化工进展 ›› 2025, Vol. 44 ›› Issue (S1): 307-322.DOI: 10.16085/j.issn.1000-6613.2025-0469
• 材料科学与技术 • 上一篇
杜亮亮1(
), 邵杰1, 汪超1, 宋俊达2, 程尧2, 开元3, 胡超1(
)
收稿日期:2025-03-31
修回日期:2025-06-18
出版日期:2025-10-25
发布日期:2025-11-24
通讯作者:
胡超
作者简介:杜亮亮(2000—),男,硕士研究生,研究方向为沥青基钠离子电池负极材料。E-mail:3067372887@qq.com。
基金资助:
DU Liangliang1(
), SHAO Jie1, WANG Chao1, SONG Junda2, CHENG Yao2, KAI Yuan3, HU Chao1(
)
Received:2025-03-31
Revised:2025-06-18
Online:2025-10-25
Published:2025-11-24
Contact:
HU Chao
摘要:
钠离子电池(sodium-ion battery,SIB)因钠资源丰富、成本低廉,在大规模储能领域展现出广阔应用前景,但其负极材料性能制约了整体发展。沥青作为碳基负极前体,具有原料成本低、碳收率高、结构可调等优势,成为当前研究热点。本文系统综述了沥青基SIB负极材料的优化策略与前沿进展,重点分析了沥青分子改性、孔隙结构设计、杂原子掺杂及电极-电解液界面调控等关键技术。研究表明,通过分子交联-闭孔构筑-界面工程的跨尺度协同,可同步提升可逆容量和首次库仑效率。然而,当前研究仍面临沥青组分波动性大、传统改性工艺污染严重、闭孔储钠机制存在争议以及全电池匹配性缺失等挑战。未来研究需要聚焦绿色制备工艺开发,探索沥青分子精准调控新方法,结合机器学习构建“结构-性能”预测模型,并深化多尺度界面调控机制研究。同时,急需推动沥青基SIB负极的规模化制备与全电池集成验证,解决电极压实密度、电解液浸润性等工程化问题,为实现高性能、低成本SIB储能系统提供关键技术支撑。
中图分类号:
杜亮亮, 邵杰, 汪超, 宋俊达, 程尧, 开元, 胡超. 沥青基钠离子电池负极材料研究进展[J]. 化工进展, 2025, 44(S1): 307-322.
DU Liangliang, SHAO Jie, WANG Chao, SONG Junda, CHENG Yao, KAI Yuan, HU Chao. Research progress on pitch-based anode materials for sodium-ion batteries[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 307-322.
| [74] | 宗世荣, 王玲, 姚秋月, 等. 炭材料在储钠器件负极中的研究进展[J]. 化工进展, 2024, 43(10): 5581-5600. |
| ZONG Shirong, WANG Ling, YAO Qiuyue, et al. Research progress of carbon as anode materials for sodium-ion storage devices[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5581-5600. | |
| [75] | QIU Ruoxue, MA Dakai, ZHENG Hui, et al. Performance degradation mechanisms and mitigation strategies of hard carbon anode and solid electrolyte interface for sodium-ion battery[J]. Nano Energy, 2024, 128: 109920. |
| [76] | HAO Mingyuan, XIAO Nan, WANG Yuwei, et al. Pitch-derived N-doped porous carbon nanosheets with expanded interlayer distance as high-performance sodium-ion battery anodes[J]. Fuel Processing Technology, 2018, 177: 328-335. |
| [77] | ZHAO Xiaobing, SHI Peng, WANG Haibo, et al. Unlocking plateau capacity with versatile precursor crosslinking for carbon anodes in Na-ion batteries[J]. Energy Storage Materials, 2024, 70: 103543. |
| [78] | XIE Fei, NIU Yaoshen, ZHANG Qiangqiang, et al. Screening heteroatom configurations for reversible sloping capacity promises high-power Na-ion batteries[J]. Angewandte Chemie International Edition, 2022, 61(11): e202116394. |
| [79] | XIE Jinming, ZHUANG Rong, DU Yuxuan, et al. Advances in sulfur-doped carbon materials for use as anodes in sodium-ion batteries[J]. New Carbon Materials, 2023, 38(2): 305-316. |
| [80] | 肖雪, 李佳纯, 孟祥桐, 等. 硫掺杂针状焦基多孔碳的制备及其储钠性能[J]. 洁净煤技术, 2023, 29(9): 162-170. |
| XIAO Xue, LI Jiachun, MENG Xiangtong, et al. Preparation of sulfur-doped needle coke-based porous carbon for robust sodium-ion storage[J]. Clean Coal Technology,2023, 29(9): 162-170. | |
| [81] | HE Jiale, DU Juntao, FENG Chenming, et al. S/O co-doped honeycomb-like porous carbon nanosheets with ultra-high edge defects for high-performance sodium storage[J]. Carbon, 2024, 219: 118825. |
| [82] | SHI Lu, LIU Wei, ZHAO Fanjun, et al. Tailoring the dual precursors coupled hard carbon by embedding the pitch-derived graphitic domains to achieve high-performance sodium storage[J]. Journal of Power Sources, 2024, 596: 234093. |
| [83] | YIN Xiuping, ZHAO Yufeng, WANG Xuan, et al. Modulating the graphitic domains of hard carbons derived from mixed pitch and resin to achieve high rate and stable sodium storage[J]. Small, 2022, 18(5): e2105568. |
| [1] | ZHAO Lina, ZHANG Teng, LI Wei, et al. Engineering of sodium-ion batteries: Opportunities and challenges[J]. Engineering, 2023, 24: 172-183. |
| [2] | HWANG Jang-Yeon, MYUNG Seung-Taek, SUN Yang-Kook. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. |
| [3] | GAO Yun, ZHANG Hang, PENG Jian, et al. A 30-year overview of sodium-ion batteries[J]. Carbon Energy, 2024, 6(6): e464. |
| [4] | HIRSH Hayley S, LI Yixuan, TAN Darren H S, et al. Sodium-ion batteries paving the way for grid energy storage[J]. Advanced Energy Materials, 2020, 10(32): 2001274. |
| [5] | KIM Sung-Wook, SEO Dong-Hwa, MA Xiaohua, et al. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(7): 710-721. |
| [6] | NAYAK Prasant Kumar, YANG Liangtao, BREHM Wolfgang, et al. Von lithium- zu natriumionenbatterien: Vorteile, herausforderungen und überraschendes[J]. Angewandte Chemie, 2018, 130(1): 106-126. |
| [7] | 容晓晖, 陆雅翔, 戚兴国, 等. 钠离子电池: 从基础研究到工程化探索[J]. 储能科学与技术, 2020, 9(2): 515-522. |
| RONG Xiaohui, LU Yaxiang, QI Xingguo, et al. Na-ion batteries:From fundamental research to engineering exploration[J]. Energy Storage Science and Technology, 2020, 9(2): 515-522. | |
| [8] | YABUUCHI Naoaki, KUBOTA Kei, DAHBI Mouad, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682. |
| [9] | QIAO Shuangyan, ZHOU Qianwen, MA Meng, et al. Advanced anode materials for rechargeable sodium-ion batteries[J]. ACS Nano, 2023, 17(12): 11220-11252. |
| [10] | CHEN Xiaoyang, LIU Changyu, FANG Yongjin, et al. Understanding of the sodium storage mechanism in hard carbon anodes[J]. Carbon Energy, 2022, 4(6): 1133-1150. |
| [11] | SUN Ning, QIU Jieshan, XU Bin. Understanding of sodium storage mechanism in hard carbons: Ongoing development under debate[J]. Advanced Energy Materials, 2022, 12(27): 2200715. |
| [12] | LI Li, ZHENG Yang, ZHANG Shilin, et al. Recent progress on sodium ion batteries: Potential high-performance anodes[J]. Energy & Environmental Science, 2018, 11(9): 2310-2340. |
| [13] | 朱子翼, 张英杰, 董鹏, 等. 高性能钠离子电池负极材料的研究进展[J]. 化工进展, 2019, 38(5): 2222-2232. |
| ZHU Ziyi, ZHANG Yingjie, DONG Peng, et al. Research progress of anode materials for high performance sodium-ion batteries[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2222-2232. | |
| [14] | ZHOU Hanyu, SONG Yihang, ZHANG Boyang, et al. Overview of electrochemical competing process of sodium storage and metal plating in hard carbon anode of sodium ion battery[J]. Energy Storage Materials, 2024, 71: 103645. |
| [15] | TIAN Zhihong, ZHANG Yu, ZHU Jixin, et al. A reanalysis of the diverse sodium species in carbon anodes for sodium ion batteries: A thermodynamic view[J]. Advanced Energy Materials, 2021, 11(47): 2102489. |
| [16] | MATEI GHIMBEU Camélia, BEDA Adrian, Bénédicte RÉTY, et al. Review: Insights on hard carbon materials for sodium-ion batteries (SIBs): Synthesis-properties-performance relationships[J]. Advanced Energy Materials, 2024, 14(19): 2303833. |
| [17] | LIU Mingquan, WANG Yahui, WU Feng, et al. Advances in carbon materials for sodium and potassium storage[J]. Advanced Functional Materials, 2022, 32(31): 2203117. |
| [18] | WU Jinru, YANG Tao, SONG Yan, et al. Preparation of disordered carbon for alkali metal-ion (lithium, sodium, and potassium) batteries by pitch molecular modification: A review[J]. Carbon, 2024, 221: 118902. |
| [19] | 郭行, 韩纹莉, 董晓玲, 等. 调控炭化过程优化煤基硬炭负极储钠性能[J]. 化工学报, 2022, 73(4): 1794-1806. |
| GUO Hang, HAN Wenli, DONG Xiaoling, et al. Adjusting carbonization process to optimize sodium storage performance of coal-based hard carbon anode[J]. CIESC Journal, 2022, 73(4): 1794-1806. | |
| [20] | DU Wensheng, SUN Chen, SUN Qiang. The recent progress of pitch nanoengineering to obtain the carbon anode for high-performance sodium ion batteries[J]. Materials, 2023, 16(13): 4871. |
| [21] | LI Cen, YAN Lunjing, WANG Meijun, et al. Synthesis strategies and applications for pitch-based anode: From industrial by-products to power sources[J]. The Chemical Record, 2023, 23(2): e202200216. |
| [22] | LIU Zhaoguo, LU Ziyang, GUO Shaohua, et al. Toward high performance anodes for sodium-ion batteries: From hard carbons to anode-free systems[J]. ACS Central Science, 2023, 9(6): 1076-1087. |
| [23] | ANNE SAWHNEY M, WAHID Malik, MUHKERJEE Santanu, et al. Process-structure-formulation interactions for enhanced sodium ion battery development: A review[J]. ChemPhysChem, 2022, 23(5): e202100860. |
| [24] | LIU Huichao, ZHU Sheng, CHANG Yunzhen, et al. Pitch-based carbon materials: A review of their structural design, preparation and applications in energy storage[J]. New Carbon Materials, 2023, 38(3): 459-473. |
| [25] | SENDA Takahiro, YAMADA Yasuhiro, MORIMOTO Masakazu, et al. Analyses of oxidation process for isotropic pitch-based carbon fibers using model compounds[J]. Carbon, 2019, 142: 311-326. |
| [26] | LIU Dong, LOU Bin, CHANG Guangkai, et al. Study on effect of cross-linked structures induced by oxidative treatment of aromatic hydrocarbon oil on subsequent carbonized behaviors[J]. Fuel, 2018, 231: 495-506. |
| [27] | ZHANG Zhichen, HUANG Xiaoqiao, ZHANG Lanjie, et al. Study on the evolution of oxygenated structures in low-temperature coal tar during the preparation of needle coke by co-carbonization[J]. Fuel, 2022, 307: 121811. |
| [28] | 张亚婷, 孔政翰, 李雪, 等. 煤基炭负极材料在钠离子电池中的研究进展[J]. 炭素技术, 2024, 43(3): 1-8. |
| ZHANG Yating, KONG Zhenghan, LI Xue, et al. Research progress of coal based carbon anode materials in sodium-ion batteries[J]. Carbon Techniques, 2024, 43(3): 1-8. | |
| [29] | CORBETT Luke W. Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution-adsorption chromatography, and densimetric characterization[J]. Analytical Chemistry, 1969, 41(4): 576-579. |
| [30] | ZHANG Xufeng, YI Zonglin, TIAN Yanru, et al. Insight into the effect of structural differences among pitch fractions on sodium storage performance of pitch-derived hard carbons[J]. Carbon, 2024, 226: 119165. |
| [31] | GUAN Taotao, ZHAO Jianghong, ZHANG Guoli, et al. Insight into controllability and predictability of pore structures in pitch-based activated carbons[J]. Microporous and Mesoporous Materials, 2018, 271: 118-127. |
| [32] | CHEN Changwei, HUANG Huang, YU Yanke, et al. Template-free synthesis of hierarchical porous carbon with controlled morphology for CO2 efficient capture[J]. Chemical Engineering Journal, 2018, 353: 584-594. |
| [33] | GUAN Taotao, LI Kaixi, ZHAO Jianghong, et al. Template-free preparation of layer-stacked hierarchical porous carbons from coal tar pitch for high performance all-solid-state supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(30): 15869-15878. |
| [34] | ZHOU Bin, LIU Qingya, SHI Lei, et al. Electron spin resonance studies of coals and coal conversion processes: A review[J]. Fuel Processing Technology, 2019, 188: 212-227. |
| [35] | MA Zhihao, WEI Xianyong, LIU Guanghui, et al. Value-added utilization of high-temperature coal tar: A review[J]. Fuel, 2021, 292: 119954. |
| [36] | 宁汇, 王路海, 何盛宝, 等. 石油沥青基碳材料的电化学应用研究进展[J]. 石油炼制与化工, 2021, 52(10): 38-45. |
| NING Hui, WANG Luhai, HE Shengbao, et al. Research process of petroleum pitch-based carbon materials in electrochemical applications[J]. Petroleum Processing and Petrochemicals, 2021, 52(10): 38-45. | |
| [37] | 张英杰, 朱子翼, 董鹏, 等. 钠离子电池碳基负极材料的研究进展[J]. 化工进展, 2017, 36(11): 4106-4115. |
| ZHANG Yingjie, ZHU Ziyi, DONG Peng, et al. Research progress of carbon-based anode materials for sodium ion batteries[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4106-4115. | |
| [38] | KWAK Cheol Hwan, SEO Sang Wan, KIM Min Il, et al. Waste plastic for increasing softening point of pitch and specific surface area of activated carbon based on the petroleum residue[J]. Carbon Letters, 2021, 31(5): 991-1000. |
| [39] | JI Lichang, ZHAO Yun, CAO Lijuan, et al. A fundamental understanding of structure evolution in the synthesis of hard carbon from coal tar pitch for high-performance sodium storage[J]. Journal of Materials Chemistry A, 2023, 11(48): 26727-26741. |
| [40] | LI Peihua, CHEN Pengfei, ZHANG Wanggang, et al. Advanced multielement (O, N, S) modified strategies for pitch-based carbon anodes toward both lithium and sodium storage[J]. Vacuum, 2024, 224: 113121. |
| [41] | JIANG Ye, JIANG Jiangmin, NIE Ping, et al. Recent progress and prospects of pitch-based carbon anodes for alkali metal-ion (Li/Na/K) batteries[J]. Journal of Energy Storage, 2023, 72: 108484. |
| [42] | LU Yaxiang, ZHAO Chenglong, QI Xingguo, et al. Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance[J]. Advanced Energy Materials, 2018, 8(27): 1800108. |
| [43] | XU Ran, YI Zonglin, SONG Mingxin, et al. Boosting sodium storage performance of hard carbons by regulating oxygen functionalities of the cross-linked asphalt precursor[J]. Carbon, 2023, 206: 94-104. |
| [44] | CHEN He, SUN Ning, WANG Yingxian, et al. One stone two birds: Pitch assisted microcrystalline regulation and defect engineering in coal-based carbon anodes for sodium-ion batteries[J]. Energy Storage Materials, 2023, 56: 532-541. |
| [45] | WANG Haiyang, ZHU Hongzhe, WANG Shoukai, et al. Dicarbonyl-tuned microstructures of hierarchical porous carbons derived from coal-tar pitch for supercapacitor electrodes[J]. RSC Advances, 2019, 9(35): 20019-20028. |
| [46] | WANG Yuwei, XIAO Nan, WANG Zhiyu, et al. Rational design of high-performance sodium-ion battery anode by molecular engineering of coal tar pitch[J]. Chemical Engineering Journal, 2018, 342: 52-60. |
| [47] | ZHANG Guoli, GUAN Taotao, WU Juncheng, et al. Tailor-made C—Cl bond towards rapid homogeneous stabilization of low-softening-point coal tar pitch[J]. Fuel, 2021, 284: 119288. |
| [48] | WANG Laibin, XU Zikang, LIN Ping, et al. Oxygen-crosslinker effect on the electrochemical characteristics of asphalt-based hard carbon anodes for sodium-ion batteries[J]. Advanced Energy Materials, 2025, 15(7): 2403084. |
| [49] | FUJIMOTO Hiroyuki, TOKUMITSU Katsuhisa, MABUCHI Akihiro, et al. The anode performance of the hard carbon for the lithium ion battery derived from the oxygen-containing aromatic precursors[J]. Journal of Power Sources, 2010, 195(21): 7452-7456. |
| [50] | QI Yuruo, LU Yaxiang, LIU Lilu, et al. Retarding graphitization of soft carbon precursor: From fusion-state to solid-state carbonization[J]. Energy Storage Materials, 2020, 26: 577-584. |
| [51] | HE Hanna, HE Jun, YU Huaibo, et al. Dual-interfering chemistry for soft-hard carbon translation toward fast and durable sodium storage[J]. Advanced Energy Materials, 2023, 13(16): 2300357. |
| [52] | PAN Zibing, CHEN Huaqi, ZENG Yubin, et al. Fluorine chemistry in lithium-ion and sodium-ion batteries[J]. Energy Materials,2023, 3(6): 300051. |
| [53] | SHAO Yuan, CUI Yahui, WANG Changda, et al. Initiating fluorine chemistry in polycyclic aromatic hydrocarbon-derived carbon for new cluster-mode Na storage with superhigh capacity[J]. Small, 2023, 19(22): e2300107. |
| [54] | JI Lichang, ZHAO Yun, QI Xingguo, et al. Metal chloride-induced hydrogen transfer enables efficient conversion of aromatic hydrocarbons for sodium storage[J]. Advanced Functional Materials, 2024, 34(48): 2408242. |
| [55] | LIU Chang, ZHENG Hongjie, WANG Yuwei, et al. Microstructure regulation of pitch-based soft carbon anodes by iodine treatment towards high-performance potassium-ion batteries[J]. Journal of Colloid and Interface Science, 2022, 615: 485-493. |
| [56] | 杨涵, 张一波, 李琦, 等. 面向实用化的钠离子电池碳负极: 进展及挑战[J]. 化工进展, 2023, 42(8): 4029-4042. |
| YANG Han, ZHANG Yibo, LI Qi, et al. Practical carbon anodes for sodium-ion batteries: Progress and challenge[J]. Chemical Industry and Engineering Progress,2023, 42(8): 4029-4042. | |
| [57] | HUANG Gang, ZHANG Hao, GAO Fan, et al. Overview of hard carbon anode for sodium-ion batteries: Influencing factors and strategies to extend slope and plateau regions[J]. Carbon, 2024, 228: 119354. |
| [58] | 张俊, 李琦, 陶莹, 等. 钠离子电池筛分型碳: 缘起与进展[J]. 储能科学与技术, 2022, 11(9): 2825-2833. |
| ZHANG Jun, LI Qi, TAO Ying, et al. Sieving carbons for sodium-ion batteries: Origin and progress[J]. Energy Storage Science and Technology, 2022, 11(9): 2825-2833. | |
| [59] | LI Qi, LIU Xiangsi, TAO Ying, et al. Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries[J]. National Science Review, 2022, 9(8): nwac084. |
| [60] | WANG Haihua, NIU Huizhu, SHU Kewei, et al. Regulating the “core-shell” microstructure of hard carbon through sodium hydroxide activation for achieving high-capacity SIBs anode[J]. Journal of Materials Science & Technology, 2025, 209: 161-170. |
| [61] | IGLESIAS Luis Kitsu, ANTONIO Emma N, MARTINEZ Tristan D, et al. Revealing the sodium storage mechanisms in hard carbon pores[J]. Advanced Energy Materials, 2023, 13(44): 2302171. |
| [62] | ZHENG Zhi, HU Sijiang, YIN Wenji, et al. CO2-etching creates abundant closed pores in hard carbon for high-plateau-capacity sodium storage[J]. Advanced Energy Materials, 2024, 14(3): 2303064. |
| [63] | TANG Zheng, ZHANG Rui, WANG Haiyan, et al. Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery[J]. Nature Communications, 2023, 14(1): 6024. |
| [64] | LIN Jianhao, ZHOU Qingfeng, LIAO Zhishan, et al. Steric hindrance engineering to modulate the closed pores formation of polymer-derived hard carbon for high-performance sodium-ion batteries[J]. Angewandte Chemie International Edition, 2024, 63(39): e202409906. |
| [65] | 吴希, 孙博, 刘银东, 等. 钠离子电池沥青基碳负极材料制备技术研究进展[J]. 化工学报, 2024, 75(4): 1270-1283. |
| WU Xi, SUN Bo, LIU Yindong, et al. Research progress in preparation technology of pitch-based carbon anode materials for sodium-ion batteries[J]. CIESC Journal, 2024, 75(4): 1270-1283. | |
| [66] | 所聪, 王阳峰, 朱紫宸, 等. 钠离子电池软碳基负极的研究进展[J]. 储能科学与技术, 2024, 13(6): 1807-1823. |
| SUO Cong, WANG Yangfeng, ZHU Zichen, et al. Research progress of soft carbon as negative electrodes in sodium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(6): 1807-1823. | |
| [67] | IGARASHI Daisuke, TANAKA Yoko, KUBOTA Kei, et al. New template synthesis of anomalously large capacity hard carbon for Na- and K-ion batteries[J]. Advanced Energy Materials, 2023, 13(47): 2302647. |
| [68] | HAN Liang, LI Zhimin, YANG Fei, et al. Enhancing capacitive storage of carbonaceous anode by surface doping and structural modulation for high-performance sodium-ion battery[J]. Powder Technology, 2021, 382: 541-549. |
| [69] | LU Peng, SUN Yi, XIANG Hongfa, et al. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(8): 1702434. |
| [70] | SUN Dong, ZHAO Lu, SUN Peiliang, et al. Rationally regulating closed pore structures by pitch coating to boost sodium storage performance of hard carbon in low-voltage platforms[J]. Advanced Functional Materials, 2024, 34(40): 2403642. |
| [71] | TIAN Yanru, YI Zonglin, SU Fangyuan, et al. Regulating the pore structure of activated carbon by pitch for high-performance sodium-ion storage[J]. ACS Applied Materials & Interfaces, 2024, 16(14): 17553-17562. |
| [72] | CHENG Dejian, LI Zhenghui, ZHANG Minglu, et al. Engineering ultrathin carbon layer on porous hard carbon boosts sodium storage with high initial coulombic efficiency[J]. ACS Nano, 2023, 17(19): 19063-19075. |
| [73] | ZHAO Yanhong, HU Zhuang, ZHOU Wang, et al. Advanced structural engineering design for tailored microporous structure via adjustable graphite sheet angle to enhance sodium-ion storage in anthracite-based carbon anode[J]. Advanced Functional Materials, 2024, 34(44): 2405174. |
| [84] | WENG Guoming, XIE Yu, WANG Hang, et al. A promising carbon/g-C3N4 composite negative electrode for a long-life sodium-ion battery[J]. Angewandte Chemie International Edition, 2019, 58(39): 13727-13733. |
| [85] | ZHAO Yan, CONG Yao, NING Hui, et al. Petroleum-pitch-based carbon nanocages encapsulated few-layer MoS2 with S vacancies for a high-performance sodium-ion battery[J]. Energy & Fuels, 2023, 37(6): 4641-4649. |
| [86] | 董伟, 杨绍斌, 沈丁, 等. 石油沥青和葡萄糖热解炭的可逆储钠性能研究[J]. 新型炭材料, 2017, 32(3): 227-233. |
| DONG Wei, YANG Shaobin, SHEN Ding, et al. Performance of pitch and glucose pyrocarbons for reversible sodium storage[J]. New Carbon Materials, 2017, 32(3): 227-233. | |
| [87] | LIN Saisai, YANG Zhuo, CHEN Jian, et al. Functional electrolyte additives for sodium-ion and sodium-metal batteries: Progress and perspectives[J]. Advanced Functional Materials, 2024, 34(34): 2400731. |
| [88] | TANG Zheng, WANG Hong, WU Pengfei, et al. Electrode-electrolyte interfacial chemistry modulation for ultra-high rate sodium-ion batteries[J]. Angewandte Chemie International Edition, 2022, 61(18): e202200475. |
| [89] | LU Ziyang, GENG Chuannan, YANG Huijun, et al. Step-by-step desolvation enables high-rate and ultra-stable sodium storage in hard carbon anodes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(40): e2210203119. |
| [90] | ZHAO Siwei, HUANG Fuqiang. Weakly solvating few-layer-carbon interface toward high initial coulombic efficiency and cyclability hard carbon anodes[J]. ACS Nano, 2024, 18(2): 1733-1743. |
| [91] | XIA Huicong, ZAN Lingxing, QU Gan, et al. Evolution of a solid electrolyte interphase enabled by FeN X /C catalysts for sodium-ion storage[J]. Energy & Environmental Science, 2022, 15(2): 771-779. |
| [92] | ZHAI Pengbo, WANG Tianshuai, YANG Weiwei, et al. Uniform lithium deposition assisted by single-atom doping toward high-performance lithium metal anodes[J]. Advanced Energy Materials, 2019, 9(18): 1804019. |
| [93] | LU Zhixiu, WANG Jing, FENG Wuliang, et al. Zinc single-atom-regulated hard carbons for high-rate and low-temperature sodium-ion batteries[J]. Advanced Materials, 2023, 35(26): 2211461. |
| [1] | 马晓彪, 刘晗, 王伟欢, 苗培培, 季莹辉, 陈博阳, 彭晓伟, 许强, 靳凤英, 马明超, 王银斌, 郭春垒. 酸和磷复合改性对ZSM-5分子筛催化裂解性能的影响[J]. 化工进展, 2025, 44(S1): 197-204. |
| [2] | 李芮莹, 周颖, 周红军, 徐春明. 生物质衍生纳米碳基材料:电化学场景下的机遇与挑战[J]. 化工进展, 2025, 44(S1): 288-306. |
| [3] | 罗沛, 李萍, 杨文峰, 李伟. 基于灰色关联与因子分析的沥青老化程度评价[J]. 化工进展, 2025, 44(9): 5108-5119. |
| [4] | 田小革, 李光耀, 高凯, 吴清浩, 黄思丹, 谢振. 干法工艺中废胶粉与沥青-集料界面的相互作用行为[J]. 化工进展, 2025, 44(9): 5174-5183. |
| [5] | 周慕妍, 李凯, 谢征芸, 孙彦琳. 新型多糖基二元流变改性剂在香精油微胶囊悬浮中的应用与性能[J]. 化工进展, 2025, 44(9): 5265-5276. |
| [6] | 王阳峰, 蔡海乐, 张舒冬, 朱紫宸, 所聪, 杨雁, 侯栓弟. 钠离子电池石油焦基负极/电解液的相容性[J]. 化工进展, 2025, 44(7): 3850-3859. |
| [7] | 张巍, 梁垚城, 伍乔, 付业昊, 尹艳山, 成珊, 阮敏, 刘涛, 周昭仪, 张凯凯, 李丹聪. 基于金属离子改性的Cu-SSZ-13催化剂在NH3-SCR脱硝中的应用[J]. 化工进展, 2025, 44(7): 3879-3891. |
| [8] | 徐茹婷, 赵剑, 孙康, 卢辛成, 蒋剑春, 苏忠高, 刘军利, 陈子标, 苏子寒. 活性炭改性及其对模拟废润滑油的净化性能[J]. 化工进展, 2025, 44(7): 4022-4031. |
| [9] | 孙燕, 陈马超, 田娜, 谢晓阳, 李晓玲, 何皎洁, 赵晓红. 基于β-环糊精的TFC正渗透膜原位构筑及抗污染性能[J]. 化工进展, 2025, 44(6): 3671-3682. |
| [10] | 张绎如, 韩东梅, 马伟芳. 铁基复合卤氧化铋磁性材料强化可见光催化处理难降解有机废水研究进展[J]. 化工进展, 2025, 44(4): 2258-2273. |
| [11] | 岳磊, 栗培龙, 丁湛, 夏雷, 安琳玉. 沥青再生剂扩散行为表征方法研究进展[J]. 化工进展, 2025, 44(4): 2068-2080. |
| [12] | 黄娇, 朱亚明, 岳佳兴, 王莹, 程俊霞, 赵雪飞. 球形活性炭的制备、改性及应用研究进展[J]. 化工进展, 2025, 44(4): 2081-2101. |
| [13] | 张茂润, 孙伟如, 马天麟, 辛志玲. Mo改性MnCe/SiC低温SCR脱硝催化剂抗SO2中毒性能[J]. 化工进展, 2025, 44(3): 1378-1386. |
| [14] | 李家豪, 范海明, 魏志毅, 程思远. 纳米材料在低渗透油藏中的研究进展及展望[J]. 化工进展, 2025, 44(3): 1485-1495. |
| [15] | 白中良, 李萍, 王晖, 李伟, 张强, 李宁. 基于响应曲面法的沥青再生剂配比设计以及抗老化性能[J]. 化工进展, 2025, 44(3): 1607-1618. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |