, et al. An AIEgen-based 3D covalent organic framework for white light-emitting diodes[J]. Nature Communications, 2018, 9(1): 5234. |
78 | AN Shanlong, XU Teng, XING Lei, et al. Recent progress and prospects in solid acid-catalyzed CO2 desorption from amine-rich liquid[J]. Gas Science and Engineering, 2023, 120: 205152. |
79 | GAO Feiyue, HU Shaojin, ZHANG Xiaolong, et al. High-curvature transition-metal chalcogenide nanostructures with a pronounced proximity effect enable fast and selective CO2 electroreduction[J]. Angewandte Chemie International Edition, 2020, 59(22): 8706-8712. |
80 | TRICKETT Christopher A, OSBORN POPP Thomas M, SU Ji, et al. Identification of the strong Brønsted acid site in a metal-organic framework solid acid catalyst[J]. Nature Chemistry, 2019, 11(2): 170-176. |
81 | JIANG Juncong, Felipe GÁNDARA, ZHANG Yuebiao, et al. Superacidity in sulfated metal-organic framework-808[J]. Journal of the American Chemical Society, 2014, 136(37): 12844-12847. |
82 | ALIVAND Masood S, MAZAHERI Omid, WU Yue, et al. Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO2 capture[J]. Nature Communications, 2022, 13(1): 1249. |
83 | XING Lei, WEI Kexin, LI Yuchen, et al. TiO2 coating strategy for robust catalysis of the metal-organic framework toward energy-efficient CO2 capture[J]. Environmental Science & Technology, 2021, 55(16): 11216-11224. |
84 | WEI Kexin, XING Lei, LI Yuchen, et al. Heteropolyacid modified cerium-based MOFs catalyst for amine solution regeneration in CO2 capture[J]. Separation and Purification Technology, 2022, 293: 121144. |
85 | XING Lei, LI Meng, LI Mingyue, et al. MOF-derived robust and synergetic acid sites inducing C—N bond disruption for energy-efficient CO2 desorption[J]. Environmental Science & Technology, 2022, 56(24): 17936-17945. |
86 | LI Xiaojing, ZHANG Yongchun, CHEN Shaoyun. Enhancement of CO2 desorption from reinforced 2-(2-aminoethylamine) ethanol aqueous solution by multi-walled carbon nanotubes[J]. Energy & Fuels, 2019, 33(7): 6577-6584. |
87 | GAO Yangyan, HE Xin, MAO Keke, et al. Catalytic CO2 capture via ultrasonically activating dually functionalized carbon nanotubes[J]. ACS Nano, 2023, 17(9): 8345-8354. |
88 | LI Xiaojing, XU Qian, LIU Zhishan, et al. Nonacid carbon materials as catalysts for monoethanolamine energy-efficient regeneration[J]. Environmental Science & Technology, 2023, 57(27): 9975-9983. |
89 | BHATTI Ali Hassan, WARIS Mamoona, KAZMI Wajahat W, et al. Metal impregnated activated carbon as cost-effective and scalable catalysts for amine-based CO2 capture[J]. Journal of Environmental Chemical Engineering, 2023, 11(1): 109231. |
90 | BHATTI Umair H, ALIVAND Masood S, BARZAGLI Francesco, et al. Functionalized carbon spheres for energy-efficient CO2 capture: Synthesis, application, and reaction mechanism[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(32): 11955-11964. |
91 | 赵月. 赖氨酸钾水溶液捕集电厂烟气中CO2的应用基础研究[D]. 石家庄: 河北科技大学, 2018. |
ZHAO Yue. Applied fundamental research on CO2 capture using aqueous potassium lysinate solutions from power plant flue gas[D]. Shijiazhuang: Hebei University of Science and Technology, 2018. | |
92 | SUN Qiang, XIONG Jia, GAO Hongxia, et al. Evaluation of hybrid amines and alcohol solvent with ion-exchange resin catalysts for energy-efficient CO2 capture[J]. Green Chemistry, 2023, 25(12): 4647-4655. |
93 | RASHWAN M A, EL-SHAKOUR Zeinab A ABD. Low-cost, highly-performance fired clay bodies incorporating natural stone sludge: Microstructure and engineering properties[J]. Cleaner Waste Systems, 2022, 3: 100041. |
94 | TAO Huayu, QIAN Xi, ZHOU Yi, et al. Research progress of clay minerals in carbon dioxide capture[J]. Renewable and Sustainable Energy Reviews, 2022, 164: 112536. |
95 | LU Manjing, WANG Jiaqi, WANG Yuzhong, et al. Heterogeneous photo-Fenton catalytic degradation of practical pharmaceutical wastewater by modified attapulgite supported multi-metal oxides[J]. Water, 2021, 13(2): 156. |
96 | TAN Zhan, ZHANG Shangshang, YUE Xinwei, et al. Attapulgite as a cost-effective catalyst for low-energy consumption amine-based CO2 capture[J]. Separation and Purification Technology, 2022, 298: 121577. |
97 | BHATTI Umair H, KAZMI Wajahat W, MUHAMMAD Hafiz A, et al. Practical and inexpensive acid-activated montmorillonite catalysts for energy-efficient CO2 capture[J]. Green Chemistry, 2020, 22(19): 6328-6333. |
98 | BHATTI Umair H, KAZMI Wajahat W, MIN Gwan Hong, et al. Facilely synthesized M-montmorillonite (M=Cr, Fe, and Co) as efficient catalysts for enhancing CO2 desorption from amine solution[J]. Industrial & Engineering Chemistry Research, 2021, 60(36): 13318-13325. |
99 | ZHANG Rui, LI Yufan, ZHANG Yiming, et al. Energy-saving effect of low-cost and environmentally friendly sepiolite as an efficient catalyst carrier for CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(11): 4353-4363. |
100 | TAN Zhan, ZHANG Shangshang, ZHAO Fangfang, et al. SnO2/ATP catalyst enabling energy-efficient and green amine-based CO2 capture[J]. Chemical Engineering Journal, 2023, 453: 139801. |
101 | QIN Ling, GAO Xiaojian, LI Qiyan. Influences of coal fly ash containing ammonium salts on properties of cement paste[J]. Journal of Environmental Management, 2019, 249: 109374. |
102 | DINDI Abdallah, QUANG Dang Viet, VEGA Lourdes F, et al. Applications of fly ash for CO2 capture, utilization, and storage[J]. Journal of CO2 Utilization, 2019, 29: 82-102. |
103 | HEMALATHA T, RAMASWAMY Ananth. A review on fly ash characteristics—Towards promoting high volume utilization in developing sustainable concrete[J]. Journal of Cleaner Production, 2017, 147: 546-559. |
104 | CHEN Linlin, LU Shijian, ZHANG Lei, et al. Solid waste of fly ash toward energy-efficient CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(22): 8281-8293. |
105 | Zening Lyu, QIAO Kun, CHU Fengming, et al. Experimental study of divalent metal ion effects on ammonia escape and carbon dioxide desorption in regeneration process of ammonia decarbonization[J]. Chemical Engineering Journal, 2022, 435: 134841. |
106 | SRISANG Wayuta, POURYOUSEFI Fatemeh, OSEI Priscilla Anima, et al. Evaluation of the heat duty of catalyst-aided amine-based post combustion CO2 capture[J]. Chemical Engineering Science, 2017, 170: 48-57. |
107 | HU Xiayi, YU Qian, CUI Yuanyuan, et al. Toward solvent development for industrial CO2 capture by optimizing the catalyst-amine formulation for lower energy consumption in the solvent regeneration process[J]. Energy & Fuels, 2019, 33(11): 11507-11515. |
108 | ZHANG Xiaowen, LIU Helei, LIANG Zhiwu, et al. Reducing energy consumption of CO2 desorption in CO2-loaded aqueous amine solution using Al2O3/HZSM-5 bifunctional catalysts[J]. Applied Energy, 2018, 229: 562-576. |
109 | SALEH BAIRQ Zain ALI, GAO Hongxia, HUANG Yufei, et al. Enhancing CO2 desorption performance in rich MEA solution by addition of SO4 2-/ZrO2/SiO2 bifunctional catalyst[J]. Applied Energy, 2019, 252: 113440. |
110 | ZHANG Xiaowen, HONG Jieling, LIU Helei, et al. SO4 2-/ZrO2 supported on γ-Al2O3 as a catalyst for CO2 desorption from CO2-loaded monoethanolamine solutions[J]. AIChE Journal, 2018, 64(11): 3988-4001. |
111 | NATEWONG Paweesuda, PRASONGTHUM Natthawan, REUBROYC HAROEN Prasert, et al. Evaluating the CO2 capture performance using a BEA-AMP biblend amine solvent with novel high-performing absorber and desorber catalysts in a bench-scale CO2 capture pilot plant[J]. Energy & Fuels, 2019, 33(4): 3390-3402. |
112 | SALEH BAIRQ Zain ALI, GAO Hongxia, MURSHED Fatima Abduh Mohammed, et al. Modified heterogeneous catalyst-aided regeneration of CO2 capture amines: A promising perspective for a drastic reduction in energy consumption[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(25): 9526-9536. |
113 | XU Yin, JIN Baosheng, JIANG Hejia, et al. Investigation of the regeneration of a CO2-loaded ammonia solution with solid acid catalysts: A promising alternative for reducing regeneration energy[J]. Fuel Processing Technology, 2020, 205: 106452. |
114 | BHATTI Umair, Sungchan NAM, PARK Sungyoul, et al. Performance and mechanism of metal oxide catalyst-aided amine solvent regeneration[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 1207 |
[1] | 陆诗建, 张娟娟, 杨菲, 刘玲, 陈思铭, 康国俊, 房芹芹. 化学吸收法胺液逃逸控制技术研究进展[J]. 化工进展, 2024, 43(8): 4562-4570. |
[2] | 唐思扬, 李星宇, 鲁厚芳, 钟山, 梁斌. 低能耗化学吸收碳捕集技术展望[J]. 化工进展, 2022, 41(3): 1102-1106. |
[3] | 张静, 马慧玲, 曾得福, 姚潇毅. 水热催化制备绿色柴油工艺中催化剂的失活与再生[J]. 化工进展, 2022, 41(2): 682-689. |
[4] | 张卫风, 许元龙, 王秋华. CO2醇胺富液低能耗再生研究进展[J]. 化工进展, 2021, 40(8): 4497-4507. |
[5] | 张克舫1,2,刘中良1,王远亚1,李艳霞1. 化学吸收法CO2捕集解吸能耗的分析计算[J]. 化工进展, 2013, 32(12): 3008-3014. |
[6] | 蒋 波,张晓东,孙 立,许 敏. 微波促进生物柴油制备的研究进展 [J]. 化工进展, 2010, 29(11): 2057-. |
[7] | 晏水平,方梦祥,张卫风,骆仲泱,岑可法. 烟气中CO2化学吸收法脱除技术分析与进展 [J]. 化工进展, 2006, 25(9): 1018-. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 59
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 100
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |