化工进展 ›› 2025, Vol. 44 ›› Issue (9): 5174-5183.DOI: 10.16085/j.issn.1000-6613.2024-1189
• 材料科学与技术 • 上一篇
田小革(
), 李光耀(
), 高凯, 吴清浩, 黄思丹, 谢振
收稿日期:2024-07-23
修回日期:2024-09-02
出版日期:2025-09-25
发布日期:2025-09-30
通讯作者:
李光耀
作者简介:田小革(1970—),男,教授,博士生导师,研究方向为道路工程。E-mail:tianxiaoge@126.com。
基金资助:
TIAN Xiaoge(
), LI Guangyao(
), GAO Kai, WU Qinghao, HUANG Sidan, XIE Zhen
Received:2024-07-23
Revised:2024-09-02
Online:2025-09-25
Published:2025-09-30
Contact:
LI Guangyao
摘要:
为了揭示干法工艺中废胶粉与沥青-集料界面在相互作用过程中的微观黏附特性及扩散迁移行为,基于分子动力学模拟技术建立了干法工艺中废胶粉与沥青-集料体系的共混模型,研究了其在不同温度、不同作用时间下的均方位移(MSD)、扩散系数(MDC)、相对浓度分布及界面能演变规律。通过黏附性试验分析了干法工艺中废胶粉与沥青膜的界面分离形式。结果表明,干法工艺中废胶粉与沥青的扩散行为体现为双向迁移的过程,废胶粉逐渐向沥青层扩散,沥青亦逐渐融合废胶粉并扩散至集料表面,从而形成稳定体系。扩散过程中的MSD与MDC随温度升高而增大。干法工艺中废胶粉在集料表面的初始浓度分布极高,随时间推移,浓度逐渐下降。废胶粉的引入改变了沥青组分在集料表面的分布,有效提升了沥青与集料之间的界面能。此外,室内黏附性试验结果与分子模拟结果相一致,进一步为探讨干法工艺中废胶粉与沥青-集料界面的相互作用行为提供了有价值的参考。
中图分类号:
田小革, 李光耀, 高凯, 吴清浩, 黄思丹, 谢振. 干法工艺中废胶粉与沥青-集料界面的相互作用行为[J]. 化工进展, 2025, 44(9): 5174-5183.
TIAN Xiaoge, LI Guangyao, GAO Kai, WU Qinghao, HUANG Sidan, XIE Zhen. Interaction behavior between waste rubber powder and asphalt-aggregate interface in dry process[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5174-5183.
| 指标 | 规范要求 | 试验结果 | 试验方法 |
|---|---|---|---|
| 针入度(25℃,5s,100g)/0.1mm | 60~80 | 68.1 | T 0604—2011 |
| 软化点/℃ | ≥46 | 49.1 | T 0606—2011 |
| 延度(15℃)/cm | ≥100 | >100 | T 0605—2011 |
| 相对密度(25℃)/g·cm-3 | 实测 | 1.045 | T 0603—2011 |
表1 A-70#基质沥青技术指标
| 指标 | 规范要求 | 试验结果 | 试验方法 |
|---|---|---|---|
| 针入度(25℃,5s,100g)/0.1mm | 60~80 | 68.1 | T 0604—2011 |
| 软化点/℃ | ≥46 | 49.1 | T 0606—2011 |
| 延度(15℃)/cm | ≥100 | >100 | T 0605—2011 |
| 相对密度(25℃)/g·cm-3 | 实测 | 1.045 | T 0603—2011 |
| 指标 | 测试结果 | 技术要求 |
|---|---|---|
| 筛余物/% | 8 | <10 |
| 相对密度/g·cm-3 | 1.20 | 1.10~1.30 |
| 金属质量分数/% | 0.03 | <0.05 |
| 纤维质量分数/% | 0.04 | <1.0 |
| 灰分/% | 6 | ≤8 |
| 橡胶烃/% | 51.94 | ≥48 |
| 炭黑/% | 32.84 | ≥28 |
表2 废胶粉技术指标
| 指标 | 测试结果 | 技术要求 |
|---|---|---|
| 筛余物/% | 8 | <10 |
| 相对密度/g·cm-3 | 1.20 | 1.10~1.30 |
| 金属质量分数/% | 0.03 | <0.05 |
| 纤维质量分数/% | 0.04 | <1.0 |
| 灰分/% | 6 | ≤8 |
| 橡胶烃/% | 51.94 | ≥48 |
| 炭黑/% | 32.84 | ≥28 |
| 指标 | 测试结果 | 技术要求 |
|---|---|---|
| 洛杉矶磨耗值/% | 13.8 | ≤28 |
| 坚固性/% | 1.7 | ≤12 |
| 针片状颗粒质量分数/% | 5.6 | ≤12 |
| 软弱颗粒质量分数/% | 1.9 | ≤3 |
| 表观相对密度/g·cm-3 | 2.817 | ≥2.6 |
| 吸水率/% | 0.4 | ≤2.0 |
表3 粗集料技术指标
| 指标 | 测试结果 | 技术要求 |
|---|---|---|
| 洛杉矶磨耗值/% | 13.8 | ≤28 |
| 坚固性/% | 1.7 | ≤12 |
| 针片状颗粒质量分数/% | 5.6 | ≤12 |
| 软弱颗粒质量分数/% | 1.9 | ≤3 |
| 表观相对密度/g·cm-3 | 2.817 | ≥2.6 |
| 吸水率/% | 0.4 | ≤2.0 |
| 沥青四组分 | 分子种类 | 分子式 | 摩尔质量/g·mol-1 | 分子个数 | 质量分数/% |
|---|---|---|---|---|---|
| 沥青质(As) | As-1 | C42H54O | 574.893 | 3 | 5.3 |
| As-2 | C66H81N | 888.381 | 2 | 5.5 | |
| As-3 | C51H62S | 707.117 | 3 | 6.5 | |
| 饱和分(Sa) | Sa-1 | C30H62 | 422.826 | 4 | 5.2 |
| Sa-2 | C35H62 | 482.881 | 4 | 5.9 | |
| 芳香分(Ar) | Ar-1 | C35H44 | 464.737 | 11 | 15.7 |
| Ar-2 | C30H46 | 406.698 | 13 | 16.2 | |
| 胶质(Re) | Re-1 | C40H59N | 553.919 | 4 | 6.8 |
| Re-2 | C40H60S | 572.980 | 4 | 7.0 | |
| Re-3 | C18H10S2 | 290.398 | 15 | 13.4 | |
| Re-4 | C36H57N | 503.859 | 4 | 6.4 | |
| Re-5 | C29H50O | 414.718 | 5 | 6.2 |
表4 12种分子的分子参数
| 沥青四组分 | 分子种类 | 分子式 | 摩尔质量/g·mol-1 | 分子个数 | 质量分数/% |
|---|---|---|---|---|---|
| 沥青质(As) | As-1 | C42H54O | 574.893 | 3 | 5.3 |
| As-2 | C66H81N | 888.381 | 2 | 5.5 | |
| As-3 | C51H62S | 707.117 | 3 | 6.5 | |
| 饱和分(Sa) | Sa-1 | C30H62 | 422.826 | 4 | 5.2 |
| Sa-2 | C35H62 | 482.881 | 4 | 5.9 | |
| 芳香分(Ar) | Ar-1 | C35H44 | 464.737 | 11 | 15.7 |
| Ar-2 | C30H46 | 406.698 | 13 | 16.2 | |
| 胶质(Re) | Re-1 | C40H59N | 553.919 | 4 | 6.8 |
| Re-2 | C40H60S | 572.980 | 4 | 7.0 | |
| Re-3 | C18H10S2 | 290.398 | 15 | 13.4 | |
| Re-4 | C36H57N | 503.859 | 4 | 6.4 | |
| Re-5 | C29H50O | 414.718 | 5 | 6.2 |
| 项目 | 密度/g·cm-3 | 溶解度/(J·cm-3)0.5 |
|---|---|---|
| 模拟值 | 1.023 | 17.546 |
| 试验参考值 | 1.045±0.050 | 15.3~23.0 |
表5 沥青模型的物理参数
| 项目 | 密度/g·cm-3 | 溶解度/(J·cm-3)0.5 |
|---|---|---|
| 模拟值 | 1.023 | 17.546 |
| 试验参考值 | 1.045±0.050 | 15.3~23.0 |
| 类别 | 晶格参数 |
|---|---|
| a/Å | 5.0563 |
| b/Å | 5.0563 |
| c/Å | 7.3740 |
| α/(°) | 90 |
| β/(°) | 90 |
| γ/(°) | 120 |
表6 SiO2晶胞参数
| 类别 | 晶格参数 |
|---|---|
| a/Å | 5.0563 |
| b/Å | 5.0563 |
| c/Å | 7.3740 |
| α/(°) | 90 |
| β/(°) | 90 |
| γ/(°) | 120 |
| 方式 | 温度/K | 拟合方程 | R2 | 扩散系数/m2·s-1 |
|---|---|---|---|---|
| 干法工艺 | 298 | y=0.03683x-3.29077 | 0.81282 | 6.138×10-10 |
| 438 | y=0.11801x-4.89011 | 0.89282 | 1.967×10-9 | |
| 453 | y=0.14009x+3.51782 | 0.91771 | 2.335×10-9 | |
| 湿法工艺 | 298 | y=0.09372x-4.55767 | 0.9244 | 1.562×10-9 |
| 438 | y=0.12297x-1.70239 | 0.90223 | 2.050×10-9 | |
| 453 | y=0.45403x+26.03847 | 0.9487 | 7.567×10-9 |
表7 干法及湿法工艺中胶粉在不同温度下的MDC
| 方式 | 温度/K | 拟合方程 | R2 | 扩散系数/m2·s-1 |
|---|---|---|---|---|
| 干法工艺 | 298 | y=0.03683x-3.29077 | 0.81282 | 6.138×10-10 |
| 438 | y=0.11801x-4.89011 | 0.89282 | 1.967×10-9 | |
| 453 | y=0.14009x+3.51782 | 0.91771 | 2.335×10-9 | |
| 湿法工艺 | 298 | y=0.09372x-4.55767 | 0.9244 | 1.562×10-9 |
| 438 | y=0.12297x-1.70239 | 0.90223 | 2.050×10-9 | |
| 453 | y=0.45403x+26.03847 | 0.9487 | 7.567×10-9 |
| 温度/K | 界面能/kcal·mol-1 | ||
|---|---|---|---|
| 基质沥青 | 干法工艺 | 湿法工艺 | |
| 298 | -2663.87 | -3413.64 | -3862.33 |
| 438 | -2532.14 | -3298.21 | -3629.67 |
| 453 | -2402.37 | -3158.17 | -3561.52 |
表8 不同类型沥青-集料体系的界面能
| 温度/K | 界面能/kcal·mol-1 | ||
|---|---|---|---|
| 基质沥青 | 干法工艺 | 湿法工艺 | |
| 298 | -2663.87 | -3413.64 | -3862.33 |
| 438 | -2532.14 | -3298.21 | -3629.67 |
| 453 | -2402.37 | -3158.17 | -3561.52 |
| [1] | 温永, 王祯国, 董永康, 等. Terminal Blend橡胶泡沫沥青制备及性能评价[J]. 建筑材料学报, 2023, 26(10): 1129-1136. |
| WEN Yong, WANG Zhenguo, DONG Yongkang, et al. Preparation and performance evaluation of foamed terminal blend rubberized asphalt binders[J]. Journal of Building Materials, 2023, 26(10): 1129-1136. | |
| [2] | 朱月风, 姜鹏. 掺加国产TOR的橡胶沥青黏温特性及路用性能研究[J]. 材料导报, 2016, 30(12): 134-139. |
| ZHU Yuefeng, JIANG Peng. Viscosity-temperature characteristics and pavement performance rubber-modified asphalt added with domestic TOR[J]. Materials Review, 2016, 30(12): 134-139. | |
| [3] | ZHAO Song, ZHANG Haitao, FENG Yuping, et al. Study on rheological and micro-structural properties of different modified asphalt by using organic and inorganic modifier[J]. Case Studies in Construction Materials, 2023, 18: e02072. |
| [4] | WANG Hui, HUANG Yujie, JIN Ke, et al. Properties and mechanism of SBS/crumb rubber composite high viscosity modified asphalt [J]. Journal of Cleaner Production, 2022, 378: 134534. |
| [5] | 岳红亚, 毕玉峰, 徐润, 等. 废旧轮胎在道路工程中的应用研究进展[J]. 材料导报, 2022, 36(16): 76-86. |
| YUE Hongya, BI Yufeng, XU Run, et al. An applicational review on scrap tires used in road engineering[J]. Materials Reports, 2022, 36(16): 76-86. | |
| [6] | LEI Yong, WANG Hainian, FINI Ellie H, et al. Evaluation of the effect of bio-oil on the high-temperature performance of rubber modified asphalt[J]. Construction and Building Materials, 2018, 191: 692-701. |
| [7] | LIANG Ming, XIN Xue, FAN Weiyu, et al. Viscous properties, storage stability and their relationships with microstructure of tire scrap rubber modified asphalt[J]. Construction and Building Materials, 2015, 74: 124-131. |
| [8] | 马涛, 陈葱琳, 张阳, 等. 胶粉应用于沥青改性技术的发展综述[J]. 中国公路学报, 2021, 34(10): 1-16. |
| MA Tao, CHEN Conglin, ZHANG Yang, et al. Development of using crumb rubber in asphalt modification: A review[J]. China Journal of Highway and Transport, 2021, 34(10): 1-16. | |
| [9] | DASILVA Luís, BENTA Agostinho, Luís PICADO-SANTOS. Asphalt rubber concrete fabricated by the dry process: Laboratory assessment of resistance against reflection cracking[J]. Construction and Building Materials, 2018, 160: 539-550. |
| [10] | 周政. 干拌橡胶沥青混合料沥青改性微观形态和效果分析[J]. 公路, 2018, 63(5): 259-262. |
| ZHOU Zheng. Micro-morphology and effect analysis of asphalt modification of dry-mixed rubber asphalt mixture[J]. Highway, 2018, 63(5): 259-262. | |
| [11] | TAN Eng Hie, ZAHRAN Elsaid M M, TAN Soon Jiann. The optimal use of crumb rubber in hot-mix asphalt by dry process: A laboratory investigation using Marshall mix design[J]. Transportation Engineering, 2022,10: 100145. |
| [12] | ABDUL HASSAN Norhidayah, AIREY Gordon D, YUSOFF Nur Izzi Md, et al. Microstructural characterisation of dry mixed rubberised asphalt mixtures[J]. Construction and Building Materials, 2015, 82: 173-183. |
| [13] | ZHANG Xuanrui, WANG Xiaofeng, WAN Chenguang, et al. Performance evaluation of asphalt binder and mixture modified by pre-treated crumb rubber[J]. Construction and Building Materials, 2023, 362: 129777. |
| [14] | SHEN Junan, LI Bo, XIE Zhaoxing. Interaction between crumb rubber modifier (CRM) and asphalt binder in dry process[J]. Construction and Building Materials, 2017, 149: 202-206. |
| [15] | Israel RODRÍGUEZ-FERNÁNDEZ, Farrokh TARPOUDI-BAHERI, CAVALLI Maria Chiara, et al. Microstructure analysis and mechanical performance of crumb rubber modified asphalt concrete using the dry process[J]. Construction and Building Materials, 2020, 259: 119662. |
| [16] | 王辉, 王旭, 黄威麟, 等. 废胶粉复合改性沥青相容性研究[J]. 中南大学学报(自然科学版), 2022, 53(10): 3879-3889. |
| WANG Hui, WANG Xu, HUANG Weilin, et al. Study on compatibility of crumb rubber powder composite modified asphalt[J]. Journal of Central South University (Science and Technology), 2022, 53(10): 3879-3889. | |
| [17] | 中华人民共和国交通运输部. 公路工程沥青及沥青混合料试验规程: [S]. 北京: 人民交通出版社, 2011. |
| Ministry of Transport of the People’s Republic of China: [S]. Beijing: China Communications Press, 2011. | |
| [18] | LI Derek D, GREENFIELD Michael L. Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014, 115: 347-356. |
| [19] | GONG Yan, XU Jian, YAN Erhu. Intrinsic temperature and moisture sensitive adhesion characters of asphalt-aggregate interface based on molecular dynamics simulations[J]. Construction and Building Materials, 2021, 292: 123462. |
| [20] | HAN Sen, XUE Xue, YU Caihua, et al. Diffusion and reinforcement mechanism study of the effect of styrene/butadiene ratio on the high-temperature property of asphalt using molecular dynamics simulation[J]. Molecular Simulation, 2022, 48(4): 290-302. |
| [21] | ZHENG Chuanfeng, SHAN Chao, LIU Jian, et al. Microscopic adhesion properties of asphalt-mineral aggregate interface in cold area based on molecular simulation technology[J]. Construction and Building Materials, 2021, 268: 121151. |
| [22] | GUO Qinglin, LI Guangyao, GAO Ying, et al. Experimental investigation on bonding property of asphalt-aggregate interface under the actions of salt immersion and freeze-thaw cycles[J]. Construction and Building Materials, 2019, 206: 590-599. |
| [1] | 黄可儿, 刘佳豪, 李昊明, 周天航, 高金森, 蓝兴英. 基于分子动力学模拟的胺溶剂碳捕集过程自扩散系数[J]. 化工进展, 2025, 44(8): 4352-4364. |
| [2] | 齐妍, 常昊, 张磊. 基于分子动力学模拟的结构性产品配方设计方法[J]. 化工进展, 2025, 44(8): 4341-4351. |
| [3] | 李艳平, 杨涛, 王洪勋, 张城, 温国胜, 韩治成, 蓝公家, 严大洲. 三氯氢硅在氢气氛中的热分解及还原体系的反应分子动力学模拟[J]. 化工进展, 2025, 44(8): 4322-4330. |
| [4] | 戴月明, 周梅芳, 沈建华, 姜海波, 李春忠. TiO2纳米颗粒烧结机制分子动力学模拟[J]. 化工进展, 2025, 44(4): 2202-2214. |
| [5] | 冯鹏, 徐东海, 何冰, 刘欢腾, 杨立杰, 王攀, 刘青山. 亚/超临界水中典型硫酸盐Na2SO4和K2SO4的溶解特性及机理[J]. 化工进展, 2025, 44(3): 1706-1715. |
| [6] | 林梅, 雷雨, 李萍, 张强. 石墨烯/橡胶复合改性沥青-集料界面黏附性能及机理[J]. 化工进展, 2025, 44(2): 991-1002. |
| [7] | 白依冉, 翟玉玲, 戴晶慧, 李舟航. 微纳尺度池沸腾表面润湿性的气泡成核及强化传热机制[J]. 化工进展, 2025, 44(2): 743-751. |
| [8] | 刘传磊, 陈宇翔, 郭冠初, 赵起越, 姜豪, 孙辉, 沈本贤. 烷氧基丙胺类新型溶剂分子设计及其脱除高酸性天然气中硫醇[J]. 化工进展, 2025, 44(1): 184-191. |
| [9] | 谢娟, 贺文, 赵勖丞, 李帅辉, 卢真真, 丁哲宇. 分子动力学模拟在沥青体系中的应用研究进展[J]. 化工进展, 2024, 43(8): 4432-4449. |
| [10] | 黄淄博, 周文静, 魏进家. 基于ReaxFF MD模拟的低阶煤热解产物演化规律及反应机理[J]. 化工进展, 2024, 43(5): 2409-2419. |
| [11] | 何林, 贺常晴, 隋红. 人工智能驱动新型界面分离材料的创制[J]. 化工进展, 2024, 43(4): 1649-1654. |
| [12] | 刘振宇, 沈紫晨, 曹东, 郭晓燕. 钇掺杂二氧化铱用于高效酸性电化学析氧反应[J]. 化工进展, 2024, 43(12): 6855-6861. |
| [13] | 黄文荻, 周国兵, 曹保鑫. 三水醋酸钠/石墨烯复合相变材料界面热阻的分子动力学模拟[J]. 化工进展, 2024, 43(12): 6820-6827. |
| [14] | 史柯, 马峰, 宋瑞萌, 傅珍. 基于分子模拟的废大豆油再生沥青扩散行为[J]. 化工进展, 2024, 43(12): 6794-6803. |
| [15] | 吴艳, 李彬, 鞠明东, 向伟, 王海, 王贞涛, 王军锋, 王振波. 纳米限域条件下油滴驱替强化机理的分子动力学模拟[J]. 化工进展, 2024, 43(10): 5393-5402. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |