化工进展 ›› 2024, Vol. 43 ›› Issue (S1): 403-418.DOI: 10.16085/j.issn.1000-6613.2024-0551
谢钰麟1(), 饶瑞晔2(), 黄建1, 蒿佳怡1, 王友益1, 黄琦1
收稿日期:
2024-04-03
修回日期:
2024-06-28
出版日期:
2024-11-20
发布日期:
2024-12-06
通讯作者:
饶瑞晔
作者简介:
谢钰麟(1998—),男,硕士研究生,研究方向为MOF膜用于气体分离。E-mail:1538206952@qq.com。
基金资助:
XIE Yulin1(), RAU Jui-yeh2(), HUANG Jian1, HAO Jiayi1, WANG Youyi1, HUANG Qi1
Received:
2024-04-03
Revised:
2024-06-28
Online:
2024-11-20
Published:
2024-12-06
Contact:
RAU Jui-yeh
摘要:
ZIF-8膜是一种新型的金属有机框架材料纳米多孔材料。由于其独特的蜂窝状多孔结构以及优良的热稳定性和化学稳定性,近年来在气体分离领域得到了广泛应用。ZIF-8膜的孔径介于氢气和其他气体(如氮气、甲烷等)的动力学直径之间,使其特别适合用于氢气的分离。本文综述了连续ZIF-8膜的制备方法,重点介绍了近十年来有代表性的原位生长法、二次晶种法、表面修饰法和一些特殊的制备方法。整理并比较了这些方法所制备的连续ZIF-8膜的氢气分离性能以及各方法的优缺点。同时,对原位生长法、二次晶种法和表面修饰法的合成机理进行了详细总结。此外,还简要讨论了未来的研究方向和挑战。
中图分类号:
谢钰麟, 饶瑞晔, 黄建, 蒿佳怡, 王友益, 黄琦. 连续ZIF-8膜制备及在氢气分离中的研究进展[J]. 化工进展, 2024, 43(S1): 403-418.
XIE Yulin, RAU Jui-yeh, HUANG Jian, HAO Jiayi, WANG Youyi, HUANG Qi. Preparation of continuous ZIF-8 membrane and its progress in hydrogen separation[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 403-418.
年份 | 载体 | 测试条件 | H2渗透性/10-7 mol·Pa-1·m-2·s-1 | H2/CO2 (选择性) | H2/N2 (选择性) | H2/CH4 (选择性) | 参考文献 |
---|---|---|---|---|---|---|---|
2009 | 二氧化钛 | 25℃、0.1MPa | 0.55 | 5.5 | 9.8 | 11.2 | [ |
2014 | 多孔中空纤维陶瓷管 | 30℃、0.1MPa | 19 | 4.9 | 12.9 | 15.6 | [ |
2014 | 多孔聚矾 | 35℃、0.1MPa | 2.2 | — | 12.4 | 10.5 | [ |
2016 | 氮化硅中空纤维 | 25℃、0.2 MPa | 1.15 | 11.67 | — | — | [ |
2016 | 氧化铝载片 | 20℃、0.1MPa | 6.4 | 10.0 | 13.2 | 16.7 | [ |
2018 | 二维石墨氮化碳纳米片 | 25℃、0.1MPa | 0.67 | 42 | — | — | [ |
2023 | 氧化锌载片 | 25℃、0.1MPa | 22.6 | — | — | 9.7 | [ |
表1 原位生长法制备连续ZIF-8膜用于氢气分离的研究
年份 | 载体 | 测试条件 | H2渗透性/10-7 mol·Pa-1·m-2·s-1 | H2/CO2 (选择性) | H2/N2 (选择性) | H2/CH4 (选择性) | 参考文献 |
---|---|---|---|---|---|---|---|
2009 | 二氧化钛 | 25℃、0.1MPa | 0.55 | 5.5 | 9.8 | 11.2 | [ |
2014 | 多孔中空纤维陶瓷管 | 30℃、0.1MPa | 19 | 4.9 | 12.9 | 15.6 | [ |
2014 | 多孔聚矾 | 35℃、0.1MPa | 2.2 | — | 12.4 | 10.5 | [ |
2016 | 氮化硅中空纤维 | 25℃、0.2 MPa | 1.15 | 11.67 | — | — | [ |
2016 | 氧化铝载片 | 20℃、0.1MPa | 6.4 | 10.0 | 13.2 | 16.7 | [ |
2018 | 二维石墨氮化碳纳米片 | 25℃、0.1MPa | 0.67 | 42 | — | — | [ |
2023 | 氧化锌载片 | 25℃、0.1MPa | 22.6 | — | — | 9.7 | [ |
年份 | 载体 | 测试条件 | H2渗透性/10-7 mol·Pa-1·m-2·s-1 | H2/CO2 (选择性) | H2/N2 (选择性) | H2/CH4 (选择性) | 参考文献 |
---|---|---|---|---|---|---|---|
2012 | 聚醚砜 | 60℃、0.1MPa | 4.0 | — | 9.9 | 10.7 | [ |
2013 | 中空陶瓷纤维管 | 30℃、0.1MPa | 11.0 | 5.2 | 7.3 | 6.8 | [ |
2015 | 大孔氧化铝载片 | 25℃、0.1MPa | 76.8 | — | 9.4 | 14.2 | [ |
2016 | 氧化铝载片 | 25℃、0.1MPa | 2.08 | 4.47 | 13.35 | — | [ |
2019 | 聚醚砜 | 25℃、0.1MPa | 112.8 | 7.78 | 5.48 | 3.38 | [ |
2019 | 聚砜 | 25℃、0.1MPa | 24.5 | 4.5 | 23.2 | 31.5 | [ |
2020 | 氧化铝中空纤维 | 25℃、0.098MPa | 5.5 | — | 30.9 ± 1.8 | — | [ |
2022 | 氧化铝管 | 30℃、0.1MPa | 6.1 | — | — | 12.4 | [ |
表2 二次晶种法制备连续ZIF-8膜用于氢气分离的研究
年份 | 载体 | 测试条件 | H2渗透性/10-7 mol·Pa-1·m-2·s-1 | H2/CO2 (选择性) | H2/N2 (选择性) | H2/CH4 (选择性) | 参考文献 |
---|---|---|---|---|---|---|---|
2012 | 聚醚砜 | 60℃、0.1MPa | 4.0 | — | 9.9 | 10.7 | [ |
2013 | 中空陶瓷纤维管 | 30℃、0.1MPa | 11.0 | 5.2 | 7.3 | 6.8 | [ |
2015 | 大孔氧化铝载片 | 25℃、0.1MPa | 76.8 | — | 9.4 | 14.2 | [ |
2016 | 氧化铝载片 | 25℃、0.1MPa | 2.08 | 4.47 | 13.35 | — | [ |
2019 | 聚醚砜 | 25℃、0.1MPa | 112.8 | 7.78 | 5.48 | 3.38 | [ |
2019 | 聚砜 | 25℃、0.1MPa | 24.5 | 4.5 | 23.2 | 31.5 | [ |
2020 | 氧化铝中空纤维 | 25℃、0.098MPa | 5.5 | — | 30.9 ± 1.8 | — | [ |
2022 | 氧化铝管 | 30℃、0.1MPa | 6.1 | — | — | 12.4 | [ |
年份 | 载体 | 测试条件 | H2渗透性/10-7 mol·Pa-1·m-2·s-1 | H2/CO2 (选择性) | H2/N2 (选择性) | H2/CH4 (选择性) | 参考文献 |
---|---|---|---|---|---|---|---|
2010 | 氧化铝载片 | 25℃、0.1MPa | 约2.1 | — | 11.6 | 13 | [ |
2012 | 大孔氧化铝载片 | 25℃、0.05MPa | 573 | 17.05 | 15.44 | — | [ |
2013 | 氧化铝载片 | 150℃、0.1MPa | 1.8 | 8.9 | 16.2 | 31.5 | [ |
2014 | 大孔不锈钢网 | 100℃、0.1MPa | 211 | 8.1 | 15.0 | 23.2 | [ |
2017 | 不锈钢网 | 100℃、0.1MPa | 13.33 | 9.9 | 17.2 | 26.0 | [ |
2018 | 氧化铝载片 | 200℃、0.1MPa | 2.1 | 15.8 | 22.6 | 40.6 | [ |
2021 | 氧化铝载片 | 25℃、0.1MPa | 9.6 | 11.9 | — | 33.3 | [ |
2021 | 聚合物中空纤维 | 25℃、0.1MPa | 3.3 | 15.6 | 15.9 | 35.1 | [ |
2022 | 氧化铝载片 | 150℃、0.1MPa | 6.15 | — | — | 20.8 | [ |
2022 | 二氧化硅载片 | 25℃、0.1MPa | 19.05 | 11.9 | — | — | [ |
2023 | 多孔氨基化聚醚砜中空纤维 | 150℃、0.1MPa | 253.6 | 约21.2 | — | — | [ |
2023 | 氧化铝载片 | 25℃、0.1MPa | 1.86 | 8.72 | — | 31.03 | [ |
表3 载体表面修饰法制备连续ZIF-8膜用于氢气分离的研究
年份 | 载体 | 测试条件 | H2渗透性/10-7 mol·Pa-1·m-2·s-1 | H2/CO2 (选择性) | H2/N2 (选择性) | H2/CH4 (选择性) | 参考文献 |
---|---|---|---|---|---|---|---|
2010 | 氧化铝载片 | 25℃、0.1MPa | 约2.1 | — | 11.6 | 13 | [ |
2012 | 大孔氧化铝载片 | 25℃、0.05MPa | 573 | 17.05 | 15.44 | — | [ |
2013 | 氧化铝载片 | 150℃、0.1MPa | 1.8 | 8.9 | 16.2 | 31.5 | [ |
2014 | 大孔不锈钢网 | 100℃、0.1MPa | 211 | 8.1 | 15.0 | 23.2 | [ |
2017 | 不锈钢网 | 100℃、0.1MPa | 13.33 | 9.9 | 17.2 | 26.0 | [ |
2018 | 氧化铝载片 | 200℃、0.1MPa | 2.1 | 15.8 | 22.6 | 40.6 | [ |
2021 | 氧化铝载片 | 25℃、0.1MPa | 9.6 | 11.9 | — | 33.3 | [ |
2021 | 聚合物中空纤维 | 25℃、0.1MPa | 3.3 | 15.6 | 15.9 | 35.1 | [ |
2022 | 氧化铝载片 | 150℃、0.1MPa | 6.15 | — | — | 20.8 | [ |
2022 | 二氧化硅载片 | 25℃、0.1MPa | 19.05 | 11.9 | — | — | [ |
2023 | 多孔氨基化聚醚砜中空纤维 | 150℃、0.1MPa | 253.6 | 约21.2 | — | — | [ |
2023 | 氧化铝载片 | 25℃、0.1MPa | 1.86 | 8.72 | — | 31.03 | [ |
1 | MONASTERSKY Richard. Global carbon dioxide levels near worrisome milestone: Concentrations of greenhouse gas will soon surpass 400 parts per million at sentinel spot[J]. Nature, 2013, 497(7447): 13-15. |
2 | 王鑫. 中国争取2060年前实现碳中和[J]. 生态经济, 2020, 36(12): 9-12. |
WANG Xin. China strives to achieve carbon neutrality before 2060[J]. Ecological Economy, 2020, 36(12): 9-12. | |
3 | GRIFFITHS Steve, SOVACOOL Benjamin K, KIM Jinsoo, et al. Industrial decarbonization via hydrogen: A critical and systematic review of developments, socio-technical systems and policy options[J]. Energy Research & Social Science, 2021, 80: 102208. |
4 | BHANDARI Ramchandra, TRUDEWIND Clemens A, ZAPP Petra. Life cycle assessment of hydrogen production via electrolysis-a review[J]. Journal of Cleaner Production, 2014, 85: 151-163. |
5 | RAZZAQ Rauf, LI Chunshan, ZHANG Suojiang. Coke oven gas: Availability, properties, purification, and utilization in China[J]. Fuel, 2013, 113: 287-299. |
6 | MERSMANN A, FILL B, HARTMANN R, et al. The potential of energy saving by gas-phase adsorption processes[J]. Chemical Engineering & Technology, 2000, 23(11): 937-944. |
7 | AARON Douglas, TSOURIS Costas. Separation of CO2 from flue gas: A review[J]. Separation Science and Technology, 2005, 40(1/2/3): 321-348. |
8 | PARK Kyo Sung, NI Zheng, CÔTÉ Adrien P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186-10191. |
9 | FU Qiang, WAGNER Thomas, Manfred RÜHLE. Hydroxylated α - Al2O3 (0001) surfaces and metal/ α - A l 2 O 3 (0001) interfaces[J]. Surface Science, 2006, 600(21): 4870-4877. |
10 | HAYASHI Hideki, CÔTÉ Adrien P, FURUKAWA Hiroyasu, et al. Zeolite A imidazolate frameworks[J]. Nature Materials, 2007, 6(7): 501-506. |
11 | Nuria LIÉDANA, GALVE Alejandro, RUBIO César, et al. CAF@ZIF-8: One-step encapsulation of caffeine in MOF[J]. ACS Applied Materials & Interfaces, 2012, 4(9): 5016-5021. |
12 | YUE Meiling, LAMBERT Hugo, PAHON Elodie, et al. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges[J]. Renewable and Sustainable Energy Reviews, 2021, 146: 111180. |
13 | SHAH Miral N, GONZALEZ Mariel A, MCCARTHY Michael C, et al. An unconventional rapid synthesis of high performance metal-organic framework membranes[J]. Langmuir, 2013, 29(25): 7896-7902. |
14 | JIANG Xu, LI Songwei, BAI Yongping, et al. Ultra-facile aqueous synthesis of nanoporous zeolitic imidazolate framework membranes for hydrogen purification and olefin/paraffin separation[J]. Journal of Materials Chemistry A, 2019, 7(18): 10898-10904. |
15 | LI Wanbin, SU Pengcheng, LI Zhanjun, et al. Ultrathin metal-organic framework membrane production by gel-vapour deposition[J]. Nature Communications, 2017, 8(1): 406. |
16 | DAWOOD Furat, ANDA Martin, SHAFIULLAH G M. Hydrogen production for energy: An overview[J]. International Journal of Hydrogen Energy, 2020, 45(7): 3847-3869. |
17 | LAI Zhiping. Development of ZIF-8 membranes: Opportunities and challenges for commercial applications[J]. Current Opinion in Chemical Engineering, 2018, 20: 78-85. |
18 | YU Miao, FUNKE Hans H, NOBLE Richard D, et al. H2 separation using defect-free, inorganic composite membranes[J]. Journal of the American Chemical Society, 2011, 133(6): 1748-1750. |
19 | CHUAH Chong Yang, LEE Jaewon, Tae-Hyun BAE. Graphene-based membranes for H2 separation: Recent progress and future perspective[J]. Membranes, 2020, 10(11): 336. |
20 | Fernando CACHO-BAILO, SEOANE Beatriz, Carlos TÉLLEZ, et al. ZIF-8 continuous membrane on porous polysulfone for hydrogen separation[J]. Journal of Membrane Science, 2014, 464: 119-126. |
21 | CHERNIKOVA Valeriya, SHEKHAH Osama, BELMABKHOUT Youssef, et al. Nanoporous fluorinated metal-organic framework-based membranes for CO2 capture[J]. ACS Applied Nano Materials, 2020, 3(7): 6432-6439. |
22 | ZHANG Huifeng, ZHAO Man, LIN Y S. Stability of ZIF-8 in water under ambient conditions[J]. Microporous and Mesoporous Materials, 2019, 279: 201-210. |
23 | YIN Hang, KIM Hyungmin, CHOI Jungkyu, et al. Thermal stability of ZIF-8 under oxidative and inert environments: A practical perspective on using ZIF-8 as a catalyst support[J]. Chemical Engineering Journal, 2015, 278: 293-300. |
24 | LI Ke, MIWORNUNYUIE Nicholas, CHEN Lei, et al. Sustainable application of ZIF-8 for heavy-metal removal in aqueous solutions[J]. Sustainability, 2021, 13(2): 984. |
25 | HONG Mei, FALCONER John L, NOBLE Richard D. Modification of zeolite membranes for H2 separation by catalytic cracking of methyldiethoxysilane[J]. Industrial & Engineering Chemistry Research, 2005, 44(11): 4035-4041. |
26 | HARA Nobuo, YOSHIMUNE Miki, NEGISHI Hideyuki, et al. Diffusive separation of propylene/propane with ZIF-8 membranes[J]. Journal of Membrane Science, 2014, 450: 215-223. |
27 | WU Xiaoke, ZHANG Huayu, YIN Zhengchi, et al. ZIF-8/GO sandwich composite membranes through a precursor conversion strategy for H2/CO2 separation[J]. Journal of Membrane Science, 2022, 647: 120291. |
28 | ZOU Xiaoqin, ZHU Guangshan. Microporous organic materials for membrane-based gas separation[J]. Advanced Materials, 2018, 30(3): 1700750. |
29 | PIVOVAR Bryan, RUSTAGI Neha, SATYAPAL Sunita. Hydrogen at scale (H2@Scale): Key to a clean, economic, and sustainable energy system[J]. The Electrochemical Society Interface, 2018, 27(1): 47-52. |
30 | SHI Dongchen, YU Xin, FAN Weidong, et al. Polycrystalline zeolite and metal-organic framework membranes for molecular separations[J]. Coordination Chemistry Reviews, 2021, 437: 213794. |
31 | LIN YS. Metal organic framework membranes for separation applications[J]. Current Opinion in Chemical Engineering, 2015, 8: 21-28. |
32 | WIJENAYAKE Sumudu N, PANAPITIYA Nimanka P, VERSTEEG Saskia H, et al. Surface cross-linking of ZIF-8/polyimide mixed matrix membranes (MMMs) for gas separation[J]. Industrial & Engineering Chemistry Research, 2013, 52(21): 6991-7001. |
33 | ZHANG Yahui, TONG Yuping, LI Xinyu, et al. Pebax mixed-matrix membrane with highly dispersed ZIF-8@CNTs to enhance CO2/N2 separation[J]. ACS Omega, 2021, 6(29): 18566-18575. |
34 | LI Hao, Linghan TUO, YANG Kai, et al. Simultaneous enhancement of mechanical properties and CO2 selectivity of ZIF-8 mixed matrix membranes: Interfacial toughening effect of ionic liquid[J]. Journal of Membrane Science, 2016, 511: 130-142. |
35 | MCCARTHY Michael C, Victor VARELA-GUERRERO, BARNETT Gregory V, et al. Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures[J]. Langmuir, 2010, 26(18): 14636-14641. |
36 | Helge BUX, LIANG Fangyi, LI Yanshuo, et al. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis[J]. Journal of the American Chemical Society, 2009, 131(44): 16000-16001. |
37 | CRAVILLON Janosch, SCHRÖDER Christian A, Helge BUX, et al. Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy[J]. CrystEngComm, 2012, 14(2): 492-498. |
38 | WANG Jun-Wei, LI Neng-Xu, LI Ze-Rui, et al. Preparation and gas separation properties of Zeolitic imidazolate frameworks-8 (ZIF-8) membranes supported on silicon nitride ceramic hollow fibers[J]. Ceramics International, 2016, 42(7): 8949-8954. |
39 | ZHANG Jiang-Wei, FANG Hong, HAO Lu-Yuan, et al. Preparation of silicon nitride hollow fibre membrane for desalination[J]. Materials Letters, 2012, 68: 457-459. |
40 | ZHANG Jiangwei, FANG Hong, WANG Junwei, et al. Preparation and characterization of silicon nitride hollow fiber membranes for seawater desalination[J]. Journal of Membrane Science, 2014, 450: 197-206. |
41 | KONG Lingyin, ZHANG Xiongfu, LIU Haiou, et al. Preparation of ZIF-8 membranes supported on macroporous carbon tubes via a dipcoating-rubbing method[J]. Journal of Physics and Chemistry of Solids, 2015, 77: 23-29. |
42 | XU Yinghui, CHANG Ran, QU Hongqiang, et al. ZnO nanofiber skeleton induced robust zeolitic imidazolate framework membranes for gas separation[J]. International Journal of Hydrogen Energy, 2023, 48(61): 23558-23567. |
43 | LI Yujia, MA Changchang, NIAN Pei, et al. Green synthesis of ZIF-8 tubular membranes from a recyclable 2-methylimidazole water-solvent solution by ZnO nanorods self-converted strategy for gas separation[J]. Journal of Membrane Science, 2019, 581: 344-354. |
44 | KONG Lingyin, ZHANG Xiongfu, LIU Yaguang, et al. In situ fabrication of high-permeance ZIF-8 tubular membranes in a continuous flow system[J]. Materials Chemistry and Physics, 2014, 148(1/2): 10-16. |
45 | HOU Jiamin, WEI Yanying, ZHOU Sheng, et al. Highly efficient H2/CO2 separation via an ultrathin metal-organic framework membrane[J]. Chemical Engineering Science, 2018, 182: 180-188. |
46 | LI Xiaolei, TAO Shuo, LI Keda, et al. In situ synthesis of ZIF-8 membranes with gas separation performance in a deep eutectic solvent[J]. Acta Physico-Chimica Sinica, 2016, 32(6): 1495-1500. |
47 | ACEITUNO MELGAR Víctor Manuel, KIM Jinsoo, OTHMAN Mohd Roslee. Zeolitic imidazolate framework membranes for gas separation: A review of synthesis methods and gas separation performance[J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 1-15. |
48 | FAN Lili, XUE Ming, KANG Zixi, et al. Electrospinning technology applied in zeolitic imidazolate framework membrane synthesis[J]. Journal of Materials Chemistry, 2012, 22(48): 25272-25276. |
49 | Helge BUX, FELDHOFF Armin, CRAVILLON Janosch, et al. Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation[J]. Chemistry of Materials, 2011, 23(8): 2262-2269. |
50 | TAO Kai, KONG Chunlong, CHEN Liang. High performance ZIF-8 molecular sieve membrane on hollow ceramic fiber via crystallizing-rubbing seed deposition[J]. Chemical Engineering Journal, 2013, 220: 1-5. |
51 | YIN Hang, LEE Taehee, CHOI Jungkyu, et al. On the zeolitic imidazolate framework-8 (ZIF-8) membrane for hydrogen separation from simulated biomass-derived syngas[J]. Microporous and Mesoporous Materials, 2016, 233: 70-77. |
52 | ZHANG Hangliao, WANG Xiaobin, WEI Luyang, et al. A simple seed-embedded method to prepare ZIF-8 membranes supported on flexible PESf hollow fibers[J]. Journal of Industrial and Engineering Chemistry, 2019, 72: 222-231. |
53 | MA Yingnan, SUN Yuxiu, YIN Jian, et al. A MOF membrane with ultrathin ZIF-8 layer bonded on ZIF-8 in situ embedded PSf substrate[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104: 273-283. |
54 | SUHAIMI Nadia Hartini, YEONG Yin Fong, ABDUL AZIZ Hasya Nazifashafa, et al. Synthesis of ZIF-8 tubular membrane via solvent evaporation seeding coupled with microwave assisted heating method for separation of small molecule gases[J]. Chemosphere, 2022, 308: 136167. |
55 | WU Xiaoke, YANG Yanwei, LU Xiaofei, et al. Seeded growth of high-performance ZIF-8 membranes in thick wall autoclaves assisted by modulator[J]. Journal of Membrane Science, 2020, 613: 118518. |
56 | GE Lei, ZHOU Wei, DU Aijun, et al. Porous polyethersulfone-supported zeolitic imidazolate framework membranes for hydrogen separation[J]. The Journal of Physical Chemistry C, 2012, 116(24): 13264-13270. |
57 | HU Pan, YANG Yefeng, MAO Yiyin, et al. Room temperature synthesis of ZIF-8 membranes from seeds anchored in gelatin films for gas separation[J]. CrystEngComm, 2015, 17(7): 1576-1582. |
58 | LIU Qian, WANG Nanyi, Jürgen CARO, et al. Bio-inspired polydopamine: A versatile and powerful platform for covalent synthesis of molecular sieve membranes[J]. Journal of the American Chemical Society, 2013, 135(47): 17679-17682. |
59 | HUANG Aisheng, LIU Qian, WANG Nanyi, et al. Highly hydrogen permselective ZIF-8 membranes supported on polydopamine functionalized macroporous stainless-steel-nets[J]. Journal of Materials Chemistry A, 2014, 2(22): 8246-8251. |
60 | XIE Zhong, YANG Jianhua, WANG Jinqu, et al. Deposition of chemically modified α-Al2O3 particles for high performance ZIF-8 membrane on a macroporous tube[J]. Chemical Communications, 2012, 48(48): 5977-5979. |
61 | XIONG Shaohui, PAN Chunyue, DAI Guoliu, et al. Interfacial co-weaving of AO-PIM-1 and ZIF-8 in composite membranes for enhanced H2 purification[J]. Journal of Membrane Science, 2022, 645: 120217. |
62 | MA Liang, SVEC Frantisek, TAN Tianwei, et al. In-situ growth of highly permeable zeolite imidazolate framework membranes on porous polymer substrate using metal chelated polyaniline as interface layer[J]. Journal of Membrane Science, 2019, 576: 1-8. |
63 | YU Xinyao, LUO Tao, ZHANG Yongxing, et al. Adsorption of lead(Ⅱ) on O2-plasma-oxidized multiwalled carbon nanotubes: Thermodynamics, kinetics, and desorption[J]. ACS Applied Materials & Interfaces, 2011, 3(7): 2585-2593. |
64 | Sharafat ALI, SHAH Izaz ALI, AHMAD Aziz, et al. Ar/O2 plasma treatment of carbon nanotube membranes for enhanced removal of zinc from water and wastewater: A dynamic sorption-filtration process[J]. Science of the Total Environment, 2019, 655: 1270-1278. |
65 | SHAN Yongjiang, HE Mingliang, ZHANG Fei, et al. Plasma-assisted synthesis of ZIF-8 membrane for hydrogen separation[J]. Separation and Purification Technology, 2023, 317: 123871. |
66 | WU Xiaocao, LIU Chuanyao, Jürgen CARO, et al. Facile synthesis of molecular sieve membranes following “like grows like” principle[J]. Journal of Membrane Science, 2018, 559: 1-7. |
67 | GASCON Jorge, KAPTEIJN Freek. Metal-organic framework membranes—High potential, bright future?[J]. Angewandte Chemie International Edition, 2010, 49(9): 1530-1532. |
68 | CARO Juergen. Are MOF membranes better in gas separation than those made of zeolites?[J]. Current Opinion in Chemical Engineering, 2011, 1(1): 77-83. |
69 | HUANG Aisheng, Helge BUX, STEINBACH Frank, et al. Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker[J]. Angewandte Chemie International Edition, 2010, 49(29): 4958-4961. |
70 | HUANG Aisheng, DOU Wei, Jürgen CARO. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization[J]. Journal of the American Chemical Society, 2010, 132(44): 15562-15564. |
71 | WU Qi, JIAO Yang, LIU Lu, et al. Highly (222)-oriented flexible hollow fiber-supported metal-organic framework membranes for ultra-permeable and selective H2/CO2 separation[J]. Chemical Engineering Journal, 2023, 461: 141976. |
72 | RUAN Xuehua, ZHANG Xinfang, LIAO Xuhang, et al. Enhancing mechanical stability and uniformity of 2-D continuous ZIF-8 membranes by Zn(Ⅱ)-doped polydopamine modification[J]. Journal of Membrane Science, 2017, 541: 101-107. |
73 | ZHANG Guoliang, TANG Kaijie, ZHANG Xu, et al. Self-assembly of defect-free polymer-based zeolite imidazolate framework composite membranes with metal-phenolic networks for high efficient H2/CH4 separation[J]. Journal of Membrane Science, 2021, 617: 118612. |
74 | YAN Tao, YANG Jianhua, LU Jinming, et al. Preparation and gas separation performance of seeding-free aqueous synthesis ZIF-8 membrane by homologous-like ligands method[J]. Microporous and Mesoporous Materials, 2022, 346: 112293. |
75 | 王新赫, 杜轩成, 刘彦铄, 等. 氢气和甲醇联产的太阳能化学链甲烷湿重整系统模拟[J]. 中国科技论文, 2019, 14(4): 403-409. |
WANG Xinhe, DU Xuancheng, LIU Yanshuo, et al. Simulation of solar driven chemical looping steam methane reforming system for co-production of hydrogen and methanol[J]. China Sciencepaper, 2019, 14(4): 403-409. | |
76 | SHEKHAH Osama, SWAIDAN Raja, BELMABKHOUT Youssef, et al. The liquid phase epitaxy approach for the successful construction of ultra-thin and defect-free ZIF-8 membranes: Pure and mixed gas transport study[J]. Chemical Communications, 2014, 50(17): 2089-2092. |
77 | HE Guangwei, DAKHCHOUNE Mostapha, ZHAO Jing, et al. Electrophoretic nuclei assembly for crystallization of high-performance membranes on unmodified supports[J]. Advanced Functional Materials, 2018, 28(20): 1707427. |
78 | YANG Pingping, LI Zhan, GAO Zhuangzhuang, et al. Solvent-free crystallization of zeolitic imidazolate framework membrane via layer-by-layer deposition[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 4158-4164. |
79 | YANG Kun, BAN Yujie, GUO Ang, et al. In-situ interfacial assembly of ultra-H2-permeable metal-organic framework membranes for H2/CO2 separation[J]. Journal of Membrane Science, 2020, 611: 118419. |
80 | HONG Xilu, LU Zong, ZHAO Yali, et al. Fast fabrication of freestanding MXene-ZIF-8 dual-layered membranes for H2/CO2 separation[J]. Journal of Membrane Science, 2022, 642: 119982. |
[1] | 周天宇, 阮雪华, 陈博, 张元夫, 肖武, 贺高红. 利用氢气分离膜降低乙烯深冷系统制冷压缩机的功耗[J]. 化工进展, 2016, 35(05): 1555-1560. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |