| [1] |
CHOTIROTSUKON Chayanon, RAITA Marisa, CHAMPREDA Verawat, et al. Fractionation of sugarcane trash by oxalic-acid catalyzed glycerol-based organosolv followed by mild solvent delignification[J]. Industrial Crops and Products, 2019, 141: 111753.
|
| [2] |
BHARDWAJ Nishi K, KAUR Daljeet, CHAUDHRY Smita, et al. Approaches for converting sugarcane trash, a promising agro residue, into pulp and paper using soda pulping and elemental chlorine-free bleaching[J]. Journal of Cleaner Production, 2019, 217: 225-233.
|
| [3] |
TORGBO Selorm, QUAN Vo Minh, SUKYAI Prakit. Cellulosic value-added products from sugarcane bagasse[J]. Cellulose, 2021, 28(9): 5219-5240.
|
| [4] |
AGUIAR André, MILESSI Thais Suzane, MULINARI Daniella Regina, et al. Sugarcane straw as a potential second generation feedstock for biorefinery and white biotechnology applications[J]. Biomass and Bioenergy, 2021, 144: 105896.
|
| [5] |
GO Alchris Woo, CONAG Angelique T. Utilizing sugarcane leaves/straws as source of bioenergy in the Philippines: A case in the Visayas Region[J]. Renewable Energy, 2019, 132: 1230-1237.
|
| [6] |
KHATTAB Sadat Mohamed Rezk, OKANO Hiroyuki, KIMURA Chihiro, et al. Efficient integrated production of bioethanol and antiviral glycerolysis lignin from sugarcane trash[J]. Biotechnology for Biofuels and Bioproducts, 2023, 16(1): 82.
|
| [7] |
BUMRUNGTHAM Pornsiri, PROMDONKOY Peerada, PRABMARK Kanoknart, et al. Engineered production of isobutanol from sugarcane trash hydrolysates in pichia pastoris[J]. Journal of Fungi, 2022, 8(8): 767.
|
| [8] |
BRENELLI Lívia B, FIGUEIREDO Fernanda L, DAMASIO André, et al. An integrated approach to obtain xylo-oligosaccharides from sugarcane straw: From lab to pilot scale[J]. Bioresource Technology, 2020, 313: 123637.
|
| [9] |
CHANTASO Minthra, CHAIYONG Kriengkrai, MEESUPTHONG Ratthapong, et al. Sugarcane leave-derived cellulose nanocrystal/graphene oxide filter membrane for efficient removal of particulate matter[J]. International Journal of Biological Macromolecules, 2023, 234: 123676.
|
| [10] |
LORENCI WOICIECHOWSKI Adenise, DALMAS NETO Carlos José, PORTO DE SOUZA VANDENBERGHE Luciana, et al. Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance—Conventional processing and recent advances[J]. Bioresource Technology, 2020, 304: 122848.
|
| [11] |
ZHU Zhen, HUANG Rong, YAO Shuangquan, et al. An integrated process for co-producing fermentable sugars and xylonate from sugarcane bagasse based on xylonic acid assisted pretreatment[J]. Bioresource Technology, 2023, 369: 128464.
|
| [12] |
Qian LYU, CHEN Xueli, ZHANG Yuxuan, et al. One-pot fractionation of corn stover with peracetic acid and maleic acid[J]. Bioresource Technology, 2021, 320: 124306.
|
| [13] |
MANMAI Numchok, UNPAPROM Yuwalee, PONNUSAMY Vinoth Kumar, et al. Bioethanol production from the comparison between optimization of sorghum stalk and sugarcane leaf for sugar production by chemical pretreatment and enzymatic degradation[J]. Fuel, 2020, 278: 118262.
|
| [14] |
CINDRADEWI Azelia Wulan, BANDI Rajkumar, PARK Chan-Woo, et al. Preparation and characterization of cellulose acetate film reinforced with cellulose nanofibril[J]. Polymers, 2021, 13(17): 2990.
|
| [15] |
ASIRI Abdullah M, PETROSINO Francesco, PUGLIESE Valerio, et al. Synthesis and characterization of blended cellulose acetate membranes[J]. Polymers, 2021, 14(1): 4.
|
| [16] |
CANDIDO R G, GODOY G G, GONÇALVES Adilson R. Characterization and application of cellulose acetate synthesized from sugarcane bagasse[J]. Carbohydrate Polymers, 2017, 167: 280-289.
|
| [17] |
林昊, 郭东毅, 吕谦, 等. 玉米秸秆基木质素-醋酸纤维素紫外屏蔽膜的制备及其性能[J]. 复合材料学报, 2023, 40(8): 4768-4778.
|
|
LIN Hao, GUO Dongyi, Qian LYU, et al. Preparation of corn stover-based lignin-cellulose acetate ultraviolet shielding film and its properties[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4768-4778.
|
| [18] |
KOUADRI Imane, LAYACHI Abdelheq, BOUBENDIRA Khaled, et al. A novel eco-friendly source of cellulose acetate extracted from Astragalus gombo seeds: Thermal, structural, and morphological characterization[J]. Biomass Conversion and Biorefinery, 2024, 14(19):23439-23446.
|
| [19] |
CANDIDO R G, GONÇALVES A R. Synthesis of cellulose acetate and carboxymethylcellulose from sugarcane straw[J]. Carbohydrate Polymers, 2016, 152: 679-686.
|
| [20] |
陈渊, 黄祖强, 杨家添, 等. 机械活化预处理甘蔗渣制备醋酸纤维素的工艺[J]. 农业工程学报, 2010, 26(9): 374-380.
|
|
CHEN Yuan, HUANG Zuqiang, YANG Jiatian, et al. Preparation technology of cellulose acetate from sugarcane bagasse by mechanical activation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(9): 374-380.
|
| [21] |
张建兴, 陈洪章. 秸秆醋酸纤维素的制备[J]. 化工学报, 2007, 58(10): 2548-2553.
|
|
ZHANG Jianxing, CHEN Hongzhang. Preparation of cellulose acetate from crop straw[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(10): 2548-2553.
|
| [22] |
SUZUKI Shiori, YADA Risa, HAMANO Yosuke, et al. Green synthesis and fractionation of cellulose acetate by controlling the reactivity of polysaccharides in sugarcane bagasse[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(24): 9002-9008.
|
| [23] |
石纯, 杨静, 杨海艳, 等. 巨龙竹全组分乙酰化膜的制备与性能表征[J]. 西南大学学报(自然科学版), 2019, 41(1): 123-129.
|
|
SHI Chun, YANG Jing, YANG Haiyan, et al. Preparation and characterization of a dendrocalamus sinicus-based all-component acetate membrane[J]. Journal of Southwest University (Natural Science Edition), 2019, 41(1): 123-129.
|
| [24] |
林日辉, 刘鑫, 杜家鸿, 等. 一种一锅干法制备冷水可溶性淀粉的方法: CN117551212A[P]. 2024-02-13.
|
|
LIN Rihui, LIU Xin, DU Jiahong, et al. Method for preparing cold water-soluble starch by one-pot dry method: CN117551212A[P]. 2024-02-13.
|
| [25] |
VAN SOEST P J, ROBERTSON J B, LEWIS B A. Symposium: Carbohydrate methodology, metabolism, and nutritional implications in dairy cattle[J]. Journal of dairy science, 1991, 74(10): 3583-3597.
|
| [26] |
SEGAL L, CREELY J J, MARTIN A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal, 1959, 29(10): 786-794.
|
| [27] |
BIAN Huiyang, CHEN Lidong, DONG Maolin, et al. Natural lignocellulosic nanofibril film with excellent ultraviolet blocking performance and robust environment resistance[J]. International Journal of Biological Macromolecules, 2021, 166: 1578-1585.
|
| [28] |
张梦丽, 陈港, 魏渊, 等. 木质素-纳米纤维素复合薄膜的制备及其紫外光屏蔽性能[J]. 复合材料学报, 2022, 39(3): 1239-1248.
|
|
ZHANG Mengli, CHEN Gang, WEI Yuan, et al. Preparation and UV-blocking performance of lignin-cellulose nanofiber composite film[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1239-1248.
|
| [29] |
HE Yanqing, ZHANG Longping, ZHANG Jian, et al. Helically agitated mixing in dry dilute acid pretreatment enhances the bioconversion of corn stover into ethanol[J]. Biotechnology for Biofuels, 2014, 7(1): 1.
|
| [30] |
HERMIATI Euis, LAKSANA Raden Permana Budi, FATRIASARI Widya, et al. Microwave-assisted acid pretreatment for enhancing enzymatic saccharification of sugarcane trash[J]. Biomass Conversion and Biorefinery, 2022, 12(8): 3037-3054.
|
| [31] |
WIBOWO Agung, CHIARASUMRAN Nutchapon, THANAPIMMETHA Anusith, et al. Conversion of sugarcane trash to nanocrystalline cellulose and its life cycle assessment[J]. Catalysts, 2022, 12(10): 1215.
|
| [32] |
CANDIDO R G, MORI N R, GONÇALVES A R. Sugarcane straw as feedstock for 2G ethanol: Evaluation of pretreatments and enzymatic hydrolysis[J]. Industrial Crops and Products, 2019, 142: 111845.
|
| [33] |
RAO Muhammad Junaid, AHMED Umair, AHMED Muhammad Husnain, et al. Comparison and quantification of metabolites and their antioxidant activities in young and mature leaves of sugarcane[J]. ACS Food Science & Technology, 2021, 1(3): 362-373.
|
| [34] |
侯小涛, 邓家刚, 李爱媛, 等. 甘蔗叶不同提取物对3种糖尿病模型的降血糖作用[J]. 华西药学杂志, 2011, 26(5): 451-453.
|
|
HOU Xiaotao, DENG Jiagang, LI Aiyuan, et al. Study on hypoglycemia activity of the different extracts of sugarcane leaves[J]. West China Journal of Pharmaceutical Sciences, 2011, 26(5): 451-453.
|
| [35] |
GOMES Michelle Garcia, GURGEL Leandro Vinícius Alves, BAFFI Milla Alves, et al. Pretreatment of sugarcane bagasse using citric acid and its use in enzymatic hydrolysis[J]. Renewable Energy, 2020, 157: 332-341.
|
| [36] |
何建新. 高级竹溶解浆粕的制备及其用于合成醋酸纤维素的研究[D]. 上海: 东华大学, 2007.
|
|
HE Jianxin. Preparation of high-grade bamboo dissolving pulp and its application for the synthesis of cellulose acetate[D]. Shanghai: Donghua University, 2007.
|
| [37] |
YADAV Nisha, HAKKARAINEN Minna. Degradation of cellulose acetate in simulated aqueous environments: One-year study[J]. Macromolecular Materials and Engineering, 2022, 307(6): 2100951.
|
| [38] |
LIU Liu, GONG Decai, BRATASZ Lukasz, et al. Degradation markers and plasticizer loss of cellulose acetate films during ageing[J]. Polymer Degradation and Stability, 2019, 168: 108952.
|
| [39] |
何建新, 唐予远, 王善元. 醋酸纤维素的结晶结构与热性能[J]. 纺织学报, 2008, 29(10): 12-16.
|
|
HE Jianxin, TANG Yuyuan, WANG Shanyuan. Crystalline structure and thermal property of cellulose acetate[J]. Journal of Textile Research, 2008, 29(10): 12-16.
|
| [40] |
LI Wenwen, CAI Guixin, ZHANG Pudun. A simple and rapid Fourier transform infrared method for the determination of the degree of acetyl substitution of cellulose nanocrystals[J]. Journal of Materials Science, 2019, 54(10): 8047-8056.
|
| [41] |
CHEN Jinghuan, XU Jikun, WANG Kun, et al. Cellulose acetate fibers prepared from different raw materials with rapid synthesis method[J]. Carbohydrate Polymers, 2016, 137: 685-692.
|
| [42] |
刘成. 木质素热重红外动力学分析与乙酰化改性研究[D]. 南京: 南京林业大学, 2015.
|
|
LIU Cheng. Study of lignin kinetics via TG-FTIR analysis and acetylation modification[D]. Nanjing: Nanjing Forestry University, 2015.
|
| [43] |
肖卫华, 郭东毅, 严庆江, 等. 磷钨酸盐催化水解三醋酸纤维素制备二醋酸纤维素研究[J]. 农业机械学报, 2022, 53(11): 395-401.
|
|
XIAO Weihua, GUO Dongyi, YAN Qingjiang, et al. Preparation of cellulose diacetate by hydrolysis of cellulose triacetate catalyzed by phosphotungstate[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(11): 395-401.
|
| [44] |
SUWANREE Siraprapa, KNIJNENBURG Jesper T N, KASEMSIRI Pornnapa, et al. Engineered biochar from sugarcane leaves with slow phosphorus release kinetics[J]. Biomass and Bioenergy, 2022, 156: 106304.
|
| [45] |
BOARINO Alice, SCHREIER Aigoul, LETERRIER Yves, et al. Uniformly dispersed poly(lactic acid)-grafted lignin nanoparticles enhance antioxidant activity and UV-barrier properties of poly(lactic acid) packaging films[J]. ACS Applied Polymer Materials, 2022, 4(7): 4808-4817.
|