化工进展 ›› 2025, Vol. 44 ›› Issue (2): 1147-1156.DOI: 10.16085/j.issn.1000-6613.2024-0261
• 资源与环境化工 • 上一篇
闫鹏程1,2(), 高卓凡2(
), 周志辉1(
), 吴红丹1, 陈霞2, 周显2, 范泽宇2, 邓闪闪2, 鲁麒2, 向媛3
收稿日期:
2024-02-04
修回日期:
2024-04-27
出版日期:
2025-02-25
发布日期:
2025-03-10
通讯作者:
高卓凡,周志辉
作者简介:
闫鹏程(1999-),男,硕士研究生,研究方向为有机溶剂纳滤膜。E-mail:278600898@qq.com。
基金资助:
YAN Pengcheng1,2(), GAO Zhuofan2(
), ZHOU Zhihui1(
), WU Hongdan1, CHEN Xia2, ZHOU Xian2, FAN Zeyu2, DENG Shanshan2, LU Qi2, XIANG Yuan3
Received:
2024-02-04
Revised:
2024-04-27
Online:
2025-02-25
Published:
2025-03-10
Contact:
GAO Zhuofan, ZHOU Zhihui
摘要:
有机溶剂纳滤(OSN)作为一种新兴的膜分离技术在医药化工等领域得到广泛应用。然而常见的纳滤膜不具备良好的耐溶剂性能,因此选择适合的膜材料是有机溶剂纳滤工业应用的关键。以哌嗪(PIP)为水相单体,均苯三甲酰氯(TMC)为油相单体,通过界面聚合法在聚醚醚酮(PEEK)多孔膜上负载了聚酰胺(PA)功能层,制备了良好耐溶剂性能的PA/PEEK复合纳滤膜,并对其微观结构、亲水性能等进行了研究。探究了PIP浓度对复合膜渗透分离性能的影响,并对性能最优异的膜进行了多种有机溶剂的通量测试以及低价盐离子和小分子有机物截留性能测试。结果表明,0.3%(质量分数)PIP浓度制备的膜具有最优渗透分离性能,其水通量达到(4.81±0.04)L/(h·m2·bar)(1bar=105Pa),Na2SO4截留率为98.23%;复合膜对甲醇溶剂通量达到(2.77±0.22)L/(h·m2·bar),在乙醇溶剂中的截留分子量约为519g/mol。此外,复合膜表现出稳定的长期有机溶剂纳滤性能。
中图分类号:
闫鹏程, 高卓凡, 周志辉, 吴红丹, 陈霞, 周显, 范泽宇, 邓闪闪, 鲁麒, 向媛. 聚酰胺/聚醚醚酮复合膜的制备及其有机溶剂纳滤性能[J]. 化工进展, 2025, 44(2): 1147-1156.
YAN Pengcheng, GAO Zhuofan, ZHOU Zhihui, WU Hongdan, CHEN Xia, ZHOU Xian, FAN Zeyu, DENG Shanshan, LU Qi, XIANG Yuan. Preparation of polyamide/poly ether ether ketone composite membranes and their organic solvents nanofiltration properties[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1147-1156.
膜样品 | 乙醇 | 正己烷 | NMP | THF |
---|---|---|---|---|
PA/PEEK | + | + | + | + |
Duramem280 | + | + | - | - |
Puramem900 | + | + | + | + |
表1 PA/PEEK复合膜与商业有机溶剂纳滤膜的耐溶剂性能
膜样品 | 乙醇 | 正己烷 | NMP | THF |
---|---|---|---|---|
PA/PEEK | + | + | + | + |
Duramem280 | + | + | - | - |
Puramem900 | + | + | + | + |
膜样品编号 | 原子分数/% | O/N | |||
---|---|---|---|---|---|
C | N | O | S | ||
M1 | 76.6 | 1.29 | 21.57 | 0.54 | 16.7 |
M2 | 60.6 | 11.23 | 24.8 | 3.37 | 2.21 |
M3 | 63.08 | 11.27 | 22.92 | 2.73 | 2.03 |
M4 | 68.35 | 11.53 | 18.31 | 1.8 | 1.59 |
M5 | 69.81 | 11.44 | 17.64 | 1.12 | 1.54 |
表2 PA/PEEK复合膜不同元素的原子分数
膜样品编号 | 原子分数/% | O/N | |||
---|---|---|---|---|---|
C | N | O | S | ||
M1 | 76.6 | 1.29 | 21.57 | 0.54 | 16.7 |
M2 | 60.6 | 11.23 | 24.8 | 3.37 | 2.21 |
M3 | 63.08 | 11.27 | 22.92 | 2.73 | 2.03 |
M4 | 68.35 | 11.53 | 18.31 | 1.8 | 1.59 |
M5 | 69.81 | 11.44 | 17.64 | 1.12 | 1.54 |
溶剂 | δps/MPa1/2 | MVs/cm3 | ηs/cP | δps·MVs-1·ηs-1/MPa1/2·cP-1·cm-3 |
---|---|---|---|---|
甲醇 | 12.3 | 40.7 | 0.56 | 0.54 |
乙醇 | 8.8 | 58.2 | 1.1 | 0.14 |
异丙醇 | 6.1 | 76.8 | 2.05 | 0.04 |
DMF | 13.7 | 77 | 0.82 | 0.22 |
乙酸乙酯 | 5.3 | 97.6 | 0.45 | 0.12 |
丙酮 | 10.4 | 73.4 | 0.32 | 0.44 |
正己烷 | 0 | 131.4 | 0.33 | 0 |
表3 不同有机溶剂的性质参数
溶剂 | δps/MPa1/2 | MVs/cm3 | ηs/cP | δps·MVs-1·ηs-1/MPa1/2·cP-1·cm-3 |
---|---|---|---|---|
甲醇 | 12.3 | 40.7 | 0.56 | 0.54 |
乙醇 | 8.8 | 58.2 | 1.1 | 0.14 |
异丙醇 | 6.1 | 76.8 | 2.05 | 0.04 |
DMF | 13.7 | 77 | 0.82 | 0.22 |
乙酸乙酯 | 5.3 | 97.6 | 0.45 | 0.12 |
丙酮 | 10.4 | 73.4 | 0.32 | 0.44 |
正己烷 | 0 | 131.4 | 0.33 | 0 |
测试组分 | 分子量/g·mol-1 | 电荷 |
---|---|---|
虎红(RB) | 1017 | 负电荷 |
刚果红(CR) | 696 | 负电荷 |
罗丹明B(RDB) | 479 | 正电荷 |
四环素(TC) | 444 | 电中性 |
亚甲基蓝(MB) | 320 | 正电荷 |
表4 测试有机物小分子的性质
测试组分 | 分子量/g·mol-1 | 电荷 |
---|---|---|
虎红(RB) | 1017 | 负电荷 |
刚果红(CR) | 696 | 负电荷 |
罗丹明B(RDB) | 479 | 正电荷 |
四环素(TC) | 444 | 电中性 |
亚甲基蓝(MB) | 320 | 正电荷 |
1 | ALARDHI Saja M, Nisreen S ALI, SAADY Noori M Cata, et al. Separation techniques in different configurations of hybrid systems via synergetic adsorption and membrane processes for water treatment: A review[J]. Journal of Industrial and Engineering Chemistry, 2024,130: 91-104. |
2 | MEHRABI Mohammad, VATANPOUR Vahid. Polyimide-based separation membranes for liquid separation: A review on fabrication techniques, applications, and future perspectives[J]. Materials Today Chemistry, 2024, 35: 101895. |
3 | CHENG Xiquan, ZHANG Yongling, WANG Zhenxing, et al. Recent advances in polymeric solvent-resistant nanofiltration membranes[J]. Advances in polymer technology, 2014, 33: 21455. |
4 | GAO Zhuofan, LIU Jiangtao, CHUNG T S. Rapid in situ growth of covalent organic frameworks on hollow fiber substrates with Janus-like characteristics for efficient organic solvent nanofiltration[J]. Separation and Purification Technology, 2022, 294: 121166. |
5 | BIRNIWA Abdullahi Haruna, HABIBU Shehu, ABDULLAHI Shehu Sa’ad, et al. Membrane technologies for heavy metals removal from water and wastewater: A mini review[J]. Case Studies in Chemical and Environmental Engineering, 2024, 9: 100538. |
6 | SHEN Liang, WANG Fangqian, TIAN Lian, et al. High-performance thin-film composite membranes with surface functionalization by organic phosphonic acids[J]. Journal of Membrane Science, 2018, 563: 284-297. |
7 | FADIL Abdelhakim EL, VERBEKE Rhea, KYBURZ Markus, et al. From academia to industry: Success criteria for upscaling nanofiltration membranes for water and solvent applications[J]. Journal of Membrane Science, 2023, 675: 121393. |
8 | SHI Guimin, FENG Yingnan, LI Bofan, et al. Recent progress of organic solvent nanofiltration membranes[J]. Progress in Polymer Science, 2021,123: 101470. |
9 | BESHAHWORED Siyum Shewakena, HUANG Yueh-Han, ABDI Zelalem Gudeta, et al. Polybenzimidazole (PBI) membranes cross-linked with various cross-linkers and impregnated with 4-sulfocalix[4]arene (SCA4) for organic solvent nanofiltration (OSN)[J]. Journal of Membrane Science, 2022, 663: 121039. |
10 | LI Shuxuan, LIU Shaoxiao, SU Baowei, et al. Thin film nanocomposite polyamide membrane doped with amino-functionalized graphene quantum dots for organic solvent nanofiltration[J]. Journal of Membrane Science, 2023, 685: 121960. |
11 | SILVA BURGAL João DA, PEEVA Ludmila G, KUMBHARKAR Santosh, et al. Organic solvent resistant poly(ether-ether-ketone) nanofiltration membranes[J]. Journal of Membrane Science, 2015, 479: 105-116. |
12 | CUI Chun, LUO Cong, TIAN Tian, et al. Comparative evaluation of acid-resistant nanofiltration membranes for heavy metal removal in acidic wastewater[J]. Desalination, 2024, 576: 117349. |
13 | SILVA BURGAL João DA, PEEVA Ludmila, LIVINGSTON Andrew. Negligible ageing in poly(ether-ether-ketone) membranes widens application range for solvent processing[J]. Journal of Membrane Science, 2017, 525: 48-56. |
14 | LING Xuanzhe, JING Xishuang, ZHANG Chengyang, et al. Polyether ether ketone (PEEK) properties and its application status[J]. IOP Conference Series: Earth and Environmental Science, 2020, 453(1): 012080. |
15 | SUN Yuxuan, ZHOU Shengyang, QIN Guorui, et al. A chemical-induced crystallization strategy to fabricate poly(ether ether ketone) asymmetric membranes for organic solvent nanofiltration[J]. Journal of Membrane Science, 2021, 620: 118899. |
16 | KASEI Asahi, KAISHA Kabushiki. Process for Preparing ploy ether ether ketone membrane: EP796649(B1)[P]. 2006-03-29. |
17 | PEEVA L, LIVINGSTON A. Potential of organic solvent nanofiltration in continuous catalytic reactions[J]. Procedia Engineering, 2012, 44: 307-309. |
18 | YU Jian, ZHANG Ling, SHEN Liguo, et al. In situ grown cyclodextrin metal-organic framework nanoparticles templated stripe nano-wrinkled polyamide nanofiltration membranes for efficient desalination and antibiotic removal[J]. Journal of Membrane Science, 2024, 694: 122413. |
19 | 高蔓彤, 王升欢, 刘继桥, 等. 基膜表面孔隙率对聚酰胺复合纳滤膜性能的影响[J]. 膜科学与技术, 2022, 42(5): 64-69, 78. |
GAO Mantong, WANG Shenghuan, LIU Jiqiao, et al. Effect of surface porosity of support membrane on structure and performance of polyamide composite nanofiltration membrane[J].Membrane Science and Technology, 2022, 42(5): 64-69, 78. | |
20 | GUAN Kecheng, FANG Shang, ZHOU Siyu, et al. Thin film composite membrane with improved permeance for reverse osmosis and organic solvent reverse osmosis[J]. Journal of Membrane Science, 2023, 688: 122104. |
21 | WANG Yumeng, ZHANG Tonghui, SHEN Ke, et al. Low temperature regulated reverse interfacial polymerization for fabricating thin film composite membranes based on nanofibrous substrates[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 683: 133044. |
22 | ZHANG Zhiqiang, WU Qiao, XU Shilin, et al. Ultra-stable fully-aromatic microporous polyamide membrane for molecular sieving of nitrogen over volatile organic compound[J]. Journal of Hazardous Materials, 2023,459:132151. |
23 | ZHANG Xu, FAN Zixuan, XU Wentao, et al. Thin film composite nanofiltration membrane with nanocluster structure mediated by graphene oxide/metal-polyphenol nanonetwork scaffold interlayer[J]. Journal of Membrane Science, 2023, 669: 121330. |
24 | GUO Shiwei, YUAN Bo, WU Jicheng, et al. Proton sponge catalyzes interfacial polymerization in organic phase to enhance nanofiltration membrane performance[J]. Desalination, 2024, 571: 117112. |
25 | CHEN Jingjing, LI Ruilong, LIU Siyu, et al. Surfactant-assisted interfacial polymerization towards high-crystallinity COF membranes for organic solvent nanofiltration[J]. Journal of Membrane Science, 2024, 694: 122404. |
26 | 王伟, 陈中海, 潘巧明, 等. 纳滤和反渗透膜形貌结构与膜性能关系探索[J]. 工业水处理, 2016, 36(7): 39-42. |
WANG Wei, CHEN Zhonghai, PAN Qiaoming, et al. Study on the relationship between the morphologies of nanofiltration and reverse osmose membranes and their performances[J].Industrial Water Treatment, 2016, 36(7): 39-42. | |
27 | CHEN Kuo, LI Peng, ZHANG Hongyu, et al. Organic solvent nanofiltration membrane with improved permeability by in situ growth of metal-organic frameworks interlayer on the surface of polyimide substrate[J]. Separation and Purification Technology, 2020,251: 117387. |
28 | NULENS Ines, PETERS Rasheda, VERBEKE Rhea, et al. MPD and TMC supply as parameters to describe synthesis-morphology-performance relationships of polyamide thin film composite membranes[J]. Journal of Membrane Science, 2023, 667: 121155. |
29 | 常娜, 高曌寰, 荆兆敬, 等. 界面聚合反应有机溶剂对聚酰胺复合纳滤膜结构及性能的影响[J]. 高分子材料科学与工程, 2022, 38(5): 32-42. |
CHANG Na, GAO Zhaohuan, JING Zhaojing, et al. Effect of organic solvents in interfacial polymerization on structure and performance of polyamide composite nanofiltration membrane[J]. Polymer Materials Science & Engineering, 2022, 38(5): 32-42. | |
30 | ZHANG Yuehua, XU Peng, CHEN Xianfu, et al. Preparation of high permeance thin-film composite nanofiltration membrane on macroporous ceramic support[J]. Journal of Membrane Science, 2022, 663: 121076. |
31 | LI Shi, ZHENG Zhihao, XIA Sijie, et al. Fabrication of bamboo cellulose-based nanofiltration membrane for water purification by cross-linking sodium alginate and carboxymethyl cellulose and its dynamics simulation[J]. Chemical Engineering Journal, 2023, 473: 145403. |
32 | LI Tianhao, YE Hao, JIN Jiamin, et al. Electric-field strengthening uranium extraction from seawater assisted by nanofiltration membranes with sieving-adsorption properties[J]. Journal of Membrane Science, 2024, 693: 122334. |
33 | ZHANG Miaomiao, YUAN Jinqiu, YIN Zhuoyu, et al. Organic salt modulated preparation of ultra-thin and loose polyamide nanofiltration membranes with enhanced performance[J]. Journal of Membrane Science, 2023, 680: 121739. |
34 | 王智. 纳滤截留无机离子特性及机理研究[D]. 北京: 清华大学, 2018. |
WANG Zhi.Properties and mechanisms in rejection of mineral ions by nanofiltration[D]. Beijing:Tsinghua University, 2018. | |
35 | ZHANG Yuanyuan, CHEN Yingbo, WANG Meng, et al. Preparation of high temperature resistant polyamide composite nanofiltration membranes by thermally assisted interfacial polymerization[J]. Journal of Membrane Science, 2023, 687: 122020. |
36 | LI Shuxuan, YANG Fangyuan, LIU Shaoxiao, et al. Effective regulating interfacial polymerization process of OSN membrane via in situ constructed nano-porous interlayer of 2D TpHz covalent organic frameworks[J]. Journal of Membrane Science, 2023, 665: 121101. |
37 | LI Shuxuan, YIN Yating, LIU Shaoxiao, et al. Interlayered thin-film nanocomposite membrane with synergetic effect of COFs interlayer and GQDs incorporation for organic solvent nanofiltration[J]. Journal of Membrane Science, 2022, 662: 120930. |
38 | JIN Longming, HU Lijie, LIANG Songmiao, et al. A novel organic solvent nanofiltration (OSN) membrane fabricated by Poly(m-phenylene isophthalamide) (PMIA) under large-scale and continuous process[J]. Journal of Membrane Science, 2022, 647: 120259. |
[1] | 赵珂, 张恒, 翟倩, 甄琪, 苏天阳, 崔景强. PLA/PEG@SDS超细纤维水蒸发器的复合结构设计及其液体传输行为[J]. 化工进展, 2025, 44(2): 1014-1024. |
[2] | 洪思琦, 顾方伟, 郑金玉. PEM水电解制氢低铱催化剂发展现状及展望[J]. 化工进展, 2025, 44(1): 158-168. |
[3] | 刘炜, 张敏, 朱照琪, 王毅, 梁卫东, 孙寒雪. 黑色二氧化钛纳米材料的构筑及其应用现状[J]. 化工进展, 2025, 44(1): 341-353. |
[4] | 陈晓乐, 李娜, 陈霖宇, 周屈兰. ZIFs/PDMDES共混基质膜的制备及其在水溶液中渗透汽化分离乙醇的应用[J]. 化工进展, 2025, 44(1): 407-414. |
[5] | 田晴, 刘青盟, 李方, 杨波, 张思远, 关自良. 细菌的耐盐调控及其在高盐生物脱氮除磷工艺中的应用[J]. 化工进展, 2025, 44(1): 465-476. |
[6] | 李乐天, 陆诗建, 刘含笑, 吴黎明, 刘玲, 康国俊. 有机胺富液解吸再生研究进展[J]. 化工进展, 2025, 44(1): 490-499. |
[7] | 谢钰麟, 饶瑞晔, 黄建, 蒿佳怡, 王友益, 黄琦. 连续ZIF-8膜制备及在氢气分离中的研究进展[J]. 化工进展, 2024, 43(S1): 403-418. |
[8] | 杜小聪, 辛春福, 赵钰. 路用复合相变材料及相变改性沥青性能评价[J]. 化工进展, 2024, 43(S1): 419-430. |
[9] | 周渝, 夏太阳, 韦奇, 唐甜, 田磊. 微通道耦合反渗透膜串联处理甲醇制烯烃废水工艺优化[J]. 化工进展, 2024, 43(S1): 43-51. |
[10] | 薛立新, 涂龙斗, 李士洋, 郑晨晨, 蔡达健, 高从堦. 包含原位生长ZIF-L粒子的PEI基高效染料脱盐混合基质纳滤膜[J]. 化工进展, 2024, 43(S1): 431-442. |
[11] | 马桂璇, 徐子桐, 肖志华, 宁国庆, 魏强, 徐春明. 氧硫双掺杂CNTs水系导电剂辅助构筑高性能石墨/SiO负极[J]. 化工进展, 2024, 43(S1): 443-456. |
[12] | 高觊兴, 丁玉梅, 张超, 谭晶, 丁熙, 李好义, 杨卫民. 熔体微分电纺PLA/PCL微纳米纤维膜的制备及其性能[J]. 化工进展, 2024, 43(S1): 457-468. |
[13] | 张巍, 宋权斌, 周运河, 董梦瑶, 李婕, 伍乔, 付业昊, 梁垚城, 尹艳山, 成珊, 宋健. 全钒液流电池离子导电膜的选择性[J]. 化工进展, 2024, 43(9): 4859-4870. |
[14] | 慕铭, 赵伟伟, 陈光孟, 刘小青. 基于激光诱导石墨烯的应变传感器研究进展[J]. 化工进展, 2024, 43(9): 4970-4979. |
[15] | 申纯宇, 李翠利, 汤建伟, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 纳米氢氧化镁制备及其阻燃应用进展[J]. 化工进展, 2024, 43(9): 4980-4995. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 11
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 27
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |