化工进展 ›› 2025, Vol. 44 ›› Issue (1): 286-296.DOI: 10.16085/j.issn.1000-6613.2024-0108
收稿日期:
2024-01-14
修回日期:
2024-05-28
出版日期:
2025-01-15
发布日期:
2025-02-13
通讯作者:
彭小明
作者简介:
游小银(2002—),女,硕士研究生,研究方向为高级氧化。E-mail:2267653733@qq.com。
基金资助:
YOU Xiaoyin(), WANG Chuqiao, LIU Caihua, PENG Xiaoming(
)
Received:
2024-01-14
Revised:
2024-05-28
Online:
2025-01-15
Published:
2025-02-13
Contact:
PENG Xiaoming
摘要:
环境中残留的四环素会对水生生物产生慢性影响,四环素随着生活水体排入景区水体,影响景区水中的水质,本研究采用煅烧法和水热法以橘子皮粉末为原材料制备类石墨烯(GBO),通过氮掺杂优化GBO(NGBO)提高其电子传输速率,将NGBO作为固态电子介质在g-C3N4/BiVO4界面构建Z型三元光催化剂。通过在光催化基础上引入氧化剂H2O2,构建Z型催化剂/光类芬顿催化复合体系,将类芬顿催化降解技术和光催化技术相耦合。将10mg的催化剂和5mmol/L的H2O2加入50mL的10mg/L四环素溶液中,结果表明Z型催化剂光类芬顿催化降解TC的性能,在光照90min后,所制备的CN/NGBO/BV复合材料的光类芬顿催化降解TC能力最强。降解TC的催化能力得到提升的原因是光照和H2O2会促进催化降解TC体系中生成更多的·OH和·O2-,同时实验结果表明光催化技术与类芬顿催化技术存在相互协同作用。
中图分类号:
游小银, 汪楚乔, 刘才华, 彭小明. Z型CN/NGBO/BV催化剂体系的构筑及光类芬顿降解四环素性能[J]. 化工进展, 2025, 44(1): 286-296.
YOU Xiaoyin, WANG Chuqiao, LIU Caihua, PENG Xiaoming. Z-scheme CN/NGBO/BV catalytic system and its photo-like Fenton degradation performance of tetracycline[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 286-296.
样品 | 光催化 | 类芬顿 | 光类芬顿 | 协同指数kS | |||
---|---|---|---|---|---|---|---|
kP | k2 | kF | R2 | kPF | R2 | ||
g-C3N4 | 0.0036 | 0.9350 | 0.0035 | 0.9905 | 0.0104 | 0.9704 | 1.465 |
BiVO4 | 0.0076 | 0.9861 | 0.0038 | 0.9988 | 0.0109 | 0.9851 | 0.956 |
CN/BV | 0.0079 | 0.9897 | 0.0039 | 0.9362 | 0.0129 | 0.9939 | 1.093 |
CN/NGBO/BV | 0.0125 | 0.9952 | 0.0065 | 0.9997 | 0.0249 | 0.9203 | 1.311 |
表1 制备样品的光催化、非均相类芬顿和光类芬顿反应速率
样品 | 光催化 | 类芬顿 | 光类芬顿 | 协同指数kS | |||
---|---|---|---|---|---|---|---|
kP | k2 | kF | R2 | kPF | R2 | ||
g-C3N4 | 0.0036 | 0.9350 | 0.0035 | 0.9905 | 0.0104 | 0.9704 | 1.465 |
BiVO4 | 0.0076 | 0.9861 | 0.0038 | 0.9988 | 0.0109 | 0.9851 | 0.956 |
CN/BV | 0.0079 | 0.9897 | 0.0039 | 0.9362 | 0.0129 | 0.9939 | 1.093 |
CN/NGBO/BV | 0.0125 | 0.9952 | 0.0065 | 0.9997 | 0.0249 | 0.9203 | 1.311 |
1 | WANG Zhihong, LAI Cui, QIN Lei, et al. ZIF-8-modified MnFe2O4 with high crystallinity and superior photo-Fenton catalytic activity by Zn-O-Fe structure for TC degradation[J]. Chemical Engineering Journal, 2020, 392: 124851. |
2 | 胡晓峰, 彭清琪, 张文华, 等. g-C3N4纳米片光电极的制备及其光电催化降解四环素性能[J]. 材料工程, 2020, 48(12): 82-89. |
HU Xiaofeng, PENG Qingqi, ZHANG Wenhua, et al. Preparation of g-C3N4 nanosheets photoelectrode and its photoelectrocatalytic activity for tetracycline degradation[J]. Journal of Materials Engineering, 2020, 48(12): 82-89. | |
3 | LIU Caihua, DAI Hongling, TAN Chaoqun, et al. Photo-Fenton degradation of tetracycline over Z-scheme Fe-g-C3N4/Bi2WO6 heterojunctions: Mechanism insight, degradation pathways and DFT calculation[J]. Applied Catalysis B: Environmental, 2022, 310: 121326. |
4 | ABINAYA Manickavasagan, GOVINDAN Kadarkarai, KALPANA Murugesan, et al. Reduction of hexavalent chromium and degradation of tetracycline using a novel indium-doped Mn2O3 nanorod photocatalyst[J]. Journal of Hazardous Materials, 2020, 397: 122885. |
5 | 刘华瑜. 碳材料对土壤及水体中四环素迁移及环境行为影响的研究[D]. 济南: 山东大学, 2020. |
LIU Huayu. Effects of carbon materials on migration and environmental behavior of tetracycline in soil and water[D]. Jinan: Shandong University, 2020. | |
6 | 石宇, 杨晓婷, 兰贵红, 等. MnO x 掺杂纳米石墨阴极的制备及其对盐酸四环素的降解[J]. 精细化工, 2022, 39(4): 798-805. |
SHI Yu, YANG Xiaoting, LAN Guihong, et al. Preparation of nano graphite cathode doped with MnO x and its degradation for tetracycline hydrochloride[J]. Fine Chemicals, 2022, 39(4): 798-805. | |
7 | FU Junwei, YU Jiaguo, JIANG Chuanjia, et al. g-C3N4-based heterostructured photocatalysts[J]. Advanced Energy Materials, 2018, 8(3): 1701503. |
8 | 徐文媛, 秦晓丹, 况熙. TiO2/RGO和Fe3O4/RGO催化处理模拟废水的研究[J]. 华东交通大学学报, 2019, 36(5): 109-114. |
XU Wenyuan, QIN Xiaodan, KUANG Xi. Study on catalytic treatment of simulated wastewater by TiO2/RGO and Fe3O4/RGO[J]. Journal of East China Jiaotong University, 2019, 36(5): 109-114. | |
9 | ZHANG Yanan, ZHAO Yangguo, YANG Dexiang, et al. Insight into the removal of tetracycline-resistant bacteria and resistance genes from mariculture wastewater by ultraviolet/persulfate advanced oxidation process[J]. Journal of Hazardous Materials Advances, 2022, 7: 100129. |
10 | 郭丰. 化学氧化法处理抗生素制药废水[J]. 世界最新医学信息文摘, 2016, 16(59): 249. |
GUO Feng. Chemical oxidation method for the treatment of antibiotic pharmaceutical wastewater[J]. World Latest Medicine Information, 2016, 16(59): 249. | |
11 | ZHU Ying, LIU Kun, MUHAMMAD Yaseen, et al. Effects of divalent copper on tetracycline degradation and the proposed transformation pathway[J]. Environmental Science and Pollution Research, 2020, 27(5): 5155-5167. |
12 | 华方霞. 半导体导带能级电位对Ag@AgX/半导体复合材料光催化性能影响研究[D]. 青岛: 青岛科技大学, 2016. |
HUA Fangxia. Effect of semiconductor conduction band on the photocatalytic property of Ag@AgX/semiconductor composite[D]. Qingdao: Qingdao University of Science & Technology, 2016. | |
13 | CIONTI C, PARGOLETTI E, FALLETTA E, et al. Combining pH triggered adsorption and photocatalysis for the remediation of complex water matrices[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108468. |
14 | RATHI Anuj K, Hana KMENTOVÁ, NALDONI Alberto, et al. Significant enhancement of photoactivity in hybrid TiO2/g-C3N4 nanorod catalysts modified with Cu-Ni-based nanostructures[J]. ACS Applied Nano Materials, 2018, 1(6): 2526-2535. |
15 | 黑梦云, 顾彦, 彭钦天, 等. Triton X-100/正戊醇/环己烷微乳液条件下BiOBr制备及其光催化性能[J]. 武汉大学学报(理学版), 2021, 67(1): 52-60. |
Mengyun HEI, GU Yan, PENG Qintian, et al. Preparation of BiOBr under triton X-100/n-pentanol/cyclohexane microemulsion and its photocatalytic performance[J]. Journal of Wuhan University (Natural Science Edition), 2021, 67(1): 52-60. | |
16 | GONG Yinan, WANG Ying, TANG Miaomiao, et al. A two-step process coupling photocatalysis with adsorption to treat tetracycline copper(Ⅱ) hybrid wastewaters[J]. Journal of Water Process Engineering, 2022, 47: 102710. |
17 | SUN Jianhua, ZHANG Jinshui, ZHANG Mingwen, et al. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles[J]. Nature Communications, 2012, 3: 1139. |
18 | XIAO Xin, WANG Yihui, BO Qiu, et al. One-step preparation of sulfur-doped porous g-C3N4 for enhanced visible light photocatalytic performance[J]. Dalton Transactions, 2020, 49(24): 8041-8050. |
19 | Y Ashok Kumar REDDY, AJITHA B, SREEDHAR Adem, et al. Enhanced UV photodetector performance in bi-layer TiO2/WO3 sputtered films[J]. Applied Surface Science, 2019, 494: 575-582. |
20 | FU Ze, WANG Hua, WANG Yinuo, et al. Construction of three-dimensional g-C3N4/Gr-CNTs/TiO2 Z-scheme catalyst with enhanced photocatalytic activity[J]. Applied Surface Science, 2020, 510: 145494. |
21 | CHEN Tianjun, SONG Chengjie, FAN Mingshan, et al. In-situ fabrication of CuS/g-C3N4 nanocomposites with enhanced photocatalytic H2-production activity via photoinduced interfacial charge transfer[J]. International Journal of Hydrogen Energy, 2017, 42(17): 12210-12219. |
22 | VILLARREAL R C, LUQUE-MORALES M, CHINCHILLAS-CHINCHILLAS M J, et al. Langmuir-Hinshelwood-Hougen-Watson model for the study of photodegradation properties of zinc oxide semiconductor nanoparticles synthetized by Peumus boldus [J]. Results in Physics, 2022, 36: 105421. |
23 | SAFAEI Javad, ULLAH Habib, MOHAMED Nurul Aida, et al. Enhanced photoelectrochemical performance of Z-scheme g-C3N4/BiVO4 photocatalyst[J]. Applied Catalysis B: Environmental, 2018, 234: 296-310. |
24 | 陈晴空. 基于·SO4 -的非均相类Fenton-光催化协同氧化体系研究[D]. 重庆: 重庆大学, 2014. |
CHEN Qingkong. Study on synergistic heterogeneous Fenton-photocatalytic oxidation system based on sulfate radicals[D]. Chongqing: Chongqing University, 2014. | |
25 | JIANG Yong, LIAO Jinfeng, CHEN Hongyan, et al. All-solid-state Z-scheme α-Fe2O3/amine-RGO/CsPbBr3 hybrids for visible-light-driven photocatalytic CO2 reduction[J]. Chem, 2020, 6(3): 766-780. |
26 | HU Xiaolin, LIU Xiang, TIAN Jian, et al. Towards full-spectrum (UV, visible, and near-infrared) photocatalysis: Achieving an all-solid-state Z-scheme between Ag2O and TiO2 using reduced graphene oxide as the electron mediator[J]. Catalysis Science & Technology, 2017, 7(18): 4193-4205. |
27 | LIU Zhangsheng, WANG Jinxiang. Face-to-face BiOCl/BiO2- x heterojunction composites with highly efficient charge separation and photocatalytic activity[J]. Journal of Alloys and Compounds, 2020, 832: 153771. |
28 | MA Ran, ZHANG Sai, LI Lei, et al. Enhanced visible-light-induced photoactivity of type-Ⅱ CeO2/g-C3N4 nanosheet toward organic pollutants degradation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9699-9708. |
29 | ZHAO Wei, SHE Tiantian, ZHANG Jingyi, et al. A novel Z-scheme CeO2/g-C3N4 heterojunction photocatalyst for degradation of Bisphenol A and hydrogen evolution and insight of the photocatalysis mechanism[J]. Journal of Materials Science & Technology, 2021, 85: 18-29. |
30 | HUANG Kelei, LI Chunhu, ZHANG Xiuli, et al. Self-assembly synthesis of phosphorus-doped tubular g-C3N4/Ti3C2 MXene Schottky junction for boosting photocatalytic hydrogen evolution[J]. Green Energy & Environment, 2023, 8(1): 233-245. |
[1] | 赵丽阳, 李倩, 何佩熹, 潘鸿辉, 刘艳, 刘细祥. 磷钼酸-Fe3O4球磨共改性污泥基生物炭对四环素的吸附特性[J]. 化工进展, 2025, 44(1): 583-595. |
[2] | 张政, 刘琳, 李子晨, 王梦琦, 黄春燕, 葛圆圆. 载铜地质聚合物微球的制备及其催化降解双酚S的性能[J]. 化工进展, 2024, 43(9): 5290-5301. |
[3] | 罗臻, 王庆吉, 王占生, 杨雪莹, 谢加才, 王浩. 炼化污染场地抽出水强氧化短程处理工艺[J]. 化工进展, 2024, 43(7): 4155-4163. |
[4] | 刘梦凡, 王华伟, 王亚楠, 张艳茹, 蒋旭彤, 孙英杰. Bio-FeMnCeO x 活化PMS降解四环素效能与机制[J]. 化工进展, 2024, 43(6): 3492-3502. |
[5] | 曾湘楚, 莫镇榕, 银秀菊, 武哲. N、S共掺杂磁性生物炭对水体Cu(Ⅱ)和四环素的协同吸附机制[J]. 化工进展, 2024, 43(12): 7004-7017. |
[6] | 周添红, 王金怡, 苏旭, 曾虹霖, 翟天骄. 基于尖晶石型CoFe2O4高级氧化降解水中有机污染物研究进展[J]. 化工进展, 2024, 43(11): 6412-6427. |
[7] | 徐诗琪, 朱颖, 陈宁华, 陆彩妹, 江露莹, 王俊辉, 覃岳隆, 张寒冰. 环境因素对水体中四环素光催化降解行为的影响[J]. 化工进展, 2024, 43(1): 551-559. |
[8] | 柯玉鑫, 朱晓丽, 司绍诚, 张婷, 王军强, 张子夜. 废白土衍生吸附剂协同去除水中的四环素和铜[J]. 化工进展, 2023, 42(11): 5981-5992. |
[9] | 黄嘉绮, 葛圆圆, 李志礼, 王艺频, 崔学民. 生物炭/地聚物复合膜的制备及其对四环素的去除[J]. 化工进展, 2022, 41(1): 427-434. |
[10] | 梁一尊, 葛艳清, 王驰, 李凯, 梅毅. 低维黑磷的制备及其在光催化降解领域的应用研究进展[J]. 化工进展, 2021, 40(2): 845-858. |
[11] | 汤睿, 张寒冰, 陆彩妹, 刘坤, 王忠凯, 余思珊, 童张法, 季军荣. 有机磁性膨润土对环丙沙星和四环素的吸附性能[J]. 化工进展, 2021, 40(11): 6235-6245. |
[12] | 赵朝成, 吴光锐. MOFs复合材料催化降解水中有机污染物的应用研究进展[J]. 化工进展, 2019, 38(04): 1775-1784. |
[13] | 曹丽丽, 蒋善庆, 凌泽玉, 汪楚乔, 许霞, 王利平. 水热合成Ag+掺杂SrTiO3可见光催化降解四环素性能和机制[J]. 化工进展, 2018, 37(11): 4500-4508. |
[14] | 宫慧勇, 蒋晶晶, 刘韶泽, 郭永, 李作鹏. 纳米氧化亚铜的形貌控制合成及光催化降解有机染料的研究进展[J]. 化工进展, 2015, 34(11): 3915-3925. |
[15] | 叶林静, 安小英, 姜韵婕, 闫超, 关卫省. ZnO/CdS复合光催化剂的制备及降解四环素类抗生素[J]. 化工进展, 2015, 34(11): 3944-3950. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 18
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 79
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |