化工进展 ›› 2025, Vol. 44 ›› Issue (3): 1417-1431.DOI: 10.16085/j.issn.1000-6613.2024-0413
马晓宇1(
), 张岩1, 周阿武1(
), 李涵冰1, 杨飞华2, 李建荣1
收稿日期:2024-03-13
修回日期:2024-06-05
出版日期:2025-03-25
发布日期:2025-04-16
通讯作者:
周阿武
作者简介:马晓宇(1982—),男,博士,硕士生导师,研究方向为生态环境材料。E-mail:maxiaoyu@bjut.edu.cn。
基金资助:
MA Xiaoyu1(
), ZHANG Yan1, ZHOU Awu1(
), LI Hanbing1, YANG Feihua2, LI Jianrong1
Received:2024-03-13
Revised:2024-06-05
Online:2025-03-25
Published:2025-04-16
Contact:
ZHOU Awu
摘要:
人类的可持续发展正面临着环境污染和能源危机两大挑战,因此,高效利用和转化绿色能源(太阳能)引起了广泛关注。金属-有机框架(MOF)材料凭借其高比表面积、可调孔径和丰富活性位点等特点而逐渐成为光催化领域中一种热门材料。近年来,MOF-on-MOF复合材料成为纳米材料领域的研究热点,其重点是由两种或多种不同结构和形态的同质或异质MOF组装。与单一MOF相比,MOF-on-MOF复合材料表现出更加良好的可调性、更加丰富的活性位点和协同作用,在光催化领域中展现出了巨大的应用潜力。因此,本文主要从光催化CO2还原、光催化水分解、光催化降解污染物和光催化有机转化这四个方面简述了MOF-on-MOF复合材料光催化性能的研究进展,介绍了MOF-on-MOF复合材料的合成策略,包括外延生长、表面活性剂辅助生长、配体/金属离子交换和成核动力学引导生长等,回顾了各种策略展现出的特点;分析了MOF-on-MOF复合材料在光催化方面的优势,阐述了影响其光催化性能的关键因素。指出需进一步提升高复杂性MOF-on-MOF的精确控制和操纵,探究了明确的MOF-on-MOF光催化反应途径和机理,拓展了MOF-on-MOF光催化应用领域,为MOF-on-MOF的工业应用奠定基础。
中图分类号:
马晓宇, 张岩, 周阿武, 李涵冰, 杨飞华, 李建荣. MOF-on-MOF复合材料制备与光催化性能的研究进展[J]. 化工进展, 2025, 44(3): 1417-1431.
MA Xiaoyu, ZHANG Yan, ZHOU Awu, LI Hanbing, YANG Feihua, LI Jianrong. Research progress on preparation and photocatalytic performance of MOF-on-MOF heterojunctions[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1417-1431.
| 应用 | 催化剂 | 光源 | 反应条件 | 主要产物 | 产率/μmol·g-1·h-1 | 参考文献 |
|---|---|---|---|---|---|---|
| 光催化CO2还原 | CuTCPP/UiO-66/TiO2 | 300W氙灯 | 100mg催化剂,2mL水 | 一氧化碳 | 31.32 | [ |
| Au@ZIF-8 | 500W氙灯 | 20mg催化剂,0.5mL水 | 一氧化碳 | 13.2 | [ | |
| MIL-125-Ti/WO3-x | 300W氙灯 | 20mg催化剂,50mL水 | 一氧化碳 | 12.5 | [ | |
| UiO-66/CNSS | 300W氙灯 | 100mg催化剂,4mL三乙醇胺,1mL水 | 一氧化碳 | 9.9 | [ | |
| Co-MOF/Cu2O | 300W氙灯 | 20mg催化剂,1mL水 | 一氧化碳 | 3.83 | [ | |
| PCN-222-Ni@UiO-67-NH2 | 300W氙灯 | 5mg催化剂,3mL水 | 甲酸 | 146 | [ | |
| NH2-UiO-66@MIL-101(Cr) | 300W氙灯 | 30mg催化剂,15mL水 | 一氧化碳 | 267.9 | [ | |
| UiO-66-NH2@MIL-88B(Fe) | 300W氙灯 | 10mg催化剂,5mL水 | 一氧化碳 | 2.26 | [ | |
| NH2-MIL-125@Ni-BDC | 300W氙灯 | 1mg催化剂,0.1mL 三乙醇胺,0.1mL水 | 一氧化碳 | 41.38 | [ | |
| 光催化水分解 | MIL-167/MIL-125-NH2 | 300W氙灯 | 17mg催化剂,13.4mL 乙腈,2.8mL 三乙胺,0.8mL水 | 氢气 | 455 | [ |
| NM@OM/TiO2 | 300W氙灯 | 8mg催化剂,15mL 乙腈,3mL 三乙醇胺,0.3mL水 | 氢气 | 7108 | [ | |
| ZIF-9(Co)/Cu3BTC2 | 300W氙灯 | 10mg催化剂,4.5mL 三乙醇胺,25.5mL水 | 氢气 | 1126 | [ | |
| CdS@ZIF | 100W LED灯 | 2.6mg催化剂,3mL水 | 氢气 | 519 | [ | |
| UiO-66(Zr)-NH2@UiO-66(Ce) | 150W氙灯 | 10mg催化剂,20mL水 | 氢气 | 32.2 | [ | |
| AuAg24@UiO-66-NH2 | 300W氙灯 | 5mg催化剂,18mL 乙腈,1mL 三乙胺,0.5mL 水 | 氢气 | 3600 | [ |
表1 MOF基材料在光催化领域的应用
| 应用 | 催化剂 | 光源 | 反应条件 | 主要产物 | 产率/μmol·g-1·h-1 | 参考文献 |
|---|---|---|---|---|---|---|
| 光催化CO2还原 | CuTCPP/UiO-66/TiO2 | 300W氙灯 | 100mg催化剂,2mL水 | 一氧化碳 | 31.32 | [ |
| Au@ZIF-8 | 500W氙灯 | 20mg催化剂,0.5mL水 | 一氧化碳 | 13.2 | [ | |
| MIL-125-Ti/WO3-x | 300W氙灯 | 20mg催化剂,50mL水 | 一氧化碳 | 12.5 | [ | |
| UiO-66/CNSS | 300W氙灯 | 100mg催化剂,4mL三乙醇胺,1mL水 | 一氧化碳 | 9.9 | [ | |
| Co-MOF/Cu2O | 300W氙灯 | 20mg催化剂,1mL水 | 一氧化碳 | 3.83 | [ | |
| PCN-222-Ni@UiO-67-NH2 | 300W氙灯 | 5mg催化剂,3mL水 | 甲酸 | 146 | [ | |
| NH2-UiO-66@MIL-101(Cr) | 300W氙灯 | 30mg催化剂,15mL水 | 一氧化碳 | 267.9 | [ | |
| UiO-66-NH2@MIL-88B(Fe) | 300W氙灯 | 10mg催化剂,5mL水 | 一氧化碳 | 2.26 | [ | |
| NH2-MIL-125@Ni-BDC | 300W氙灯 | 1mg催化剂,0.1mL 三乙醇胺,0.1mL水 | 一氧化碳 | 41.38 | [ | |
| 光催化水分解 | MIL-167/MIL-125-NH2 | 300W氙灯 | 17mg催化剂,13.4mL 乙腈,2.8mL 三乙胺,0.8mL水 | 氢气 | 455 | [ |
| NM@OM/TiO2 | 300W氙灯 | 8mg催化剂,15mL 乙腈,3mL 三乙醇胺,0.3mL水 | 氢气 | 7108 | [ | |
| ZIF-9(Co)/Cu3BTC2 | 300W氙灯 | 10mg催化剂,4.5mL 三乙醇胺,25.5mL水 | 氢气 | 1126 | [ | |
| CdS@ZIF | 100W LED灯 | 2.6mg催化剂,3mL水 | 氢气 | 519 | [ | |
| UiO-66(Zr)-NH2@UiO-66(Ce) | 150W氙灯 | 10mg催化剂,20mL水 | 氢气 | 32.2 | [ | |
| AuAg24@UiO-66-NH2 | 300W氙灯 | 5mg催化剂,18mL 乙腈,1mL 三乙胺,0.5mL 水 | 氢气 | 3600 | [ |
| 22 | MA Dou, LI Ping, DUAN Xiangyu, et al. A hydrolytically stable vanadium(Ⅳ) metal-organic framework with photocatalytic bacteriostatic activity for autonomous indoor humidity control[J]. Angewandte Chemie International Edition, 2020, 59(10): 3905-3909. |
| 23 | QIAN Yongteng, ZHANG Fangfang, PANG Huan. A review of MOFs and their composites-based photocatalysts: Synthesis and applications[J]. Advanced Functional Materials, 2021, 31(27): 2104231. |
| 24 | LIU Xiaoge, ZHANG Yi, GUO Xiaotian, et al. Electrospun metal-organic framework nanofiber membranes for energy storage and environmental protection[J]. Advanced Fiber Materials, 2022, 4(6): 1463-1485. |
| 25 | WEI Zihao, SONG Shaojia, GU Hongfei, et al. Enhancing the photocatalytic activity of zirconium-based metal-organic frameworks through the formation of mixed-valence centers[J]. Advanced Science, 2023, 10(29): e2303206. |
| 26 | YAN Yu, ABAZARI Reza, YAO Juming, et al. Recent strategies to improve the photoactivity of metal-organic frameworks[J]. Dalton Transactions, 2021, 50(7): 2342-2349. |
| 27 | LI Xinran, YANG Xinchun, XUE Huaiguo, et al. Metal-organic frameworks as a platform for clean energy applications[J]. EnergyChem, 2020, 2(2): 100027. |
| 28 | HAN Cheng, ZHANG Xiaodeng, HUANG Shengsheng, et al. MOF-on-MOF-derived hollow Co3O4/In2O3 nanostructure for efficient photocatalytic CO2 reduction[J]. Advanced Science, 2023, 10(19): 2300797. |
| 29 | CHAI Lulu, PAN Junqing, HU Yue, et al. Rational design and growth of MOF-on-MOF heterostructures[J]. Small, 2021, 17(36): e2100607. |
| 30 | SEPEHRMANSOURIE Hassan, ALAMGHOLILOO Hassan, ZOLFIGOL Mohammad ALI, et al. Nanoarchitecting a dual Z-scheme Zr-MOF/Ti-MOF/g-C3N4 heterojunction for boosting gomberg-buchmann-hey reactions under visible light conditions[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(8): 3182-3193. |
| 31 | LIU Chao, WANG Jing, WAN Jingjing, et al. MOF-on-MOF hybrids: Synthesis and applications[J]. Coordination Chemistry Reviews, 2021, 432: 213743. |
| 32 | LI Jiaxin, BAO Tong, ZHANG Chaoqi, et al. A general strategy for direct growth of yolk-shell MOF-on-MOF hybrids[J]. Chemical Engineering Journal, 2023, 472: 144926. |
| 33 | YAO Mingshui, XIU Jingwei, HUANG Qingqing, et al. Van der Waals heterostructured MOF-on-MOF thin films: Cascading functionality to realize advanced chemiresistive sensing[J]. Angewandte Chemie International Edition, 2019, 58(42): 14915-14919. |
| 34 | LEE Gihyun, LEE Sujeong, Sojin OH, et al. Tip-to-middle anisotropic MOF-on-MOF growth with a structural adjustment[J]. Journal of the American Chemical Society, 2020, 142(6): 3042-3049. |
| 35 | PARK Kyo Sung, NI Zheng, CÔTÉ Adrien P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186-10191. |
| 36 | JIANG Yuanjuan, CHEN Tsung-Yi, CHEN Jeng-Lung, et al. Heterostructured bimetallic MOF-on-MOF architectures for efficient oxygen evolution reaction[J]. Advanced Materials, 2024, 36(8): e2306910. |
| 37 | JIANG Xin, FAN Ruiqing, ZHANG Jian, et al. Sequentially epitaxial growth multi-guest encapsulation strategy in MOF-on-MOF platform: Biogenic amine detection and systematic white light adjustment[J]. Chemical Engineering Journal, 2022, 436: 135236. |
| 38 | Junsu HA, MOON Hoi Ri. Synthesis of MOF-on-MOF architectures in the context of interfacial lattice matching[J]. CrystEngComm, 2021, 23(12): 2337-2354. |
| 39 | WANG Zhengbang, LIU Jinxuan, LUKOSE Binit, et al. Nanoporous designer solids with huge lattice constant gradients: Multiheteroepitaxy of metal-organic frameworks[J]. Nano Letters, 2014, 14(3): 1526-1529. |
| 40 | LIU Jinxuan, LUKOSE Binit, SHEKHAH Osama, et al. A novel series of isoreticular metal organic frameworks: Realizing metastable structures by liquid phase epitaxy[J]. Scientific Reports, 2012, 2: 921. |
| 41 | KIM Dooyoung, LEE Gihyun, Sojin OH, et al. Unbalanced MOF-on-MOF growth for the production of a lopsided core-shell of MIL-88B@MIL-88A with mismatched cell parameters[J]. Chemical Communications, 2018, 55(1): 43-46. |
| 42 | DE SOLER-ILLIA Galo J A A, SANCHEZ Clément, LEBEAU Bénédicte, et al. Chemical strategies of design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchichal structures[J]. Chemical Reviews, 2002, 102(11): 4093-4138. |
| 43 | ZHAO Dongyuan, HUO Qisheng, FENG Jianglin, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. Journal of the American Chemical Society, 1998, 120(24): 6024-6036. |
| 44 | XIANG Quanjun, YU Jiaguo, JARONIEC Mietek. Graphene-based semiconductor photocatalysts[J]. Chemical Society Reviews, 2012, 41(2): 782-796. |
| 45 | GU Yifan, WU Yinan, LI Liangchun, et al. Controllable modular growth of hierarchical MOF-on-MOF architectures[J]. Angewandte Chemie International Edition, 2017, 56(49): 15658-15662. |
| 46 | ZHAO Meiting, YUAN Kuo, WANG Yun, et al. Metal-organic frameworks as selectivity regulators for hydrogenation reactions[J]. Nature, 2016, 539(7627): 76-80. |
| 47 | DAI Shan, TISSOT Antoine, SERRE Christian. Recent progresses in metal-organic frameworks based core-shell composites[J]. Advanced Energy Materials, 2022, 12(4): 2100061. |
| 48 | DONG Chengjun, TIAN Ruonan, ZHANG Yanlin, et al. MOF-on-MOF nanoarchitecturing of Fe2O3@ZnFe2O4 radial-heterospindles towards multifaceted superiorities for acetone detection[J]. Chemical Engineering Journal, 2022, 442: 136094. |
| 49 | CHAI Huining, YU Kun, ZHAO Yiming, et al. MOF-on-MOF dual enzyme-mimic nanozyme with enhanced cascade catalysis for colorimetric/chemiluminescent dual-mode aptasensing[J]. Analytical Chemistry International Edition, 2023, 95(28): 10785-10794. |
| 50 | ZHAO Jun, LIU Xiang, WU Yapan, et al. Surfactants as promising media in the field of metal-organic frameworks[J]. Coordination Chemistry Reviews, 2019, 391: 30-43. |
| 51 | YU Meihui, GENG Lin, CHANG Ze, et al. Coordination bonding directed molecular assembly toward functional metal-organic frameworks: From structural regulation to properties modulation[J]. Accounts of Materials Research, 2023, 4(10): 839-853. |
| 52 | JEOUNG Sungeun, KIM Seongwoo, KIM Min, et al. Pore engineering of metal-organic frameworks with coordinating functionalities[J]. Coordination Chemistry Reviews, 2020, 420: 213377. |
| 53 | XIAO Xiao, ZHANG Guangxun, XU Yuxia, et al. A new strategy for the controllable growth of MOF@PBA architectures[J]. Journal of Materials Chemistry A, 2019, 7(29): 17266-17271. |
| 54 | ZHANG Hua, CHEN Anran, BI Zenghui, et al. MOF-on-MOF-derived ultrafine Fe2P-Co2P heterostructures for high-efficiency and durable anion exchange membrane water electrolyzers[J]. ACS Nano, 2023, 17(23): 24070-24079. |
| 55 | MA Yan, FANG Huixue, CHEN Rong, et al. 2D-MOF/2D-MOF heterojunctions with strong hetero-interface interaction for enhanced photocatalytic hydrogen evolution[J]. Rare Metals, 2023, 42(12): 3993-4004. |
| 56 | BROZEK C K, DINCĂ M. Cation exchange at the secondary building units of metal-organic frameworks[J]. Chemical Society Reviews, 2014, 43(16): 5456-5467. |
| 57 | ABEDNATANZI Sara, DERAKHSHANDEH Parviz Gohari, DEPAUW Hannes, et al. Mixed-metal metal-organic frameworks[J]. Chemical Society Reviews, 2019, 48(9): 2535-2565. |
| 58 | KIM Min, CAHILL John F, FEI Honghan, et al. Postsynthetic ligand and cation exchange in robust metal-organic frameworks[J]. Journal of the American Chemical Society, 2012, 134(43): 18082-18088. |
| 59 | ZHANG Wuxiang, SONG Hao, CHENG Yan, et al. Core-shell Prussian blue analogs with compositional heterogeneity and open cages for oxygen evolution reaction[J]. Advanced Science, 2019, 6(7): 1801901. |
| 60 | WANG Yawen, HE Jiating, LIU Cuicui, et al. Thermodynamics versus kinetics in nanosynthesis[J]. Angewandte Chemie International Edition, 2015, 54(7): 2022-2051. |
| 61 | SONG Hao, AHMAD NOR Yusilawati, YU Meihua, et al. Silica nanopollens enhance adhesion for long-term bacterial inhibition[J]. Journal of the American Chemical Society, 2016, 138(20): 6455-6462. |
| 62 | ZHANG Hongwei, NOONAN Owen, HUANG Xiaodan, et al. Surfactant-free assembly of mesoporous carbon hollow spheres with large tunable pore sizes[J]. ACS Nano, 2016, 10(4): 4579-4586. |
| 63 | LIU Yi, QIU Guangyao, LIU Yongfeng, et al. Fabrication of CoFe-MOF materials by different methods and adsorption properties for Congo red[J]. Journal of Molecular Liquids, 2022, 360: 119405. |
| 64 | YANG Xinyu, YUAN Shuai, ZOU Lanfang, et al. One-step synthesis of hybrid core-shell metal-organic frameworks[J]. Angewandte Chemie International Edition, 2018, 57(15): 3927-3932. |
| 65 | SONG Jiangyan, YU Yongyi, HAN Xiaoshuai, et al. Novel MOF(Zr)-on-MOF(Ce) adsorbent for elimination of excess fluoride from aqueous solution[J]. Journal of Hazardous Materials, 2024, 463: 132843. |
| 66 | WANG Lei, JIN Pengxia, DUAN Shuhua, et al. In-situ incorporation of Copper(Ⅱ) porphyrin functionalized zirconium MOF and TiO2 for efficient photocatalytic CO2 reduction[J]. Science Bulletin, 2019, 64(13): 926-933. |
| 67 | SU Yuqun, XU Haitao, WANG Jiajia, et al. Nanorattle Au@PtAg encapsulated in ZIF-8 for enhancing CO2 photoreduction to CO[J]. Nano Research, 2019, 12(3): 625-630. |
| 68 | JIANG Haopeng, WANG Lele, YU Xiaohui, et al. Precise regulation of built-in electric field over NH2-MIL-125-Ti/WO3- x S-scheme heterojunction for achieving simultaneous formation of CO and H2O2 from CO2 and H2O[J]. Chemical Engineering Journal, 2023, 466: 143129. |
| 69 | SHI Li, WANG Tao, ZHANG Huabin, et al. Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction[J]. Advanced Functional Materials, 2015, 25(33): 5360-5367. |
| 70 | DONG Wenwen, JIA Jing, WANG Ye, et al. Visible-light-driven solvent-free photocatalytic CO2 reduction to CO by Co-MOF/Cu2O heterojunction with superior selectivity[J]. Chemical Engineering Journal, 2022, 438: 135622. |
| 71 | HUANG Haibo, FANG Zhibin, WANG Rui, et al. Engineering hierarchical architecture of metal-organic frameworks for highly efficient overall CO2 photoreduction[J]. Small, 2022, 18(16): 2200407. |
| 72 | KONG Nan, DU Huiling, LI Zhuo, et al. Nano heterojunction of double MOFs for improved CO2 photocatalytic reduction performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 663: 131005. |
| 73 | LI Jian, YU Xinmiao, XUE Wenjuan, et al. Engineering the direct Z-scheme systems over lattice intergrown of MOF-on-MOF for selective CO2 photoreduction to CO[J]. AIChE Journal, 2023, 69(3): e17906. |
| 74 | HE Bing, WANG Yingjie, BAI Xuefeng, et al. Rational construction of MOF-on-MOF heterojunction with an array of flexible two-dimensional microsheets for efficient CO2 photoreduction[J]. Chemical Engineering Journal, 2024, 482: 149000. |
| 75 | KAMPOURI Stavroula, EBRAHIM Fatmah M, FUMANAL Maria, et al. Enhanced visible-light-driven hydrogen production through MOF/MOF heterojunctions[J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14239-14247. |
| 76 | CHEN Yao, YANG Dong, XIN Xin, et al. Multi-stepwise charge transfer via MOF@MOF/TiO2 dual-heterojunction photocatalysts towards hydrogen evolution[J]. Journal of Materials Chemistry A, 2022, 10(17): 9717-9725. |
| 77 | JIN Fei, YANG Bolin, WANG Xuanpu, et al. Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (C n H2 n-2) electron transport layer[J]. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198. |
| 78 | Li Shiuan NG, MOGAN Tharishinny Raja, LEE Jinn-Kye, et al. Surface-degenerate semiconductor photocatalysis for efficient water splitting without sacrificial agents via a reticular chemistry approach[J]. Angewandte Chemie International Edition, 2023, 62(47): e202313695. |
| 79 | MELILLO Arianna, María CABRERO-ANTONINO, FERRER Belén, et al. MOF-on-MOF composites with UiO-66-based materials as photocatalysts for the overall water splitting under sunlight irradiation[J]. Energy & Fuels, 2023, 37(7): 5457-5468. |
| 80 | WANG He, ZHANG Xiyuan, ZHANG Wei, et al. Heteroatom-doped Ag25 nanoclusters encapsulated in metal-organic frameworks for photocatalytic hydrogen production[J]. Angewandte Chemie International Edition, 2024, 63(17): e202401443. |
| 81 | XIAO Juanding, SHANG Qichao, XIONG Yujie, et al. Boosting photocatalytic hydrogen production of a metal-organic framework decorated with platinum nanoparticles: The platinum location matters[J]. Angewandte Chemie International Edition, 2016, 55(32): 9389-9393. |
| 82 | TENG Pingping, LIU Ying, SUN Zhongqiao, et al. Co-adsorption and Fenton-like oxidation in the efficient removal of methylene blue by MIL-88B@UiO-66 nanoflowers[J]. Dalton Transactions, 2023, 52(30): 10472-10480. |
| 83 | ALKHATIB Ismail Issa, GARLISI Corrado, PAGLIARO Mario, et al. Metal-organic frameworks for photocatalytic CO2 reduction under visible radiation: A review of strategies and applications[J]. Catalysis Today, 2020, 340: 209-224. |
| 84 | XU Mengyang, SUN Chao, ZHAO Xiaoxue, et al. Fabricated hierarchical CdS/Ni-MOF heterostructure for promoting photocatalytic reduction of CO2 [J]. Applied Surface Science, 2022, 576: 151792. |
| 85 | LEE Yeob, KIM Sangjun, KANG Jeung Ku, et al. Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal-organic framework under visible light irradiation[J]. Chemical Communications, 2015, 51(26): 5735-5738. |
| 86 | NABGAN Walid, TUAN ABDULLAH Tuan Amran, Ramli MAT, et al. Renewable hydrogen production from bio-oil derivative via catalytic steam reforming: An overview[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 347-357. |
| 87 | MIYOSHI Akinobu, NISHIOKA Shunta, MAEDA Kazuhiko. Water splitting on rutile TiO2-based photocatalysts[J]. Chemistry, 2018, 24(69): 18204-18219. |
| 88 | NAMI-ANA Seyedeh Fatemeh, ZEINALI Sedigheh. Synthesis of a novel one-dimensional ternary MOF-on-MOF in form of direct and carbonization derived structure towards promising catalytic efficiency of HER[J]. Applied Energy, 2023, 350: 121755. |
| 89 | RAMEZANALIZADEH Hamed, MANTEGHI Faranak. Synthesis of a novel MOF/CuWO4 heterostructure for efficient photocatalytic degradation and removal of water pollutants[J]. Journal of Cleaner Production, 2018, 172: 2655-2666. |
| 90 | Shahnawaz KHAN M, LI Yixiang, LI Dongsheng, et al. A review of metal-organic framework (MOF) materials as an effective photocatalyst for degradation of organic pollutants[J]. Nanoscale Advances, 2023, 5(23): 6318-6348. |
| 91 | ANDRADE Pedro H M, PALHARES Hugo, VOLKRINGER Christophe, et al. State of the art in visible-light photocatalysis of aqueous pollutants using metal-organic frameworks[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2023, 57: 100635. |
| 92 | ZHAO Yunkun, ZHANG Yu, CAO Xungu, et al. Synthesis of MOF on MOF photocatalysts using PCN-134 as seed through epitaxial growth strategy towards nizatidine degradation[J]. Chemical Engineering Journal, 2023, 465: 143000. |
| 93 | YU Linling, CAO Wen, WU Shichuan, et al. Removal of tetracycline from aqueous solution by MOF/graphite oxide pellets: Preparation, characteristic, adsorption performance and mechanism[J]. Ecotoxicology and Environmental Safety, 2018, 164: 289-296. |
| 94 | DONG Yonghao, WANG Xudong, SUN Han, et al. Construction of a 0D/3D AgI/MOF-808 photocatalyst with a one-photon excitation pathway for enhancing the degradation of tetracycline hydrochloride: Mechanism, degradation pathway and DFT calculations[J]. Chemical Engineering Journal, 2023, 460: 141842. |
| 95 | GAO Tian, ZHANG Hua, ZHAO Xiang, et al. Efficient removal of tetracycline from MOF-on-MOF heterojunctions driven by visible light: Evaluation of photocatalytic mechanisms and degradation pathway[J]. Applied Surface Science, 2024, 651: 159227. |
| 96 | YUAN Ling, ZHANG Chaoqi, ZOU Yingying, et al. A S-scheme MOF-on-MOF heterostructure[J]. Advanced Functional Materials, 2023, 33(20): 2214627. |
| 97 | PATEL Manvendra, KUMAR Rahul, KISHOR Kamal, et al. Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods[J]. Chemical Reviews, 2019, 119(6): 3510-3673. |
| 98 | XIE Ruzhen, MENG Xiaoyang, SUN Peizhe, et al. Electrochemical oxidation of ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode: Reaction kinetics and mass transfer impact[J]. Applied Catalysis B: Environmental, 2017, 203: 515-525. |
| 99 | YANG Xiuru, CHEN Zhi, ZHAO Wan, et al. Recent advances in photodegradation of antibiotic residues in water[J]. Chemical Engineering Journal, 2021, 405: 126806. |
| 100 | SEPEHRMANSOURIE Hassan, ALAMGHOLILOO Hassan, NOROOZI PESYAN Nader, et al. A MOF-on-MOF strategy to construct double Z-scheme heterojunction for high-performance photocatalytic degradation[J]. Applied Catalysis B: Environmental, 2023, 321: 122082. |
| 101 | GOHIL Jay, PATEL Jay, CHOPRA Jay, et al. Advent of big data technology in environment and water management sector[J]. Environmental Science and Pollution Research International, 2021, 28(45): 64084-64102. |
| 102 | TIAN Jiayue, Wenchao LYU, SHEN Aosong, et al. Construction of the copper metal-organic framework (MOF)-on-indium MOF Z-scheme heterojunction for efficiently photocatalytic reduction of Cr(Ⅵ)[J]. Separation and Purification Technology, 2023, 327: 124903. |
| 103 | YANG Xue, ZHANG Suyuan, LI Peixian, et al. Visible-light-driven photocatalytic selective organic oxidation reactions[J]. Journal of Materials Chemistry A, 2020, 8(40): 20897-20924. |
| 104 | FENG Liang, YUAN Shuai, LI Jialuo, et al. Uncovering two principles of multivariate hierarchical metal-organic framework synthesis via retrosynthetic design[J]. ACS Central Science, 2018, 4(12): 1719-1726. |
| 1 | QUADRELLI Roberta, PETERSON Sierra. The energy-climate challenge: Recent trends in CO2 emissions from fuel combustion[J]. Energy Policy, 2007, 35(11): 5938-5952. |
| 2 | USMAN Muhammad, Zonish ZEB, ULLAH Habib, et al. A review of metal-organic frameworks/graphitic carbon nitride composites for solar-driven green H2 production, CO2 reduction, and water purification[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107548. |
| 3 | XIAO Juanding, LI Rui, JIANG Hailong. Metal-organic framework-based photocatalysis for solar fuel production[J]. Small Methods, 2023, 7(1): e2201258. |
| 4 | GE T S, WANG R Z, XU Z Y, et al. Solar heating and cooling: Present and future development[J]. Renewable Energy, 2018, 126: 1126-1140. |
| 5 | XU Jinghang, SHEN Jun, JIANG Haopeng, et al. Progress and challenges in full spectrum photocatalysts: Mechanism and photocatalytic applications[J]. Journal of Industrial and Engineering Chemistry, 2023, 119: 112-129. |
| 6 | FRANCIS Angel, SHANMUGA Priya S, HARISH KUMAR S, et al. A review on recent developments in solar photoreactors for carbon dioxide conversion to fuels[J]. Journal of CO2 Utilization, 2021, 47: 101515. |
| 7 | FUJISHIMA Akira, HONDA Kenichi. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
| 8 | CHENG Lei, XIANG Quanjun, LIAO Yulong, et al. CdS-based photocatalysts[J]. Energy & Environmental Science, 2018, 11(6): 1362-1391. |
| 9 | MA Ran, ZHANG Sai, WEN Tao, et al. A critical review on visible-light-response CeO2-based photocatalysts with enhanced photooxidation of organic pollutants[J]. Catalysis Today, 2019, 335: 20-30. |
| 10 | Chin Boon ONG, Law Yong NG, MOHAMMAD Abdul Wahab. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 536-551. |
| 11 | XU Yuxia, LI Qing, XUE Huaiguo, et al. Metal-organic frameworks for direct electrochemical applications[J]. Coordination Chemistry Reviews, 2018, 376: 292-318. |
| 12 | YUAN Shuai, QIN Junsheng, LI Jialuo, et al. Retrosynthesis of multi-component metal-organic frameworks[J]. Nature Communications, 2018, 9(1): 808. |
| 13 | Won-Tae KOO, JANG Ji-Soo, KIM Il-Doo. Metal-organic frameworks for chemiresistive sensors[J]. Chem, 2019, 5(8): 1938-1963. |
| 14 | ZHOU Awu, ZHAO Chen, ZHOU Jianchi, et al. Tailoring the electronic structure of In2O3/C photocatalysts for enhanced CO2 reduction[J]. Journal of Materials Chemistry A, 2023, 11(24): 12950-12957. |
| 15 | ZHANG Chenxi, LEI Da, XIE Chenfan, et al. Piezo-photocatalysis over metal-organic frameworks: Promoting photocatalytic activity by piezoelectric effect[J]. Advanced Materials, 2021, 33(51): 2106308. |
| 16 | LI Yongzhi, WANG Gangding, MA Lina, et al. Multiple functions of gas separation and vapor adsorption in a new MOF with open tubular channels[J]. ACS Applied Materials & Interfaces, 2021, 13(3): 4102-4109. |
| 17 | GAO Cun, MU Xiaobing, YUAN Wenyu, et al. Construction of new multi-cage-based MOFs using flexible triangular ligands for efficient gas adsorption and separation[J]. Journal of Solid State Chemistry, 2023, 322: 123994. |
| 18 | MA Teng, LI Huibo, MA Jiangong, et al. Application of MOF-based materials in electrochemical sensing[J]. Dalton Transactions, 2020, 49(47): 17121-17129. |
| 19 | CAO Jian, LI Xuejiao, TIAN Hongqi. Metal-organic framework (MOF)-based drug delivery[J]. Current Medicinal Chemistry, 2020, 27(35): 5949-5969. |
| 20 | WU Mingxue, YANG Yingwei. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy[J]. Advanced Materials, 2017, 29(23): 1606134. |
| 21 | XIAO Juanding, JIANG Hailong. Metal-organic frameworks for photocatalysis and photothermal catalysis[J]. Accounts of Chemical Research, 2019, 52(2): 356-366. |
| [1] | 冯琬淇, 杨翠平, 郝俊尧, 倪红梅, 赵俭波. 棉浆黑液提取物基木塑复合材料的制备及性能[J]. 化工进展, 2025, 44(3): 1768-1775. |
| [2] | 单雪影, 李玲玉, 张濛, 张家傅, 李锦春. 阻燃环氧树脂/低分子聚苯醚材料的制备及性能[J]. 化工进展, 2025, 44(3): 1533-1541. |
| [3] | 张馨儿, 裴刘军, 周雨蝶, 靳凯丽, 王际平. 基于TiO2的光催化剂利用太阳能裂解水制氢研究进展[J]. 化工进展, 2025, 44(3): 1298-1308. |
| [4] | 赵珂, 张恒, 翟倩, 甄琪, 苏天阳, 崔景强. PLA/PEG@SDS超细纤维水蒸发器的复合结构设计及其液体传输行为[J]. 化工进展, 2025, 44(2): 1014-1024. |
| [5] | 方碧瑶, 邱健豪, 李伊馨, 姚建峰. 木质纤维素基生物质炭改性半导体及其光催化应用[J]. 化工进展, 2025, 44(2): 957-970. |
| [6] | 杨帆, 赵溢涛, 朱学栋, 王达锐. 三元尖晶石与孪晶ZSM-5分子筛在苯与二氧化碳甲基化中的应用[J]. 化工进展, 2025, 44(2): 856-866. |
| [7] | 闫鹏程, 高卓凡, 周志辉, 吴红丹, 陈霞, 周显, 范泽宇, 邓闪闪, 鲁麒, 向媛. 聚酰胺/聚醚醚酮复合膜的制备及其有机溶剂纳滤性能[J]. 化工进展, 2025, 44(2): 1147-1156. |
| [8] | 李雪莲, 曹志会, 雷普瑛, 白冰, 王璇, 张金鑫, 侯凯, 刘爱芳, 齐凯, 高丽丽. 珊瑚状Mo2C/Mo3P@NC异质结电极高效催化Li-CO2电池[J]. 化工进展, 2025, 44(1): 202-211. |
| [9] | 刘炜, 张敏, 朱照琪, 王毅, 梁卫东, 孙寒雪. 黑色二氧化钛纳米材料的构筑及其应用现状[J]. 化工进展, 2025, 44(1): 341-353. |
| [10] | 蒋莉萍, 张雪乔, 钟晓娟, 魏于凡, 肖利, 郭旭晶, 羊依金. 钒渣酸浸提铁工艺优化及复合光催化剂的制备[J]. 化工进展, 2025, 44(1): 538-548. |
| [11] | 杜小聪, 辛春福, 赵钰. 路用复合相变材料及相变改性沥青性能评价[J]. 化工进展, 2024, 43(S1): 419-430. |
| [12] | 马桂璇, 徐子桐, 肖志华, 宁国庆, 魏强, 徐春明. 氧硫双掺杂CNTs水系导电剂辅助构筑高性能石墨/SiO负极[J]. 化工进展, 2024, 43(S1): 443-456. |
| [13] | 高觊兴, 丁玉梅, 张超, 谭晶, 丁熙, 李好义, 杨卫民. 熔体微分电纺PLA/PCL微纳米纤维膜的制备及其性能[J]. 化工进展, 2024, 43(S1): 457-468. |
| [14] | 石磊, 王倩, 赵晓胜, 刘宏臣, 车远军, 段玉, 李庆. 油页岩灰基分子筛的制备及对亚甲基蓝的吸附[J]. 化工进展, 2024, 43(S1): 650-661. |
| [15] | 慕铭, 赵伟伟, 陈光孟, 刘小青. 基于激光诱导石墨烯的应变传感器研究进展[J]. 化工进展, 2024, 43(9): 4970-4979. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |