1 |
严吉国, 邓强. 渣油加氢技术应用现状及发展前景[J]. 化工设计通讯, 2018, 44(12): 81.
|
|
YAN Jiguo, DENG Qiang. Application status and development prospect of residue hydrotreating technology[J]. Chemical Engineering Design Communications, 2018, 44(12): 81.
|
2 |
宋官龙, 赵德智, 张志伟, 等. 渣油加氢工艺的现状及研究前景[J]. 石化技术, 2017, 24(7): 1-3, 7.
|
|
SONG Guanlong, ZHAO Dezhi, ZHANG Zhiwei, et al. Current situation and research prospect of residue hydrogenation technology[J]. Petrochemical Industry Technology, 2017, 24(7): 1-3, 7.
|
3 |
廖有贵, 薛金召, 肖雪洋, 等. 固定床渣油加氢处理技术应用现状及进展[J]. 石油化工, 2018, 47(9): 1020-1030.
|
|
LIAO Yougui, XUE Jinzhao, XIAO Xueyang, et al. Application situation and progress of fixed-bed residue hydrotreating technology[J]. Petrochemical Technology, 2018, 47(9): 1020-1030.
|
4 |
姚远, 张涛, 于双林, 等. 渣油加氢技术进展与发展趋势[J]. 工业催化, 2021, 29(2): 24-27.
|
|
YAO Yuan, ZHANG Tao, YU Shuanglin, et al. Development and application trend of residuum hydroprocessing technologies[J]. Industrial Catalysis, 2021, 29(2): 24-27.
|
5 |
Victor GARCIA-MONTOTO, VERDIER Sylvain, MAROUN Zeina, et al. Understanding the removal of V, Ni and S in crude oil atmospheric residue hydrodemetallization and hydrodesulfurization[J]. Fuel Processing Technology, 2020, 201: 106341.
|
6 |
MARAFI A, STAINSLAUS A, HAUSER A, et al. An investigation of the deactivation behavior of industrial Mo/Al2O3 and Ni-Mo/Al2O3 catalysts in hydrotreating kuwait atmospheric residue[J]. Petroleum Science and Technology, 2005, 23(3/4): 385-408.
|
7 |
JURADO Javier, ANCHEYTA Jorge. Reactor model for heavy oil hydrotreating with catalyst deactivation based on vanadium and coke deposition[J]. Energy & Fuels, 2022, 36(18): 11132-11141.
|
8 |
ROCHA NOVAES Leandro DA, PACHECO Marcelo Edral, SALIM Vera Maria Martins, et al. Accelerated deactivation studies of hydrotreating catalysts in pilot unit[J]. Applied Catalysis A: General, 2017, 548: 114-121.
|
9 |
ZHANG Di, LIU Yunqing, HU Qizhao, et al. Sustainable recovery of nickel, molybdenum, and vanadium from spent hydroprocessing catalysts by an integrated selective route[J]. Journal of Cleaner Production, 2020, 252: 119763.
|
10 |
王振, 杨清河, 胡大为, 等. 柴油加氢废催化剂再生后梯级应用于渣油加氢脱硫反应的研究[J]. 石油炼制与化工, 2023, 54(5): 36-41.
|
|
WANG Zhen, YANG Qinghe, HU Dawei, et al. Study on regeneration of spent diesel hydrogenation catalyst and its application in residue hydrodesulfurization[J]. Petroleum Processing and Petrochemicals, 2023, 54(5): 36-41.
|
11 |
隋宝宽, 刘文洁, 王刚, 等. Ni和Co物种对渣油加氢脱金属催化剂性能的影响[J]. 石油化工, 2022, 51(10): 1161-1166.
|
|
SUI Baokuan, LIU Wenjie, WANG Gang, et al. Effect of Ni and Co species on the performance of catalysts in residue hydrodemetallization[J]. Petrochemical Technology, 2022, 51(10): 1161-1166.
|
12 |
程涛, 崔瑞利, 宋俊男, 等. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627.
|
|
CHENG Tao, CUI Ruili, SONG Junnan, et al. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit[J]. Chemical Industry and Engineering Progress,2023, 42(9): 4616-4627.
|
13 |
ZHANG Cen, BRORSON Michael, LI Ping, et al. CoMo/Al2O3 catalysts prepared by tailoring the surface properties of alumina for highly selective hydrodesulfurization of FCC gasoline[J]. Applied Catalysis A: General, 2019, 570: 84-95.
|
14 |
LIANG Jilei, WU Mengmeng, WEI Pinghe, et al. Efficient hydrodesulfurization catalysts derived from strandberg P-Mo-Ni polyoxometalates[J]. Journal of Catalysis, 2018, 358: 155-167.
|
15 |
郑爱国. 加氢催化剂的透射电子显微研究[J]. 石油学报(石油加工), 2014, 30(4): 707-711.
|
|
ZHENG Aiguo. TEM studies of hydrotreating catalyst[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2014, 30(4): 707-711.
|
16 |
MAITY S K, ANCHEYTA J, ALONSO F, et al. Hydrodesulfurization activity of used hydrotreating catalysts[J]. Fuel Processing Technology, 2013, 106: 453-459.
|