1 |
田克胜, 王保伟, 许根慧. 乙醇酸的合成及应用[J]. 天然气化工, 2006, 31(6): 60-63, 71.
|
|
TIAN Kesheng, WANG Baowei, XU Genhui. Synthesis and application of glycolic acid[J]. Natural Gas Chemical Industry, 2006, 31(6): 60-63, 71.
|
2 |
黄燕, 梁朝林. 乙醇酸生产技术的研究进展[J]. 广东石油化工学院学报, 2013, 23(3): 8-11.
|
|
HUANG Yan, LIANG Chaolin. The research progress of glycolic acid production technology[J]. Journal of Guangdong University of Petrochemical Technology, 2013, 23(3): 8-11.
|
3 |
钟维民, 刘立鹏, 魏志勇. 生物可降解塑料聚乙醇酸的合成及其工业化研究进展[J]. 合成树脂及塑料, 2021, 38(2): 80-84.
|
|
ZHONG Weimin, LIU Lipeng, WEI Zhiyong. Synthesis and industrialization of biodegradable plastics PGA[J]. China Synthetic Resin and Plastics, 2021, 38(2): 80-84.
|
4 |
商宽祥, 张大洲, 卢文新, 等. 乙醇酸市场前景及技术进展分析[J]. 化肥设计, 2022, 60(4): 5-7, 35.
|
|
SHANG Kuanxiang, ZHANG Dazhou, LU Wenxin, et al. Analysis of glycolic acid market prospects and technology progress[J]. Chemical Fertilizer Design, 2022, 60(4): 5-7, 35.
|
5 |
王淑敏, 商宽祥, 谢鸿洲, 等. 聚乙醇酸产业现状及发展前景[J]. 化肥设计, 2021, 59(4): 1-4, 11.
|
|
WANG Shumin, SHANG Kuanxiang, XIE Hongzhou, et al. Present situation and development prospect of polyglycolic acid industry[J]. Chemical Fertilizer Design, 2021, 59(4): 1-4, 11.
|
6 |
高姣, 杨帅龙. 聚乙醇酸的合成及工业化进展[J]. 河南化工, 2022, 39(4): 8-10.
|
|
GAO Jiao, YANG Shuailong. Synthesis and industrialization progress of polyglycolic acid[J]. Henan Chemical Industry, 2022, 39(4): 8-10.
|
7 |
BUDAK Kamil, SOGUT Oguz, AYDEMIR SEZER Umran. A review on synthesis and biomedical applications of polyglycolic acid[J]. Journal of Polymer Research, 2020, 27(8): 208.
|
8 |
魏景东, 赵增海, 郭雁珩, 等. 2021年中国光伏发电发展现状与展望[J]. 水力发电, 2022, 48(10): 4-8.
|
|
WEI Jingdong, ZHAO Zenghai, GUO Yanheng, et al. Status and prospect of China’s solar PV generation development in 2021[J]. Water Power, 2022, 48(10): 4-8.
|
9 |
PICKETT D J, YAP K S. A study of the production of glyoxylic acid by the electrochemical reduction of oxalic acid solutions[J]. Journal of Applied Electrochemistry, 1974, 4(1): 17-23.
|
10 |
SADAKIYO Masaaki, HATA Shinichi, FUKUSHIMA Takashi, et al. Electrochemical hydrogenation of non-aromatic carboxylic acid derivatives as a sustainable synthesis process: From catalyst design to device construction[J]. Physical Chemistry Chemical Physics, 2019, 21(11): 5882-5889.
|
11 |
POZDNIAKOV M A, ZHUK I V, LYAPUNOVA M V, et al. Glyoxylic acid: Synthesis, isolation, and crystallization[J]. Russian Chemical Bulletin, 2019, 68(3): 472-479.
|
12 |
ZHOU Yangliu, ZHANG Xinsheng, DAI Yingchun, et al. Studies on chemical activators for electrode I: Electrochemical activation of deactivating cathode for oxalic acid reduction[J]. Chemical Engineering Science, 2003, 58(3/4/5/6): 1021-1027.
|
13 |
ZHAO Fengming, YAN Fei, QIAN Yang, et al. Roughened TiO2 film electrodes for electrocatalytic reduction of oxalic acid to glyoxylic acid[J]. Journal of Electroanalytical Chemistry, 2013, 698: 31-38.
|
14 |
YANG Jun, CHENG Junfang, TAO Jie, et al. Wrapping multiwalled carbon nanotubes with anatase titanium oxide for the electrosynthesis of glycolic acid[J]. ACS Applied Nano Materials, 2019, 2(10): 6360-6367.
|
15 |
ABRAMO Francesco Pio, DE LUCA Federica, PASSALACQUA Rosalba, et al. Electrocatalytic production of glycolic acid via oxalic acid reduction on titania debris supported on a TiO2 nanotube array[J]. Journal of Energy Chemistry, 2022, 68: 669-678.
|
16 |
Sunmi IM, SAAD Sarwar, PARK Yiseul. Facilitated series electrochemical hydrogenation of oxalic acid to glycolic acid using TiO2 nanotubes[J]. Electrochemistry Communications, 2022, 135: 107204.
|
17 |
SCOTT K. The role of temperature in oxalic acid electroreduction[J]. Electrochimica Acta, 1992, 37(8): 1381-1388.
|
18 |
张苏洪, 陈昌国, 黄晓军. 草酸电解还原生成乙醛酸的影响因素[J]. 化工科技, 2001, 9(4): 35-37.
|
|
ZHANG Suhong, CHEN Changguo, HUANG Xiaojun. The influence factors of the production of glyoxylic acid by electrochemical reduction of aqueous oxalic acid soplution[J]. Science & Technology in Chemical Industry, 2001, 9(4): 35-37.
|
19 |
SU Yingshi, CHENG Yonghui, LI Zhen, et al. Exploring the impact of Nafion modifier on electrocatalytic CO2 reduction over Cu catalyst[J]. Journal of Energy Chemistry, 2024, 88: 543-551.
|