1 |
韩腾飞, 徐红, 葛晖, 等. 苯与合成气烷基化催化剂的研究进展[J]. 化工进展, 2020, 39(8): 3057-3065.
|
|
HAN Tengfei, XU Hong, GE Hui, et al. Progress of alkylation catalysts for benzene with syngas[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3057-3065.
|
2 |
ZUO Jiachang, LIU Chong, HAN Xiaoqin, et al. Steering CO2 hydrogenation coupled with benzene alkylation toward ethylbenzene and propylbenzene using a dual-bed catalyst system[J]. Chem Catalysis, 2022, 2(5): 1223-1240.
|
3 |
ZUO Jiachang, CHEN Weikun, LIU Jia, et al. Selective methylation of toluene using CO2 and H2 to para-xylene[J]. Science Advances, 2020, 6(34): eaba5433.
|
4 |
TING Kah Wei, KAMAKURA Haruka, POLY Sharmin S, et al. Catalytic methylation of aromatic hydrocarbons using CO2/H2 over Re/TiO2 and H-MOR catalysts[J]. ChemCatChem, 2020, 12(8): 2215-2220.
|
5 |
SHANG Xin, LIU Guodong, SU Xiong, et al. Preferential synthesis of toluene and xylene from CO2 hydrogenation in the presence of benzene through an enhanced coupling reaction[J]. ACS Catalysis, 2022, 12(21): 13741-13754.
|
6 |
LIU Xiangyu, PAN Yanling, ZHANG Peng, et al. Alkylation of benzene with carbon dioxide to low-carbon aromatic hydrocarbons over bifunctional Zn-Ti/HZSM-5 catalyst[J]. Frontiers of Chemical Science and Engineering, 2022, 16(3): 384-396.
|
7 |
CHENG Junjun, ZHAO Yitao, XU Guohao, et al. Zn x Zr/HZSM-5 as efficient catalysts for alkylation of benzene with carbon dioxide[J]. Frontiers of Chemical Science and Engineering, 2023, 17(4): 404-414.
|
8 |
ZHAO Yitao, CHENG Junjun, ZHANG Peng, et al. Examination of key factors determining the catalytic performance of Zn-Ga/HZSM-5 bifunctional catalysts and establishment of reaction network in alkylation of benzene with carbon dioxide[J]. Applied Catalysis A: General, 2022, 643: 118785.
|
9 |
TING Kah Wei, KAMAKURA Haruka, POLY Sharmin S, et al. Catalytic methylation of m-xylene, toluene, and benzene using CO2 and H2 over TiO2-supported Re and zeolite catalysts: Machine-learning-assisted catalyst optimization[J]. ACS Catalysis, 2021, 11(9): 5829-5838.
|
10 |
Vlasta MOHAČEK-GROŠEV, Martina VRANKIĆ, Aleksandar MAKSIMOVIĆ, et al. Influence of titanium doping on the Raman spectra of nanocrystalline ZnAl2O4 [J]. Journal of Alloys and Compounds, 2017, 697: 90-95.
|
11 |
JAIN Megha, Manju, KUMAR Ravi, et al. Defect states and kinetic parameter analysis of ZnAl2O4 nanocrystals by X-ray photoelectron spectroscopy and thermoluminescence[J]. Scientific Reports, 2020, 10(1): 385.
|
12 |
CHIKOIDZE Ekaterine, SARTEL Corinne, MADACI Ismail, et al. P-type ultrawide-band-gap spinel ZnGa2O4: New perspectives for energy electronics[J]. Crystal Growth & Design, 2020, 20(4): 2535-2546.
|
13 |
SHAN Guiye, WANG Shuang, FEI Xiaofang, et al. Heterostructured ZnO/Au nanoparticles-based resonant Raman scattering for protein detection[J]. The Journal of Physical Chemistry B, 2009, 113(5): 1468-1472.
|
14 |
XUE Zhenggang, CHENG Zhixuan, XU Jin, et al. Controllable evolution of dual defect Zni and VO associate-rich ZnO nanodishes with (0001) exposed facet and its multiple sensitization effect for ethanol detection[J]. ACS Applied Materials & Interfaces, 2017, 9(47): 41559-41567.
|
15 |
LIU Fengjun, WANG Xinzhen, CHEN Xiaoyan, et al. Porous ZnO ultrathin nanosheets with high specific surface areas and abundant oxygen vacancies for acetylacetone gas sensing[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24757-24763.
|
16 |
WANG Chen, ZHANG Jianli, GAO Xinhua, et al. CO2 hydrogenation to linear α-olefins on FeC x /ZnO catalysts: Effects of surface oxygen vacancies[J]. Applied Surface Science, 2023, 641: 158543.
|
17 |
WANG Chuanfu, ZHANG Lei, HUANG Xin, et al. Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene[J]. Nature Communications, 2019, 10(1): 4348.
|
18 |
KLINE Charles H, Jr, TURKEVICH John. The vibrational spectrum of pyridine and the thermodynamic properties of pyridine vapors[J]. The Journal of Chemical Physics, 1944, 12(7): 300-309.
|
19 |
CONNELL Glen, DUMESIC J A. Acidic properties of binary oxide catalysts: Ⅱ. Mössbauer spectroscopy and pyridine adsorption for iron supported on magnesia, alumina, and titania[J]. Journal of Catalysis, 1986, 102(1): 216-233.
|
20 |
EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. Journal of Catalysis, 1993, 141(2): 347-354.
|
21 |
YANG Yu, ZHANG Ping. Dissociation of H2 molecule on the β-Ga2O3 (100)B surface: The critical role of oxygen vacancy[J]. Physics Letters A, 2010, 374(40): 4169-4173.
|
22 |
PAN Yunxiang, MEI Donghai, LIU Changjun, et al. Hydrogen adsorption on Ga2O3 surface: A combined experimental and computational study[J]. The Journal of Physical Chemistry C, 2011, 115(20): 10140-10146.
|
23 |
NYBERG Mats, NYGREN Martin A, PETTERSSON Lars G M, et al. Hydrogen dissociation on reconstructed ZnO surfaces[J]. The Journal of Physical Chemistry, 1996, 100(21): 9054-9063.
|
24 |
LING Yunjian, LUO Jie, RAN Yihua, et al. Atomic-scale visualization of heterolytic H2 dissociation and CO x hydrogenation on ZnO under ambient conditions[J]. Journal of the American Chemical Society, 2023, 145(41): 22697-22707.
|
25 |
BLEKEN Francesca Lønstad, CHAVAN Sachin, OLSBYE Unni, et al. Conversion of methanol into light olefins over ZSM-5 zeolite: Strategy to enhance propene selectivity[J]. Applied Catalysis A: General, 2012, 447/448: 178-185.
|
26 |
WESTGÅRD ERICHSEN Marius, SVELLE Stian, OLSBYE Unni. H-SAPO-5 as methanol-to-olefins (MTO) model catalyst: Towards elucidating the effects of acid strength[J]. Journal of Catalysis, 2013, 298: 94-101.
|
27 |
GOBIN O C, REITMEIER S J, JENTYS A, et al. Diffusion pathways of benzene, toluene and p-xylene in MFI[J]. Microporous and Mesoporous Materials, 2009, 125(1/2): 3-10.
|
28 |
YANG Fan, FANG Yuehua, LIU Xiangyu, et al. One-step alkylation of benzene with syngas over non-noble catalysts mixed with modified HZSM-5[J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 13879-13888.
|
29 |
BREEN John, BURCH Robbie, KULKARNI Manisha, et al. Enhanced para-xylene selectivity in the toluene alkylation reaction at ultralow contact time[J]. Journal of the American Chemical Society, 2005, 127(14): 5020-5021.
|