| [1] |
LU Yong, JIANG Kaiyu, WANG Minjie, et al. Experimental study on influence of molding parameters on self-reinforcement characteristics of polymer co-injection molding[J]. Journal of Polymer Engineering, 2020, 40(3): 278-289.
|
| [2] |
陈碧龙. 水辅共注射成型的实验分析[J]. 造纸装备及材料, 2020, 49(6): 58-60.
|
|
CHEN Bilong. Experimental analysis of water-assisted coinjection molding[J]. Papermaking Equipment & Materials, 2020, 49(6): 58-60.
|
| [3] |
LIU Shih-Jung, CHEN Yen-Shou. The manufacturing of thermoplastic composite parts by water-assisted injection-molding technology[J]. Composites A: Applied Science and Manufacturing, 2004, 35(2): 171-180.
|
| [4] |
KUANG Tangqing, PAN Junyu, FENG Qiang, et al. Residual wall thickness of water‐powered projectile‐assisted injection molding pipes[J]. Polymer Engineering & Science, 2019, 59(2): 295-303.
|
| [5] |
匡唐清, 刘文文, 吴丽旋, 等. 流体驱动弹头辅助注塑技术[J]. 高分子材料科学与工程, 2016, 32(11): 184-190.
|
|
KUANG Tangqing, LIU Wenwen, WU Lixuan, et al. Review of fluid- projectile-assisted injection molding technology[J]. Polymer Materials Science & Engineering, 2016, 32(11): 184-190.
|
| [6] |
刘文文, 匡唐清, 赖德炜, 等. 管件流体-弹丸辅助注射成型实验初步研究[J]. 塑料工业, 2016, 44(11): 138-142.
|
|
LIU Wenwen, KUANG Tangqing, LAI Dewei, et al. Priliminary experimental investigation on the fluid-projectile-assisted injection molding pipes[J]. China Plastics Industry, 2016, 44(11): 138-142.
|
| [7] |
KUANG Tangqing, ZHOU Kai, WU Lixuan, et al. Experimental study on the penetration interfaces of pipes with different cross-sections in overflow water-assisted coinjection molding[J]. Journal of Applied Polymer Science, 2016, 133(1): 42866.
|
| [8] |
万炳甲, 王明义. 玻纤增强聚丙烯复合材料研究进展[J]. 工程塑料应用, 2019, 47(11): 139-143, 155.
|
|
WAN Bingjia, WANG Mingyi. Research progress of glass fiber reinforced polypropylene composites[J]. Engineering Plastics Application, 2019, 47(11): 139-143, 155.
|
| [9] |
谢正瑞, 陈延安. 短切玻纤增强聚丙烯激光焊接性能的影响因素[J]. 工程塑料应用, 2022, 50(9): 70-74, 86.
|
|
XIE Zhengrui, CHEN Yan’an. Influence factors of laser welding performance of short glass fiber reinforced polypropylene[J]. Engineering Plastics Application, 2022, 50(9): 70-74, 86.
|
| [10] |
YU Zhong, LIU Hesheng, KUANG Tangqing, et al. Numerical simulation during short-shot water-assisted injection molding based on the overflow cavity for short-glass fiber-reinforced polypropylene[J]. Advances in Polymer Technology, 2020(1): 3718670.
|
| [11] |
ZHU Yaofeng, LIU Wei, DAI Hongbo, et al. Synthesis of a self-assembly amphiphilic sizing agent by RAFT polymerization for improving the interfacial compatibility of short glass fiber-reinforced polypropylene composites[J]. Composites Science and Technology, 2022, 218: 109181.
|
| [12] |
HUANG Powei, PENG Hsin-Shu, CHOONG Wei-Huang. Mold-face heating mechanism, overflow-well design, and their effect on surface weldline and tensile strength of long-glass-fiber-reinforced polypropylene injection molding[J]. Polymers, 2020, 12(11): 2474.
|
| [13] |
ZENG Xiaoling, WU Chao, TANG Bolin, et al. Spray-free polypropylene composite reinforced by graphene oxide@short glass fiber[J]. Polymer Composites, 2020,41(4): 1215-1223.
|
| [14] |
HUANG Dongyou, LIU Hesheng, KUANG Tangqing, et al. Fiber orientation analysis of overflow water-assisted injection molding with short glass fiber reinforced polypropylene[J]. Advances in Polymer Technology, 2022: 9968902.
|
| [15] |
刘林海, 柳和生, 叶海鹏, 等. 短玻纤增强PP溢流法水辅注塑水穿透行为影响分析[J]. 工程塑料应用, 2022, 50(8): 85-90.
|
|
LIU Linhai, LIU Hesheng, YE Haipeng, et al. Analysis on water penetration behavior of overflow water-assisted injection molding of short-glass-fiber-reinforced PP[J]. Engineering Plastics Application, 2022, 50(8): 85-90.
|
| [16] |
ZHANG Wei, KUANG Tangqing, LIU Hesheng, et al. Improved process moldability and part quality of short-glass-fiber-reinforced polypropylene via overflow short-shot water-assisted injection molding[J]. Journal of Polymer Engineering, 2022, 42(4): 362-373.
|
| [17] |
陈忠仕, 柳和生, 余忠, 等. 方管短玻纤增强聚合物水辅注射成型穿透模拟及实验[J]. 塑料工业, 2019, 47(5): 62-66.
|
|
CHEN Zhongshi, LIU Hesheng, YU Zhong, et al. Penetration simulation and experiment of water-assisted injection molding of square tube short glass fiber reinforced polymer[J]. China Plastics Industry, 2019, 47(5): 62-66.
|
| [18] |
王佳敏, 匡唐清, 柳和生, 等. 长玻纤增强聚丙烯流体辅助注塑管件的工艺影响[J]. 复合材料学报, 2024, 41(5): 2436-2444.
|
|
WANG Jiamin, KUANG Tangqing, LIU Hesheng, et al. Process effects of long glass fiber reinforced polypropylene fluid assisted injection molding pipes[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2436-2444.
|
| [19] |
ZHOU Haiying, LIU Hesheng, JIANG Qingsong, et al. Effect of process parameters on short fiber orientation along the melt flow direction in water-assisted injection molded part[J]. Advances in Materials Science and Engineering, 2019, 2019(1): 7201215.
|
| [20] |
匡唐清, 朱瑶瑶, 柳和生, 等. 玻纤质量分数对短玻纤增强聚丙烯水辅助共注塑管件的影响[J]. 复合材料学报, 2022, 39(10): 4551-4560.
|
|
KUANG Tangqing, ZHU Yaoyao, LIU Hesheng, et al. Effect of glass fiber mass fraction on the water assisted co-injection molding pipes of short glass fiber reinforced polypropylene[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4551-4560.
|
| [21] |
胡礼彬. 水驱动弹头辅助共注塑工艺相间穿透的数值模拟研究[D]. 南昌: 华东交通大学, 2022.
|
|
HU Libin. Numerical simulation of interphase penetration in water projectile assisted co-injection molding process[D]. Nanchang: East China Jiaotong University, 2022.
|
| [22] |
匡唐清, 张庆伟, 柳和生, 等. 水驱动弹头辅助共注塑工艺相间穿透机理的数值模拟[J]. 高分子材料科学与工程, 2023, 39(4): 146-153, 162.
|
|
KUANG Tangqing, ZHANG Qingwei, LIU Hesheng, et al. Numerical simulation of interphase penetration mechanism of water-projectile assisted co-injection molding process[J]. Polymer Materials Science & Engineering, 2023, 39(4): 146-153, 162.
|
| [23] |
钟罗浩. 玻纤增强聚丙烯溢流法水辅助共注塑的工艺-形态-性能研究[D]. 南昌: 华东交通大学, 2021.
|
|
ZHONG Luohao. Morphology and mechanical properties of overflow water-assisted co-injection molding glass fiber reinforced polypropylene[D]. Nanchang: East China Jiaotong University, 2021.
|
| [24] |
KUANG Tangqing, XU Baiping, ZHOU Guofa, et al. Numerical simulation on residual thickness of pipes with curved sections in water-assisted co-injection molding[J]. Journal of Applied Polymer Science, 2015, 132(34): 42468.
|