化工进展 ›› 2025, Vol. 44 ›› Issue (S1): 307-322.DOI: 10.16085/j.issn.1000-6613.2025-0469

• 材料科学与技术 • 上一篇    

沥青基钠离子电池负极材料研究进展

杜亮亮1(), 邵杰1, 汪超1, 宋俊达2, 程尧2, 开元3, 胡超1()   

  1. 1.西安交通大学化学工程与技术学院,陕西 西安 710049
    2.方寸新能源有限公司,陕西 西安 710054
    3.长安大学材料科学与工程学院,陕西 西安 710064
  • 收稿日期:2025-03-31 修回日期:2025-06-18 出版日期:2025-10-25 发布日期:2025-11-24
  • 通讯作者: 胡超
  • 作者简介:杜亮亮(2000—),男,硕士研究生,研究方向为沥青基钠离子电池负极材料。E-mail:3067372887@qq.com
  • 基金资助:
    国家自然科学基金(22478315);陕西省重点研发计划(2023GXLH-034);咸阳市重大科技成果转化专项(L2024-ZDKJ-ZDCGZH-0005)

Research progress on pitch-based anode materials for sodium-ion batteries

DU Liangliang1(), SHAO Jie1, WANG Chao1, SONG Junda2, CHENG Yao2, KAI Yuan3, HU Chao1()   

  1. 1.School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
    2.Fangcun New Energy Co. , Ltd. , Xi’an 710054, Shaanxi, China
    3.School of Materials Science and Engineering, Chang’an University, Xi’an 710064, Shaanxi, China
  • Received:2025-03-31 Revised:2025-06-18 Online:2025-10-25 Published:2025-11-24
  • Contact: HU Chao

摘要:

钠离子电池(sodium-ion battery,SIB)因钠资源丰富、成本低廉,在大规模储能领域展现出广阔应用前景,但其负极材料性能制约了整体发展。沥青作为碳基负极前体,具有原料成本低、碳收率高、结构可调等优势,成为当前研究热点。本文系统综述了沥青基SIB负极材料的优化策略与前沿进展,重点分析了沥青分子改性、孔隙结构设计、杂原子掺杂及电极-电解液界面调控等关键技术。研究表明,通过分子交联-闭孔构筑-界面工程的跨尺度协同,可同步提升可逆容量和首次库仑效率。然而,当前研究仍面临沥青组分波动性大、传统改性工艺污染严重、闭孔储钠机制存在争议以及全电池匹配性缺失等挑战。未来研究需要聚焦绿色制备工艺开发,探索沥青分子精准调控新方法,结合机器学习构建“结构-性能”预测模型,并深化多尺度界面调控机制研究。同时,急需推动沥青基SIB负极的规模化制备与全电池集成验证,解决电极压实密度、电解液浸润性等工程化问题,为实现高性能、低成本SIB储能系统提供关键技术支撑。

关键词: 沥青, 钠离子电池, 负极, 碳材料, 改性

Abstract:

Sodium-ion battery (SIB) hold great promise for large-scale energy storage applications, primarily attributed to the abundant availability of sodium resources and their relatively low cost. Nevertheless, the performance of anode materials in SIB has emerged as a significant bottleneck, impeding their widespread development. Pitch, as a carbon-based precursor for anode materials, offers several notable advantages, including low raw material costs, high carbon yields and the ability to tailor its structure. These characteristics have propelled pitch to the forefront of current research endeavors. This review comprehensively examined the optimization strategies and recent advancements in pitch-based SIB anode materials. Particular emphasis was placed on key techniques such as the modification of pitch molecules, the design of pore structures, the incorporation of heteroatoms and the regulation of the electrode-electrolyte interface. Findings suggested that through the coordinated efforts of molecular crosslinking, closed-pore formation and interface engineering across multiple scales, it was possible to simultaneously enhance the reversible capacity and initial coulombic efficiency of SIB. However, the current research landscape was not without its challenges. These included the significant variability in pitch composition, the high environmental impact of traditional modification processes, ongoing debates regarding the sodium storage mechanism within closed pores and the lack of compatibility in full-cell configurations. Looking ahead, future research should prioritize the development of environmentally friendly preparation methods, the exploration of novel approaches for precisely controlling pitch molecules, the establishment of "structure-performance" predictive models through machine learning and the in-depth investigation of multi-scale interface regulation mechanisms. Simultaneously, there was an urgent need to facilitate the large-scale production of pitch-based SIB anodes and validate their integration in full-cell systems. Addressing engineering challenges such as electrode compaction density and electrolyte wettability would be crucial in providing the necessary technical underpinnings for the realization of high-performance and cost-effective SIB energy storage systems.

Key words: pitch, sodium-ion battery, anode, carbon material, modification

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn