化工进展 ›› 2025, Vol. 44 ›› Issue (S1): 277-287.DOI: 10.16085/j.issn.1000-6613.2025-0854
• 材料科学与技术 • 上一篇
甘玉凤(
), 陈静然, 周志华, 潘春荣, 张大千, 钟骏薇(
)
收稿日期:2025-06-16
修回日期:2025-08-28
出版日期:2025-10-25
发布日期:2025-11-24
通讯作者:
钟骏薇
作者简介:甘玉凤(1987—),女,博士,讲师,研究方向为多相流、相变冷却。E-mail:9120200023@jxust.edu.cn。
基金资助:
GAN Yufeng(
), CHEN Jingran, ZHOU Zhihua, PAN Chunrong, ZHANG Daqian, ZHONG Junwei(
)
Received:2025-06-16
Revised:2025-08-28
Online:2025-10-25
Published:2025-11-24
Contact:
ZHONG Junwei
摘要:
石蜡(PW)作为典型相变材料(PCM)具有潜热值高、稳定性能好、成本低廉等突出优点,能够在相变过程中吸收/放出热量保持储能系统的温度,提升系统能源效率,可应用于诸多场景。然而热导率低、相变过程易泄漏等固有缺陷严重制约了石蜡在工业规模化应用中的可靠性,限制了其在实际应用中的推广。与功能材料复合是优化石蜡性能的有效途径,本文介绍了4类目前常见的石蜡基复合相变材料:石蜡多孔复合相变材料、石蜡纳米颗粒复合相变材料、石蜡微胶囊复合相变材料以及石蜡多元复合相变材料。本文系统性梳理了各类功能材料改性原理及改性后复合材料的性能参数,并阐述了石蜡基复合相变材料在各类储能领域的研究和应用以及人工智能在相变材料研究中发挥的作用,分析表明不同功能材料在抑制泄漏、提升导热性、强化循环稳定性方面各具优势,但仍难以兼顾成本、潜热问题。未来急需研发低泄漏、高导热性、环境友好、经济适配、环境适宜的石蜡基复合相变材料,以契合多元市场需求。
中图分类号:
甘玉凤, 陈静然, 周志华, 潘春荣, 张大千, 钟骏薇. 石蜡基复合相变材料及其在储能系统中的应用[J]. 化工进展, 2025, 44(S1): 277-287.
GAN Yufeng, CHEN Jingran, ZHOU Zhihua, PAN Chunrong, ZHANG Daqian, ZHONG Junwei. Research on paraffin-based composite phase change materials and applications in energy storage systems[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 277-287.
| 复合相变材料 | 潜热值/J·g-1 | 热导率/W·m-1·K-1 | 相变温度/℃ | 纯石蜡潜热值/J·g-1 | 纯石蜡热导率/W·m-1·K-1 | 纯石蜡相变温度/℃ | 参考文献 |
|---|---|---|---|---|---|---|---|
| 石蜡+氮化铝 | 149.9 | 3.1 | 56.3 | 224.7 | 0.2 | 56 | [ |
| 石蜡+膨胀石墨 | 178.3 | 0.923 | 2.9 | 194.6 | 0.19 | 5 | [ |
| 石蜡+氮化硼@壳聚糖气凝胶 | 118.4 | 1.14 | 50.5 | 202.5 | 0.28 | 50 | [ |
| 石蜡+泡沫铜 | 132.5 | 4.9 | 53.32 | 189.4 | 0.305 | 52.1 | [ |
| 石蜡+碳化硅 | 28.4 | 2.4 | 59.6 | 183.4 | 0.24 | 69.7 | [ |
| 石蜡+膨胀石墨+二氧化硅 | 104.41 | 0.246 | 28.81 | 209.33 | 0.126 | 27.72 | [ |
表1 石蜡多孔复合相变材料参数比较
| 复合相变材料 | 潜热值/J·g-1 | 热导率/W·m-1·K-1 | 相变温度/℃ | 纯石蜡潜热值/J·g-1 | 纯石蜡热导率/W·m-1·K-1 | 纯石蜡相变温度/℃ | 参考文献 |
|---|---|---|---|---|---|---|---|
| 石蜡+氮化铝 | 149.9 | 3.1 | 56.3 | 224.7 | 0.2 | 56 | [ |
| 石蜡+膨胀石墨 | 178.3 | 0.923 | 2.9 | 194.6 | 0.19 | 5 | [ |
| 石蜡+氮化硼@壳聚糖气凝胶 | 118.4 | 1.14 | 50.5 | 202.5 | 0.28 | 50 | [ |
| 石蜡+泡沫铜 | 132.5 | 4.9 | 53.32 | 189.4 | 0.305 | 52.1 | [ |
| 石蜡+碳化硅 | 28.4 | 2.4 | 59.6 | 183.4 | 0.24 | 69.7 | [ |
| 石蜡+膨胀石墨+二氧化硅 | 104.41 | 0.246 | 28.81 | 209.33 | 0.126 | 27.72 | [ |
| [1] | CHEN Lin, MSIGWA Goodluck, YANG Mingyu, et al. Strategies to achieve a carbon neutral society: A review[J]. Environmental Chemistry Letters, 2022, 20(4): 2277-2310. |
| [2] | 王金丹, 李春婷, 吴耀华, 等. 提高石蜡相变潜热的改性技术及研究进展[J]. 化工新型材料, 2024, 52(S2): 162-165. |
| WANG Jindan, LI Chunting, WU Yaohua, et al. Modification technology and research progress of improving latent heat of paraffin phase change[J]. New Chemical Materials, 2024, 52(S2): 162-165. | |
| [3] | 钟金豹, 范浩熙, 方桂花, 等. 导热增强型相变材料研究进展[J]. 化工新型材料, 2025, 53(5): 24-29. |
| ZHONG Jinbao, FAN Haoxi, FANG Guihua, et al. Research progress in thermal conductivity enhanced phase change materials[J]. New Chemical Materials, 2025, 53(5): 24-29. | |
| [4] | BHARATHIRAJA R, RAMKUMAR T, SELVAKUMAR M, et al. Thermal characteristics enhancement of paraffin wax phase change material (PCM) for thermal storage applications[J]. Renewable Energy, 2024, 222: 119986. |
| [5] | 闫嘉森, 韩现英, 党兆涵, 等. 石蜡/膨胀石墨/石墨烯复合相变储热材料的制备及性能[J]. 高等学校化学学报, 2022, 43(6): 326-332. |
| YAN Jiasen, HAN Xianying, DANG Zhaohan, et al. Preparation and performance of paraffin/expanded graphite/graphene composite phase change heat storage material[J]. Chemical Journal of Chinese Universities, 2022, 43(6): 326-332. | |
| [6] | 唐婷, 张伟丽, 高宁, 等. 中低温固-液相变潜热储热材料研究进展[J]. 功能材料, 2022, 53(9): 9035-9041, 9050. |
| TANG Ting, ZHANG Weili, GAO Ning, et al. Research progress for solid-liquid phase change latent heat storage materials at medium-low temperature[J]. Journal of Functional Materials, 2022, 53(9): 9035-9041, 9050. | |
| [7] | LIU Shuli, HAN Junrui, SHEN Yongliang, et al. The contribution of artificial intelligence to phase change materials in thermal energy storage: From prediction to optimization[J]. Renewable Energy, 2025, 238: 121973. |
| [8] | MOHAMMED Hayder I, RASHID Farhan Lafta, TOGUN Hussein, et al. The role of nanotechnology and artificial intelligence in optimizing thermal energy systems[J]. Applied Energy, 2025, 400: 126576. |
| [9] | 安明泽, 张兵兵, 王盛, 等. 碳基定型复合相变材料的研究进展[J]. 化工进展,2025, 44(4): 2102-2118. |
| AN Mingze, ZHANG Bingbing, WANG Sheng, et al. Research progress on carbon-based stereotyped composite phase change materials[J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2102-2118. | |
| [10] | 方桂花, 孙鹏博, 于孟欢, 等. 石蜡相变材料热性能提升研究进展[J]. 应用化工, 2022, 51(8): 2433-2436, 2441. |
| FANG Guihua, SUN Pengbo, YU Menghuan, et al. Research progress in improving thermal properties of paraffin phase change materials[J]. Applied Chemical Industry, 2022, 51(8): 2433-2436, 2441. | |
| [11] | 刘芮, 王振兴, 张文静, 等. 储热材料研究现状及相变储热研究进展[J]. 电机与控制应用, 2024, 51(2): 44-60. |
| LIU Rui, WANG Zhenxing, ZHANG Wenjing, et al. Current status of research on thermal storage materials and progress in phase change thermal storage research[J]. Electric Machines & Control Application, 2024, 51(2): 44-60. | |
| [12] | SAYDAM Vahit, DUAN Xili. Dispersing different nanoparticles in paraffin wax as enhanced phase change materials[J]. Journal of Thermal Analysis and Calorimetry, 2019, 135(2): 1135-1144. |
| [13] | ZHAO Bo, ZHU Ruijie, SHENG Nan, et al. Composite phase change material supported by Cu nanoparticles@carbon porous matrix for photo-thermal energy storage[J]. Energy & Fuels, 2022, 36(17): 10354-10363. |
| [14] | 贺炜林, 王晨阳, 刘芝孟, 等. 交联聚脲/石蜡相变微胶囊的制备及性能[J]. 高分子材料科学与工程, 2024, 40(11): 19-28. |
| HE Weilin, WANG Chenyang, LIU Zhimeng, et al. Preparation and properties of crosslinked polyurea/paraffin phase change microcapsules[J]. Polymer Materials Science & Engineering, 2024, 40(11): 19-28. | |
| [15] | LI Hongyang, HU Chengzhi, HE Yichuan, et al. Emerging surface strategies for porous materials-based phase change composites[J]. Matter, 2022, 5(10): 3225-3259. |
| [16] | ZHANG Yuzhong, ZHENG Shuilin, ZHU Shuquan, et al. Evaluation of paraffin infiltrated in various porous silica matrices as shape-stabilized phase change materials for thermal energy storage[J]. Energy Conversion and Management, 2018, 171: 361-370. |
| [17] | 陈丽梅, 赵梦菲, 陈琳, 等. 石蜡/碱改性硅藻土/膨胀石墨复合相变储热材料的制备及性能[J]. 无机化学学报, 2024, 40(3): 533-543. |
| CHEN Limei, ZHAO Mengfei, CHEN Lin, et al. Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material[J]. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. | |
| [18] | ZHAO Xiaoguang, TANG Yili, XIE Weimin, et al. 3D hierarchical porous expanded perlite-based composite phase-change material with superior latent heat storage capability for thermal management[J]. Construction and Building Materials, 2023, 362:129768. |
| [19] | LIU Zhiyong, ZANG Chuyue, JU Zhicheng, et al. Consistent preparation, chemical stability and thermal properties of a shape-stabilized porous carbon/paraffin phase change materials[J]. Journal of Cleaner Production, 2020, 247:119565. |
| [20] | 户晶荣, 李欣聪. 改性碳气凝胶/石蜡复合相变储热材料的研究[J]. 无机盐工业, 2024, 56(5): 58-63. |
| HU Jingrong, LI Xincong. Research on modified carbon aerogel/paraffin composite phase change thermal storage materials[J]. Inorganic Chemicals Industry, 2024, 56(5): 58-63. | |
| [21] | QIAN Zhenchao, SHEN Heng, FANG Xin, et al. Phase change materials of paraffin in h-BN porous scaffolds with enhanced thermal conductivity and form stability[J]. Energy and Buildings, 2018, 158:1184-1188. |
| [22] | YANG Xueming, LI Chunbo, MA Yongfu, et al. High thermal conductivity of porous graphite/paraffin composite phase change material with 3D porous graphite foam[J]. Chemical Engineering Journal, 2023, 473: 145364. |
| [23] | 代建龙, 李果, 曹一通, 等. 多孔金属泡沫强化石蜡相变蓄热性能[J]. 储能科学与技术, 2024, 13(11): 3764-3771. |
| DAI Jianlong, LI Guo, CAO Yitong, et al. Enhancing phase change heat storage performance of paraffin using porous metal foam[J]. Energy Storage Science and Technology, 2024, 13(11): 3764-3771. | |
| [24] | LI Yali, LI Jinhong, FENG Wuwei, et al. Design and preparation of the phase change materials paraffin/porous Al2O3@graphite foams with enhanced heat storage capacity and thermal conductivity[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 7594-7603. |
| [25] | YU X K, TAO Y B. Preparation and characterization of paraffin/expanded graphite composite phase change materials with high thermal conductivity[J]. International Journal of Heat and Mass Transfer, 2022, 198: 123433. |
| [26] | ZUO Xiaochao, ZHAO Xiaoguang, LI Jianwen, et al. Enhanced thermal conductivity of form-stable composite phase-change materials with graphite hybridizing expanded perlite/paraffin[J]. Solar Energy, 2020, 209: 85-95. |
| [27] | CHEN Rui, LI Deheng, SHENG Nan, et al. Direct synthesis of porous aluminum nitride foams for enhancing heat transfer and anti-leakage performance of phase change materials[J]. Thermochimica Acta, 2024, 734: 179706. |
| [28] | SHAKER Majid, QIN Qin, ZHAXI Dawa, et al. Improving the cold thermal energy storage performance of paraffin phase change material by compositing with graphite, expanded graphite, and graphene[J]. Journal of Materials Engineering and Performance, 2023, 32(22): 10275-10284. |
| [29] | DU Guohao, LAI Xin, HU Jianfeng, et al. Construction of high thermal conductive boron nitrid@chitosan aerogel/paraffin composite phase change material[J]. Solar Energy Materials and Solar Cells, 2022, 240: 111532. |
| [30] | XIAO X, ZHANG P, LI M. Preparation and thermal characterization of paraffin/metal foam composite phase change material[J]. Applied Energy, 2013, 112: 1357-1366. |
| [31] | 徐照芸, 罗团生, 马登杰, 等. 多孔SiC陶瓷/石蜡复合相变材料定型封装及热性能研究[J]. 硅酸盐通报, 2022, 41(10): 3658-3666. |
| XU Zhaoyun, LUO Tuansheng, MA Dengjie, et al. Stereotypes package and thermal properties of porous SiC ceramics/paraffin composite phase change materials[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(10): 3658-3666. | |
| [32] | LI Min, WU Zhishen, TAN Jinmiao. Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol-gel method[J]. Applied Energy, 2012, 92: 456-461. |
| [33] | 方桂花, 孙鹏博, 于孟欢, 等. 石蜡-纳米粒子复合相变材料的研究进展与应用[J]. 现代化工, 2022, 42(5): 68-71. |
| FANG Guihua, SUN Pengbo, YU Menghuan, et al. Research progress and application about paraffin-nanoparticle composite phase-change materials[J]. Modern Chemical Industry, 2022, 42(5): 68-71. | |
| [34] | BHARATHIRAJA R, RAMKUMAR T, SELVAKUMAR M. Studies on the thermal characteristics of nano-enhanced paraffin wax phase change material (PCM) for thermal storage applications[J]. Journal of Energy Storage, 2023, 73: 109216. |
| [35] | 陈华, 宋楷文. 碳纳米管/石蜡复合相变材料的蓄放热特性研究[J]. 化工新型材料, 2024, 52(S1): 291-295. |
| CHEN Hua, SONG Kaiwen. Experimental study on the heat storage and release characteristics of carbon nanotube/paraffin composite phase change materials[J]. New Chemical Materials, 2024, 52(S1): 291-295. | |
| [36] | RAMAKRISHNAN Sayanthan, WANG Xiaoming, SANJAYAN Jay. Thermal enhancement of paraffin/hydrophobic expanded perlite granular phase change composite using graphene nanoplatelets[J]. Energy and Buildings, 2018, 169: 206-215. |
| [37] | 孙鹏博. 石蜡/膨胀石墨/纳米粒子复合相变材料的制备与性能研究[D]. 包头: 内蒙古科技大学, 2023. |
| SUN Pengbo. Study on preparation and performance of paraffin/expanded graphite/nanoparticle composite phase change material[D]. Baotou: Inner Mongolia University of Science & Technology, 2023. | |
| [38] | MA Chuyuan, ZHANG Ying, CHEN Xianfeng, et al. Experimental study of an enhanced phase change material of paraffin/expanded graphite/nano-metal particles for a personal cooling system[J]. Materials, 2020, 13(4): 980. |
| [39] | YANG Bin, CAO Yaxin, ZHANG Ruirui, et al. Experimental investigation on the stability and heat transfer enhancement of phase change materials composited with nanoparticles and metal foams[J]. Journal of Energy Storage, 2024, 89: 111826. |
| [40] | 黄杰, 周国兵, 黄文荻, 等. 填充铜层改善石墨烯/SAT复合材料界面性质的分子模拟研究[J/OL]. 化工进展, 2025: 1-13[2025-02-10]. . |
| HUANG Jie, ZHOU Guobing, HUANG Wendi, et al. Molecular simulation study of copper layer filling to improve the interfacial properties of graphene/SAT composites[J/OL]. Chemical Industry and Engineering Progress, 2025: 1-13[2025-02-10]. . | |
| [41] | ZHONG Yan, ZHANG Junyan, LI Wencong, et al. The influences of graphene nanoplatelets dimension on the thermophysical properties of nanocomposite phase change materials[J]. Materials Today Communications, 2025, 47: 113089. |
| [42] | XU Yinghao, HUANG Yaoqi, LI Linfeng, et al. Modulation and optimisation of the properties of n-decanoic acid-tetradecanol phase change materials by nanocomposite carbon materials prepared by atomic layer deposition methods[J]. Materials Today Communications, 2024, 39: 108650. |
| [43] | FANG Wenzhen, TANG Yuqing, YANG Chun, et al. Pore scale investigations on melting of phase change materials considering the interfacial thermal resistance[J]. International Communications in Heat and Mass Transfer, 2020, 115: 104631. |
| [44] | WANG Jin, LI Yanxin, WANG Yao, et al. Experimental investigation of heat transfer performance of a heat pipe combined with thermal energy storage materials of CuO-paraffin nanocomposites[J]. Solar Energy, 2020, 211: 928-937. |
| [45] | SAMI Samaneh, ETESAMI Nasrin. Improving thermal characteristics and stability of phase change material containing TiO2 nanoparticles after thermal cycles for energy storage[J]. Applied Thermal Engineering, 2017, 124: 346-352. |
| [46] | PRABHU B, VALANARASU A. Stability analysis of TiO2-Ag nanocomposite particles dispersed paraffin wax as energy storage material for solar thermal systems[J]. Renewable Energy, 2020, 152: 358-367. |
| [47] | LIU Zhifang, CHEN Zhonghua, YU Fei. Enhanced thermal conductivity of microencapsulated phase change materials based on graphene oxide and carbon nanotube hybrid filler[J]. Solar Energy Materials and Solar Cells, 2019, 192: 72-80. |
| [48] | JEGADHEESWARAN Selvaraj, SUNDARAMAHALINGAM Athimoolam. Experimental investigations of the effect of ultrasonic waves on the thermal performance of nanoparticles embedded phase change material[J]. International Journal of Thermophysics, 2022, 44(1): 8. |
| [49] | 赵樱淇, 胡丹鸿, 潜怡安, 等. 正十八烷微胶囊/相变储能木材的制备及热性能研究[J]. 纤维素科学与技术, 2024, 32(4): 7-12. |
| ZHAO Yingqi, HU Danhong, QIAN Yian, et al. Preparation and thermal properties of n-octadecane microcapsules/phase change energy storage wood[J]. Journal of Cellulose Science and Technology, 2024, 32(4): 7-12. | |
| [50] | 孟凡璠, 李晓鹏, 赵越, 等. 相变微胶囊的壳材导热改性研究及其在调温领域中的应用[J]. 复合材料学报, 2025, 42(7): 3592-3612. |
| MENG Fanfan, LI Xiaopeng, ZHAO Yue, et al. Research on thermal conductivity modification of phase change microcapsules and its application in thermoregulation field[J]. Acta Materiae Compositae Sinica, 2025, 42(7): 3592-3612. | |
| [51] | LI Min, LIU Jianpeng, SHI Junbing. Synthesis and properties of phase change microcapsule with SiO2-TiO2 hybrid shell[J]. Solar Energy, 2018, 167: 158-164. |
| [52] | XU Rui, XIA Xiaomeng, WANG Wei, et al. Infrared camouflage fabric prepared by paraffin phase change microcapsule with good thermal insulting properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 591: 124519. |
| [53] | LIU Xinyi, WANG Jifen, XIE Huaqing, et al. Self-assembled synthesis of microencapsulated paraffin wax phase change materials with excellent thermal properties of calcium carbonate shell[J]. Journal of Enhanced Heat Transfer, 2023, 30(4): 1-18. |
| [54] | 高立营, 郅慧, 张远军, 等. 相变材料微胶囊的制备与表征分析方法综述[J]. 南京工业大学学报(自然科学版), 2022, 44(6): 624-632. |
| GAO Liying, ZHI Hui, ZHANG Yuanjun, et al. Review of the preparation and characterization of microencapsulated phase change materials[J]. Journal of Nanjing Tech University (Natural Science Edition), 2022, 44(6): 624-632. | |
| [55] | 王成君, 汪林强, 王瑞娜, 等. 纳米增强微胶囊复合相变材料的研究进展[J]. 复合材料学报, 2024, 41(8): 3968-3986. |
| WANG Chengjun, WANG Linqiang, WANG Ruina, et al. Research progress of nano-enhanced microcapsule composite phase change materials[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 3968-3986. | |
| [56] | 吴学红, 王凯, 王强伟, 等. 氧化石墨烯复合相变微胶囊制备及传热特性研究[J]. 工程热物理学报, 2023, 44(12): 3414-3419. |
| WU Xuehong, WANG Kai, WANG Qiangwei, et al. Preparation and heat transfer characteristics of graphene oxide composite phase change microcapsules[J]. Journal of Engineering Thermophysics, 2023, 44(12): 3414-3419. | |
| [57] | LIU Jiemei, WANG Ning, SONG Yawei, et al. Influence of single and multiple coupling factors on the stability of paraffin-based nanofluids[J]. Heat and Mass Transfer, 2020, 56(2): 477-488. |
| [58] | LI Jinghui, HUANG Juhua, LIU Ziqiang, et al. Developing ternary composite phase change materials with two different phase change temperatures for battery thermal management[J]. Applied Thermal Engineering, 2023, 227: 120357. |
| [59] | 杜文清, 费华, 顾庆军, 等. 癸酸-石蜡二元低共熔复合相变材料的制备及性能研究[J]. 太阳能学报, 2021, 42(7): 251-256. |
| DU Wenqing, FEI Hua, GU Qingjun, et al. Preparation and properties of capric acid-paraffin binary low eutectic composite phase change materials[J]. Acta Energiae Solaris Sinica, 2021, 42(7): 251-256. | |
| [60] | 吴学红, 王强伟, 陈亚楠, 等. 石蜡-十二醇二元相变材料的制备及其性能研究[J]. 化工新型材料, 2022, 50(5): 151-153, 159. |
| WU Xuehong, WANG Qiangwei, CHEN Yanan, et al. Study on preparation and property of paraffin-dodecanol binary composite PCMs[J]. New Chemical Materials, 2022, 50(5): 151-153, 159. | |
| [61] | 马莉莎, 谢宝珊, 李传常. 中低温相变填充床储热系统研究进展[J]. 洁净煤技术, 2025: 1-18[2025-05-08]. . |
| MA Lisha, XIE Baoshan, LI Chuanchang. Progress in investigation and application of middle and low-temperature phase change packed bed thermal storage system[J]. Clean Coal Technology, 2025: 1-18[2025-05-08]. . | |
| [62] | HUANG Que, WANG Silong, HE Jichun, et al. Experimental design of paraffin/methylated melamine-formaldehyde microencapsulated composite phase change material and the application in battery thermal management system[J]. Journal of Materials Science & Technology, 2024, 169: 124-136. |
| [63] | BEHI Hamidreza, KARIMI Danial, GANDOMAN Foad Heidari, et al. PCM assisted heat pipe cooling system for the thermal management of an LTO cell for high-current profiles[J]. Case Studies in Thermal Engineering, 2021, 25: 100920. |
| [64] | TANG Zhiguo, YU Pingping, LI Man, et al. Thermal management characteristics of a novel cylindrical lithium-ion battery module using liquid cooling, phase change materials, and heat pipes[J]. Journal of Energy Storage, 2024, 99: 113350. |
| [65] | Li JIE, ZHANG Jiakai, FAN Yi, et al. A review of composite phase change materials used in battery thermal management systems[J]. Journal of Energy Storage, 2025, 112: 115579. |
| [66] | XU Zhenping, CHEN Weihua, WU Tingting, et al. Thermal management system study of flame retardant solid-solid phase change material battery[J]. Surfaces and Interfaces, 2023, 36: 102558. |
| [67] | LEE Seunghoon, LEE Hyoseong, Yong Joo JUN, et al. Hybrid battery thermal management system coupled with paraffin/copper foam composite phase change material[J]. Applied Energy, 2024, 353: 122043. |
| [68] | MOHAMMED Abubakar Gambo, HASINI Hasril, ELFEKY Karem Elsayed, et al. Cooling effectiveness enhancement of parallel air-cooled battery system through integration with multi-phase change materials[J]. International Journal of Thermal Sciences, 2024, 201: 109030. |
| [69] | 安治国, 邓芳, 严冬, 等. 风冷式CPCM锂离子电池热管理系统性能分析[J]. 电源技术, 2021, 45(9): 1125-1128, 1192. |
| AN Zhiguo, DENG Fang, YAN Dong, et al. Thermal performance analysis of air cooled thermal management system of lithium-ion battery based on CPCM[J]. Chinese Journal of Power Sources, 2021, 45(9): 1125-1128, 1192. | |
| [70] | YU X K, TAO Y B, DENG Q Q. Experimental study on thermal management of batteries based on the coupling of metal foam-paraffin composite phase change materials and air cooling[J]. Journal of Energy Storage, 2024, 84: 110891. |
| [71] | RANJAN Ravi, KUMAR Rajan, SRINIVAS Tangellapalli. Thermal performance of nano-enhanced phase change material and air-based lithium-ion battery thermal management system: An experimental investigation[J]. Journal of Energy Storage, 2024, 82: 110567. |
| [72] | 刘佳鑫, 王长宏. 基于非均匀通道液冷板耦合PCM的电池热管理性能研究[J]. 节能, 2024, 43(10): 1-4. |
| LIU Jiaxin, WANG Changhong. Research of batteries thermal management performance based on coupling non-uniform channel liquid cooling plate with PCM[J]. Energy Conservation, 2024, 43(10): 1-4. | |
| [73] | GE Xin, LI Xinxi, JIN Yang, et al. Experimental investigation on thermal management system of composite phase change material coupled with serpentine tubes for battery module[J]. Applied Thermal Engineering, 2023, 219: 119501. |
| [74] | 曹胡泉, 彭航, 余浩, 等. 相变材料耦合微通道液冷的锂电池热管理研究[J]. 电源技术, 2024, 48(10): 2040-2045. |
| CAO Huquan, PENG Hang, YU Hao, et al. Study on thermal management of lithium battery with phase change material coupled microchannel liquid cooling[J]. Chinese Journal of Power Sources, 2024, 48(10): 2040-2045. | |
| [75] | LIU Ziqiang, HUANG Juhua, CAO Ming, et al. Experimental study on the thermal management of batteries based on the coupling of composite phase change materials and liquid cooling[J]. Applied Thermal Engineering, 2021, 185: 116415. |
| [76] | SUN Yupeng, ZHANG Hao, QI Fei, et al. Battery thermal management systems on the integration of multi-layer phase change materials and liquid cooling energy-saving strategies[J]. Applied Thermal Engineering, 2025, 278: 127194. |
| [77] | 方桂花, 王峰, 刘颖杰, 等. 球形单元储热装置蓄热特性的分析与优化[J]. 太阳能学报, 2023, 44(2): 9-14. |
| FANG Guihua, WANG Feng, LIU Yingjie, et al. Analysis and optimization of heat storage characteristics of spherical unit heat storage device[J]. Acta Energiae Solaris Sinica, 2023, 44(2): 9-14. | |
| [78] | WANG Tianqi, JIN Yingai, ALAM Firoz. Study on phase change materials’ heat transfer characteristics of medium temperature solar energy collection system[J]. Materials, 2024, 17(21): 5159. |
| [79] | LIU Jian, ZOU Xuelin, CAI Zhuodi, et al. Polymer based phase change material for photo-thermal utilization[J]. Solar Energy Materials and Solar Cells, 2021, 220:110852. |
| [80] | SHEN Lan, TAN Huijing, YANG Yanwei, et al. Preparation and characteristics of paraffin/silica aerogel composite phase-change materials and their application to cement[J]. Construction and Building Materials, 2023, 387: 131609. |
| [81] | 闫全英, 穆白, 潘利生, 等. 回收工业余热用于供暖的相变换热装置储能材料的研究[J].化工新型材料, 2025, 53(1): 148-151, 157. |
| YAN Quanying, MU Bai, PAN Lisheng, et al. Study of phase change heat exchanger energy storage materials for heating by recovering industrial waste heat[J]. New Chemical Materials, 2025, 53(1): 148-151, 157. | |
| [82] | VENKATRAMAN S, JIDHESH P, David RATHNARAJ J, et al. Experimental studies on the enhancement in discharging characteristics of phase change material with steatite nanoparticles[J]. Journal of Energy Storage, 2023, 73: 109103. |
| [83] | Artur NEMŚ, DANIARTA Sindu, Magdalena NEMŚ, et al. A review of artificial intelligence to thermal energy storage and heat transfer improvement in phase change materials[J]. Sustainable Materials and Technologies, 2025, 44: e01348. |
| [84] | SHAHSAVAR Amin, KHANMOHAMMADI Shoaib, KARIMIPOUR Arash, et al. A novel comprehensive experimental study concerned synthesizes and prepare liquid paraffin-Fe3O4 mixture to develop models for both thermal conductivity & viscosity: A new approach of GMDH type of neural network[J]. International Journal of Heat and Mass Transfer, 2019, 131: 432-441. |
| [85] | ARNI Saleh AL, ALJIBORI Hakim S Sultan, MAHDI Jasim M, et al. Artificial intelligence-driven analysis of dynamic melting in open shell-and-tube latent-heat storage: Effects of PCM inlet pressure, port geometry, and positioning[J]. Journal of Energy Storage, 2025, 105: 114607. |
| [86] | FARAHANI Somayeh Davoodabadi, MAMOEI Amirhossein Jazari, ALIZADEH As’ad. Thermal efficiency of microchannel heat sink: Incorporating nano-enhanced phase change materials and porous foam gradient and artificial intelligence-based prediction[J]. Alexandria Engineering Journal, 2023, 82: 1-15. |
| [87] | DUAN Juan, LI Fan. Transient heat transfer analysis of phase change material melting in metal foam by experimental study and artificial neural network[J]. Journal of Energy Storage, 2021, 33: 102160. |
| [1] | 包新德, 刘必烨, 黄仁伟, 洪宇豪, 关鑫, 林金国. 生物质基@CuNiOS复合催化剂的制备及其在有机染料还原中的应用[J]. 化工进展, 2025, 44(S1): 185-196. |
| [2] | 张文静, 黄致新, 李士腾, 邓帅, 李双俊. 生物质碳气凝胶CO2吸附剂研究进展[J]. 化工进展, 2025, 44(9): 5018-5032. |
| [3] | 李卡, 夏宇轩, 吴晓琴, 易兰, 罗浩. 双层多孔介质燃烧反应器的孔隙尺度计算流体动力学模拟[J]. 化工进展, 2025, 44(8): 4381-4393. |
| [4] | 戴贵龙, 王孝宇, 皇甫江飞, 龚凌诸. 孔隙尺度下Laguerre Voronoi开孔泡沫的对流传热特性[J]. 化工进展, 2025, 44(8): 4394-4407. |
| [5] | 李浩东, 沈胜强, 陈亮. 氨氢燃烧余热利用耦合氨裂解制氢过程数值模拟[J]. 化工进展, 2025, 44(8): 4443-4453. |
| [6] | 刘建红, 刘栋, 商福民, 杨凯, 郑超凡, 曹欣. 非对称结构脉动热管换热装置传热性能[J]. 化工进展, 2025, 44(7): 3727-3736. |
| [7] | 杨心柳, 刘强, 曹倩, 崔岳铭, 方朝合. 储层渗流对单地热井同轴换热器取热特性的影响[J]. 化工进展, 2025, 44(7): 3860-3868. |
| [8] | 陈东健, 孙雨倩, 银凤翔. FeNi3-Fe3O4/CN催化剂的制备及其电催化析氧性能[J]. 化工进展, 2025, 44(7): 3928-3937. |
| [9] | 李聃, 孔垂龙, 胡博, 王圣燕, 刘冬艳, 刘力华. 磷光碳纳米粉的制备及其在潜手印无荧光干扰显现中的应用[J]. 化工进展, 2025, 44(7): 4013-4021. |
| [10] | 刘文龙, 马秀清, 李长金, 何东洋, 高觊兴, 张杨, 李满意, 杨卫民, 李好义. LDPE/PEW熔喷超细纤维及其非织造布性能[J]. 化工进展, 2025, 44(7): 4032-4038. |
| [11] | 俸三喆, 匡唐清, 柳和生, 杨帆, 陈灏. 弹头直径对短玻纤增强聚丙烯水驱动弹头辅助共注塑管件的质量影响[J]. 化工进展, 2025, 44(7): 4061-4069. |
| [12] | 李佩燚, 孙波龙, 刘瑞岩, 周歆尧, 刘瑞林, 胡园园, 徐功涛, 李新平. 海藻酸钠/二氧化钛复合多孔材料的制备及油水分离应用[J]. 化工进展, 2025, 44(6): 3053-3061. |
| [13] | 戴贵龙, 刘益硕, 穆龙坤, 龚凌褚. 凹腔多孔介质吸热器耦合传热模型性能优化[J]. 化工进展, 2025, 44(6): 3258-3270. |
| [14] | 甄箫斐, 杨特勃, 董缇, 齐永豪, 刘佳. 多孔介质强化水合物储气性能研究进展[J]. 化工进展, 2025, 44(6): 3413-3431. |
| [15] | 武亚丽, 张效林, 高丽敏, 黄茂财, 蔡斌, 张继兵. 秸秆粉/纤维资源化利用技术进展[J]. 化工进展, 2025, 44(6): 3509-3523. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |