化工进展 ›› 2024, Vol. 43 ›› Issue (9): 4767-4778.DOI: 10.16085/j.issn.1000-6613.2024-0442
• 特约评述 •
收稿日期:
2024-03-18
修回日期:
2024-04-24
出版日期:
2024-09-15
发布日期:
2024-09-30
通讯作者:
高玉李
作者简介:
高玉李(1987—),女,博士,高级工程师,研究方向为固态电池战略信息。E-mail:gaoyuli@petrochina.com.cn。
GAO Yuli(), WANG Hongqiu, HUANG Gexing, XIAN Nanying, SHI Xiaoyu
Received:
2024-03-18
Revised:
2024-04-24
Online:
2024-09-15
Published:
2024-09-30
Contact:
GAO Yuli
摘要:
采用固态电解质代替有机电解液的全固态锂电池具有高安全性和高能量密度等优点,有望成为下一代能量存储设备的解决方案之一。虽然行业内对全固态锂电池发展的趋势普遍持有共识,但目前全固态锂电池产业化仍面临很多挑战,如硫化物电解质的水氧稳定性差和阴极与固态电解质界面问题、氧化物电解质的界面阻抗高和加工性能差以及聚合物电解质室温离子电导率低和电化学窗口窄等关键问题尚未解决,制约全固态锂电池的规模化应用。本文通过调查研究,综述了国内外全固态锂电池的技术发展现状,剖析提出了全固态锂电池技术难点和解决方案,最后,对全固态锂电池未来攻关方向进行了展望。
中图分类号:
高玉李, 王红秋, 黄格省, 鲜楠莹, 师晓玉. 全固态锂电池的产业化和技术研究进展[J]. 化工进展, 2024, 43(9): 4767-4778.
GAO Yuli, WANG Hongqiu, HUANG Gexing, XIAN Nanying, SHI Xiaoyu. Research progress and the industrialization of all-solid-state battery[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4767-4778.
国家 | 典型代表 公司 | 种类 | 电解质组成 | 离子电导率 /S·cm-1 | 电池:正极||电解质||负极 | 倍率 | 放电容量 /mAh·g-1 | 循环寿命 |
---|---|---|---|---|---|---|---|---|
日本 | 丰田 | 硫化物电解质 | LGPS[ | 1.2×10-2 | LCO | 120 | — | |
含有Li、P、S、I、Br元素的电解质[ | 5×10-3 | — | — | — | — | |||
由15LiBr+10LiI+75(0.75Li2S+0.25P2S5)组成,具有PS43-结构的电解质[ | 3.2×10-3 | — | — | — | — | |||
Li9.54Si1.74P1.44S11.7Cl0.3[ | 2.5×10-2 | LNO-LCO | 18C | >120 | 循环500次,放电容量保持率75%(100℃) | |||
Li2S-P2S5-LiCl[ | 3.2×10-3 | — | — | — | — | |||
本田 | 硫化物电解质 | Li2S+P2S5+LiBH4[ | 3.3×10-2 | NCM811 | — | 170 | — | |
硫化物电解质+有机电解质 | LGPS+PVDF-HFP+LiClO4[ | — | NCM622 | 0.5C | — | 循环500次,放电容量保持率90%(55℃) | ||
韩国 | LG新能源 | 硫化物电解质+纯硅负极 | Li6PS5Cl[ | — | NCM811 | 1C | >1250 | 循环500次以上,放电容量保持率80%(25℃) |
三星 | 硫化物电解质+银碳负极 | Li6PS5Cl[ | — | LiNi0.9Co0.05Mn0.05O2 | 0.5C | 146 | 循环1000次,放电容量保持率89%(60℃) | |
美国 | Solid Power | 硫化物电解质 | Li3PS4+LiBH4[ | 8.2×10-3 | — | — | — | — |
硫化物电解质 | Li4SbS4I[ | 5.25×10-4 | — | — | — | — | ||
中国 | 中科固能 | 硫化物电解质 | Li6.8Si0.8As0.2S5I[ | 1.04×10-2 | Ti2S | 电流密度 2.44mA/cm2 | — | 62500次(30 ℃) |
卤化物+硫化物 | Li3InCl6+Li6PS5Cl[ | — | NCM90-Li3InCl6 | 20C | 循环30000次,放电容量保持率大于70% | |||
恩力动力 | 硫化物 | Li5.5S4.5PCl1 .5[ | 1.10×10-2 | — | — | — | — | |
硫化物+复合负极 | Li6PS5Cl[ | — | NCM811 | 0.3C | — | 循环108次,放电容量保持率80%(50 ℃) |
表1 硫化物全固态锂电池的性能
国家 | 典型代表 公司 | 种类 | 电解质组成 | 离子电导率 /S·cm-1 | 电池:正极||电解质||负极 | 倍率 | 放电容量 /mAh·g-1 | 循环寿命 |
---|---|---|---|---|---|---|---|---|
日本 | 丰田 | 硫化物电解质 | LGPS[ | 1.2×10-2 | LCO | 120 | — | |
含有Li、P、S、I、Br元素的电解质[ | 5×10-3 | — | — | — | — | |||
由15LiBr+10LiI+75(0.75Li2S+0.25P2S5)组成,具有PS43-结构的电解质[ | 3.2×10-3 | — | — | — | — | |||
Li9.54Si1.74P1.44S11.7Cl0.3[ | 2.5×10-2 | LNO-LCO | 18C | >120 | 循环500次,放电容量保持率75%(100℃) | |||
Li2S-P2S5-LiCl[ | 3.2×10-3 | — | — | — | — | |||
本田 | 硫化物电解质 | Li2S+P2S5+LiBH4[ | 3.3×10-2 | NCM811 | — | 170 | — | |
硫化物电解质+有机电解质 | LGPS+PVDF-HFP+LiClO4[ | — | NCM622 | 0.5C | — | 循环500次,放电容量保持率90%(55℃) | ||
韩国 | LG新能源 | 硫化物电解质+纯硅负极 | Li6PS5Cl[ | — | NCM811 | 1C | >1250 | 循环500次以上,放电容量保持率80%(25℃) |
三星 | 硫化物电解质+银碳负极 | Li6PS5Cl[ | — | LiNi0.9Co0.05Mn0.05O2 | 0.5C | 146 | 循环1000次,放电容量保持率89%(60℃) | |
美国 | Solid Power | 硫化物电解质 | Li3PS4+LiBH4[ | 8.2×10-3 | — | — | — | — |
硫化物电解质 | Li4SbS4I[ | 5.25×10-4 | — | — | — | — | ||
中国 | 中科固能 | 硫化物电解质 | Li6.8Si0.8As0.2S5I[ | 1.04×10-2 | Ti2S | 电流密度 2.44mA/cm2 | — | 62500次(30 ℃) |
卤化物+硫化物 | Li3InCl6+Li6PS5Cl[ | — | NCM90-Li3InCl6 | 20C | 循环30000次,放电容量保持率大于70% | |||
恩力动力 | 硫化物 | Li5.5S4.5PCl1 .5[ | 1.10×10-2 | — | — | — | — | |
硫化物+复合负极 | Li6PS5Cl[ | — | NCM811 | 0.3C | — | 循环108次,放电容量保持率80%(50 ℃) |
难点及解决方案 | 效果 | 电池:正极 | 电流密度 /mA·cm-2 | 初始放电容量 /mAh·g-1 | 循环寿命 | |
---|---|---|---|---|---|---|
水氧稳定性差 | ||||||
开发新材料 | 由Li2S、P2S5和LiCl制备[ | H2S产生量降低67% | — | — | — | — |
材料涂覆 | 在电极-电解质层叠体四周涂覆氮化硅、氧化铝或氧化硅绝缘膜以阻隔湿气[ | 湿气透过率降低2个数量级 | — | — | — | — |
无机有机复合材料 | 制备硫化物-PVDF-HFP复合电解质[ | 获得稳定的循环性能 | Li金属 | 0.2 | 154 | 1000h(室温) |
制备硫化物-疏水聚苯乙烯复合电解质[ | H2S产生量降低约73% | — | 0.11 | — | 2000h(室温) | |
界面问题 | ||||||
增强界面接触 | 减小阴极和电解质的粒径:将Li2S粒径从100μm以上研磨到约10μm[ | 初始放电容量提高25% | Li2S | 0.064 | 1000 | — |
湿法涂层:Li6PS5Cl和碳纤维(VGCF)涂覆在阴极上[ | 获得稳定的循环性能 | 0.13 | 115 | 循环15次,容量保持率为95%(室温) | ||
黏合剂:Li5.4PS4.4Cl1.6与PTFE混合[ | 获得稳定的循环性能 | LiNi0.5Co0.2Mn0.3O2||Li5.4PS4.4Cl1.6- | 0.05C | 135.3 | 循环150次,容量保持率为80.2%(60℃) | |
构建缓冲层提高化学/电化学稳定性 | LLSTO缓冲层[ | 获得稳定的循环性能 | 107 | 循环850次,容量保持率91.5%(室温) | ||
LNO缓冲层[ | LNO可以抑制LGPS与LCO的界面反应 | LCO-LNO | 0.13 | 125.8 | 循环100次,容量保持率72%(室温) | |
构建缓冲层改善空间电荷效应 | LNO缓冲层[ | 初始放电容量提高10% | NCM811-LNO | 0.5C | 130 | 循环50次,容量保持率77.9%(35℃) |
表2 硫化物全固态锂电池技术难点的解决方案及效果
难点及解决方案 | 效果 | 电池:正极 | 电流密度 /mA·cm-2 | 初始放电容量 /mAh·g-1 | 循环寿命 | |
---|---|---|---|---|---|---|
水氧稳定性差 | ||||||
开发新材料 | 由Li2S、P2S5和LiCl制备[ | H2S产生量降低67% | — | — | — | — |
材料涂覆 | 在电极-电解质层叠体四周涂覆氮化硅、氧化铝或氧化硅绝缘膜以阻隔湿气[ | 湿气透过率降低2个数量级 | — | — | — | — |
无机有机复合材料 | 制备硫化物-PVDF-HFP复合电解质[ | 获得稳定的循环性能 | Li金属 | 0.2 | 154 | 1000h(室温) |
制备硫化物-疏水聚苯乙烯复合电解质[ | H2S产生量降低约73% | — | 0.11 | — | 2000h(室温) | |
界面问题 | ||||||
增强界面接触 | 减小阴极和电解质的粒径:将Li2S粒径从100μm以上研磨到约10μm[ | 初始放电容量提高25% | Li2S | 0.064 | 1000 | — |
湿法涂层:Li6PS5Cl和碳纤维(VGCF)涂覆在阴极上[ | 获得稳定的循环性能 | 0.13 | 115 | 循环15次,容量保持率为95%(室温) | ||
黏合剂:Li5.4PS4.4Cl1.6与PTFE混合[ | 获得稳定的循环性能 | LiNi0.5Co0.2Mn0.3O2||Li5.4PS4.4Cl1.6- | 0.05C | 135.3 | 循环150次,容量保持率为80.2%(60℃) | |
构建缓冲层提高化学/电化学稳定性 | LLSTO缓冲层[ | 获得稳定的循环性能 | 107 | 循环850次,容量保持率91.5%(室温) | ||
LNO缓冲层[ | LNO可以抑制LGPS与LCO的界面反应 | LCO-LNO | 0.13 | 125.8 | 循环100次,容量保持率72%(室温) | |
构建缓冲层改善空间电荷效应 | LNO缓冲层[ | 初始放电容量提高10% | NCM811-LNO | 0.5C | 130 | 循环50次,容量保持率77.9%(35℃) |
难点及解决方案 | 效果 |
---|---|
界面阻抗高:构建界面修饰层 | |
Al2O3层[ | 界面电阻降低99% |
镁金属层[ | 界面电阻降低93% |
锗金属层[ | 界面电阻降低87% |
加工性能差:与聚合物复合 | |
在绝缘性纤维状多孔基材中填充固体电解质[ | 制备面积大于1cm2的电解质片 |
烧结温度高:引入助剂 | |
Al2O3[ | 烧结温度降低到1000℃以下 |
Li3ClO[ | 烧结温度降低到1000℃以下 |
表3 氧化物全固态锂电池技术难点的解决方案及效果
难点及解决方案 | 效果 |
---|---|
界面阻抗高:构建界面修饰层 | |
Al2O3层[ | 界面电阻降低99% |
镁金属层[ | 界面电阻降低93% |
锗金属层[ | 界面电阻降低87% |
加工性能差:与聚合物复合 | |
在绝缘性纤维状多孔基材中填充固体电解质[ | 制备面积大于1cm2的电解质片 |
烧结温度高:引入助剂 | |
Al2O3[ | 烧结温度降低到1000℃以下 |
Li3ClO[ | 烧结温度降低到1000℃以下 |
难点及解决方案 | 效果 | 电池:正极 | 倍率 | 初始放电容量 /mAh·g-1 | 循环寿命 | |
---|---|---|---|---|---|---|
室温离子电导率低 | ||||||
聚合物与无填料制备复合电解质 | PEO与GDC复合[ | 离子电导率超过10-4S/cm | Li | 0.05~ 0.2mA/cm | 160 (0.1mA/cm) | 800h(35℃) |
PEGDA、LLAZO和锂盐复合[ | 离子电导率提高一个数量级,达4.9×10-4S/cm | LiFePO4 | 1C | 120 | 循环250次,容量保持率为89%(35℃) | |
交联改性 | 金属烷氧基封端PEO进行原位交联,生成Al—O纳米团簇交联PEO-增塑剂固体电解质(ACCE)[ | 离子电导率达1.41×10-3S/cm | LiFePO4/ACCE/Li | 1C | 148 | 循环1000次,容量保持率为98.3%(30℃) |
共混改性 | 聚丙烯腈和聚碳酸丙烯酯共混[ | 离子电导率提高97%,达8.35×10-4S/cm | 磷酸铁锂 Li金属 | 0.5C | — | 310次(25℃) |
电化学窗口窄 | ||||||
有机+无机复合电解质 | PEO和LLZO复合[ | 电化学窗口达5.7V | — | — | — | — |
PEO和LGPS复合[ | 电化学窗口达5.7V | — | — | — | — | |
热稳定性差和安全性低 | ||||||
开发新型本征阻燃聚合物 | 硫化丁腈橡胶+TAC,制备阻燃固态聚合物电解质[ | TAC的三嗪环点燃时会释放惰性阻燃气体,有效抑制聚合物电解质的燃烧 | — | — | — | — |
引入阻燃剂 | 添加DBDPE阻燃剂[ | 电池在火焰测试中仍能正常工作 | — | 1C | 131 | 300次(0.5C、60℃) |
表4 聚合物全固态锂电池技术难点的解决方案及效果
难点及解决方案 | 效果 | 电池:正极 | 倍率 | 初始放电容量 /mAh·g-1 | 循环寿命 | |
---|---|---|---|---|---|---|
室温离子电导率低 | ||||||
聚合物与无填料制备复合电解质 | PEO与GDC复合[ | 离子电导率超过10-4S/cm | Li | 0.05~ 0.2mA/cm | 160 (0.1mA/cm) | 800h(35℃) |
PEGDA、LLAZO和锂盐复合[ | 离子电导率提高一个数量级,达4.9×10-4S/cm | LiFePO4 | 1C | 120 | 循环250次,容量保持率为89%(35℃) | |
交联改性 | 金属烷氧基封端PEO进行原位交联,生成Al—O纳米团簇交联PEO-增塑剂固体电解质(ACCE)[ | 离子电导率达1.41×10-3S/cm | LiFePO4/ACCE/Li | 1C | 148 | 循环1000次,容量保持率为98.3%(30℃) |
共混改性 | 聚丙烯腈和聚碳酸丙烯酯共混[ | 离子电导率提高97%,达8.35×10-4S/cm | 磷酸铁锂 Li金属 | 0.5C | — | 310次(25℃) |
电化学窗口窄 | ||||||
有机+无机复合电解质 | PEO和LLZO复合[ | 电化学窗口达5.7V | — | — | — | — |
PEO和LGPS复合[ | 电化学窗口达5.7V | — | — | — | — | |
热稳定性差和安全性低 | ||||||
开发新型本征阻燃聚合物 | 硫化丁腈橡胶+TAC,制备阻燃固态聚合物电解质[ | TAC的三嗪环点燃时会释放惰性阻燃气体,有效抑制聚合物电解质的燃烧 | — | — | — | — |
引入阻燃剂 | 添加DBDPE阻燃剂[ | 电池在火焰测试中仍能正常工作 | — | 1C | 131 | 300次(0.5C、60℃) |
1 | GAO Zhonghui, SUN Huabin, FU Lin, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries[J]. Advanced Materials, 2018, 30(17): e1705702. |
2 | LIU Qi, GENG Zhen, HAN Cuiping, et al. Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries[J]. Journal of Power Sources, 2018, 389: 120-134. |
3 | XIA Shuixin, WU Xinsheng, ZHANG Zhichu, et al. Practical challenges and future perspectives of all-solid-state lithium-metal batteries[J]. Chem, 2019, 5(4): 753-785. |
4 | KAMAYA Noriaki, HOMMA Kenji, YAMAKAWA Yuichiro, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10: 682-686. |
5 | SMITH D C A, HAYDEN B E, LEE C E, et al. Vapour deposition method for fabricating lithium-containing thin film layered structures: US10490805[P]. 2019-11-26. |
6 | 菅原孝宜, 梶谷智史, 佐藤淳, 等. 硫化物固体電解質の製造方法: JP2016207354[P]. 2016-12-18. |
SUGAWARA T, KAJITANI S, SATO J, et al. Production methods for sulfide solid electrolytes: JP2016207354[P]. 2016-12-18. | |
7 | 城户崎彻, H·比斯瓦尔, 中谷展人. 全固体电池: CN116169344[P]. 2023-05-26. |
KIDOSAKI T, VISBAL H, NAKAYA N. All solid state battery: CN116169344[P]. 2023-05-26. | |
8 | KATO Yuki, HORI Satoshi, SAITO Toshiya, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1(4): 16030. |
9 | 辰己砂昌弘, 林晃敏, 滨重规, 等. 硫化物固体电解质材料: CN104659411B[P]. 2017-06-13. |
TATSUMISAGO Masahiro, HAYASHI Akitoshi, HAMA Shigenori, et al. Sulfide solid electrolyte material: CN104659411B[P]. 2017-06-13. | |
10 | 南圭一. 硫化物固体电解质粒子及其制造方法和全固体电池: CN111446492B[P]. 2023-08-01. |
Guiyi NAN. Sulfide solid electrolyte particles, method for producing same, and all-solid-state battery: CN111446492B[P]. 2023-08-01. | |
11 | Panasonic.e n190122-2-1.pdf. |
12 | KAWASHIMA S, ITO Y. Solid battery and manufacturing method for solid battery: WO2022131301[P]. 2022-6-23. |
13 | 史冬梅, 王晶. 中国、日本、韩国电池技术和产业发展战略态势分析[J]. 储能科学与技术, 2023, 12(2): 615-628. |
SHI Dongmei, WANG Jing. Analysis of battery technology and industry development strategy and trend in China, Japan and South Korea[J]. Energy Storage Science and Technology, 2023, 12(2): 615-628. | |
14 | 大田正弘, 清水航. 全固态电池用正极以及全固态电池: CN111816837[P]. 2020-10-23. |
OHTA M, SHIMIZU W. All-solid-state battery positive electrode and all-solid-state battery: CN111816837[P]. 2020-10-23. | |
15 | 大田正弘, 清水航. 全固体電池用正極及び全固体電池: JP2020173954[P]. 2020-10-22. |
OHTA M, SHIMIZU W. All-solid-state battery positive electrode and all-solid-state battery: JP2020173954[P]. 2020-10-22. | |
16 | OHTA Masahiro, SHIMIZU Wataru. All-solid-state battery positive electrode and all-solid-state battery: US20200328428[P]. 2020-10-15. |
17 | 清水航, 大田正弘. 固体电解质片材、全固态电池、隔板及锂离子电池: CN111816909A[P]. 2020-10-23. |
SHIMIZU Wataru, OHTA Masahiro. Solid electrolyte sheet, all-solid-state battery, separator, and lithium ion battery: CN111816909A[P]. 2020-10-23. | |
18 | 清水航, 大田正弘. 固体電解質シート、全固体電池、セパレータ及びリチウムイオン電池: JP2020173953[P]. 2020-10-22. |
19 | SHIMIZU Wataru, OHTA Masahiro. Solid electrolyte sheet, all-solid-state battery, separator, and lithium ion battery: US20200328452[P]. 2020-10-15. |
20 | 土井将太郎, 中野健志, 光山知宏, 等. 全固体リチウムイオン二次電池用固体電解質層およびこれを用いた全固体リチウムイオン二次電池: JP7304014[P]. 2020-12-10. |
21 | 田口海志, 小野义隆, 小川止, 等. 全固态电池: CN116964806[P]. 2022-09-15. |
TAGUCHI K, ONO Y, OGAWA T, et al. All-solid-state battery: CN116964806[P]. 2022-09-15. | |
22 | 小野義隆, 高市哲. 全固体電池: JP2020135974[P]. 2020-08-31. |
23 | Maxell.. |
24 | 古川一挥, 上剃春树, 佐藤优太, 等. 全固体二次电池用负极、其制造方法和全固体二次电池: CN115699356[P]. 2021-12-02. |
FURUKAWA K, KAMIZORI H, SATO Y, et al. Negative electrode for all-solid-state secondary cell, method for manufacturing same, and all-solid-state secondary cell: CN115699356[P]. 2021-12--2. | |
25 | Maxell.e n190122-2-1.pdf. |
26 | 小山莉央, 米泽谕, 国头正树. 硫化物系固体电解质: CN117543067[P]. 2024-02-09. |
KOYAMA R, YONEZAWA S, KUNIGAMI M. Sulfide-based solid electrolyte: CN117543067[P]. 2024-02-09. | |
27 | 松下忠史. 锂离子二次电池用正极、锂离子二次电池用负极、锂离子二次电池及其制造方法: CN111540869[P]. 2020-08-14. |
MATSUSHITA T. Positive electrode for lithium-ion secondary batteries, negative electrode for lithium-ion secondary batteries, lithium-ion secondary batteries and manufacturing methods thereof: CN111540869[P]. 2020-08-14. | |
28 | TAN Darren H S, CHEN Yuting, YANG Hedi, et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes[J]. Science, 2021, 373(6562): 1494-1499. |
29 | LEE Yonggun, FUJIKI Satoshi, JUNG Changhoon, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J]. Nature Energy, 2020, 5: 299-308. |
30 | FRANCISCO B E, CARLSON B. Solid electrolyte material and solid-state battery made therewith: WO2021195111[P]. 2021-09-30. |
31 | FRANCISCO B E, CULVER S P. Solid electrolyte material and solid-state battery made therewith: WO2022066924[P]. 2022-03-31. |
32 | LU Pushun, XIA Yu, SUN Guochen, et al. Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+ x MxAs1- x S5I (M=Si, Sn) sulfide solid electrolytes[J]. Nature Communications, 2023, 14: 4077. |
33 | MA Tenghuan, WANG Zhixuan, WU Dengxu, et al. High-areal-capacity and long-cycle-life all-solid-state battery enabled by freeze drying technology[J]. Energy & Environmental Science, 2023, 16(5): 2142-2152. |
34 | 车勇, 陈渊, 刘茜, 等. 硫化物固态电解质的制备方法: CN115241527A[P]. 2022-10-25. |
CHE Yong, CHEN Yuan, LIU Xi, et al. Preparation method of sulfide solid electrolyte: CN115241527A[P]. 2022-10-25. | |
35 | 任鹏飞, 黄冰, 李玉涛. 一种固态复合负极结构及其制备方法和硫化物全固态电池: CN116581246[P]. 2023-08-11. |
REN Pengfei, HUANG Bing, LI Yutao. A solid-state composite negative electrode structure and its preparation method and sulfide all-solid-state battery: CN116581246[P]. 2023-08-11. | |
36 | Jihoon OH, CHOI Seung Ho, CHANG Barsa, et al. Elastic binder for high-performance sulfide-based all-solid-state batteries[J]. ACS Energy Letters, 2022, 7(4): 1374-1382. |
37 | Solid Power. . |
38 | BECKER C, ROBERTS J E. Method for production of lithium carbonate coatings for nickel-based cathodes and electrochemical cells using same: WO2023114502[P]. 2023-06-22. |
39 | Solid Power. . |
40 | Solid Power. . |
41 | 新华网. . |
XINHUANET. . | |
42 | 蜂巢能源官网. . |
SVOLT Energy. . | |
43 | 屹锂新能源官网. . |
FIRM Lithium. . | |
44 | 高能时代官网. . |
GTC-POWER. . | |
45 | 李雯珊. 汽车固态电池时代快步走来 龙头车企积极布局[N]. 证券日报, 2024-01-09 (B02). |
LI Wenshan. The era of automotive solid-state batteries is fast approaching, leading car companies actively layout[N]. Securities Daily, 2024-01-09 (B02). | |
46 | 杨梓, 杨沐岩. 全固态电池能否成为竞争胜负手?[N]. 中国能源报, 2023-07-17 (012). |
YANG ZI, YANG MUYAN. Can all-solid-state batteries be a bompetitive winner?[N]. China Energy News, 2023-07-17 (012). | |
47 | VOLKSWAGEN GROUP. . |
48 | 胡屹伟, 时琢, 郭姿珠. 一种固态电解质及其制备方法和全固态电池: CN113937346[P]. 2022-01-14. |
HU YIWEI, SHI TUO, GUO ZIZHU. A solid-state electrolyte, its preparation method and all-solid-state battery: CN113937346[P]. 2022-01-14. | |
49 | 周静颖, 胡晨吉, 郜一蓉, 等. 全固态电池的研究进展与挑战——以表征技术和理论机制的突破推动全固态电池的原始创新[J]. 中国科学基金, 2023, 37(2): 199-208. |
ZHOU Jingying, HU Chenji, GAO Yirong, et al. The current status and challenges of all-solid-state batteries: Characterization techniques and mechanistic understandings drive battery innovations[J]. Bulletin of National Natural Science Foundation of China, 2023, 37(2): 199-208. | |
50 | BlueSolutions. . |
51 | Factorial Energy. . |
52 | 领新新能源官网. . |
LNE. . | |
53 | 刘元凯, 余涛, 郭少华, 等. 高性能硫化物基全固态锂电池设计:从实验室到实用化[J]. 物理化学学报, 2023, 39(8): 96-120. |
LIU Yuankai, YU Tao, GUO Shaohua, et al. Designing high-performance sulfide-based all-solid-state lithium batteries: From laboratory to practical application[J]. Acta Physico-Chimica Sinica, 2023, 39(8): 96-120. | |
54 | REN Dongsheng, LU Languang, HUA Rui, et al. Challenges and opportunities of practical sulfide-based all-solid-state batteries[J]. eTransportation, 2023, 18: 100272. |
55 | MINAMI K. Sulfide solid electrolyte particles, method for producing the same, and all-solid-state battery:US11489196 [P]. 2020-07-23. |
56 | KATAYAMA H, YAMAGUCHI K. All-solid-state secondary battery: WO2023190517[P]. 2023-10-05. |
57 | LI Yang, ARNOLD William, THAPA Arjun, et al. Stable and flexible sulfide composite electrolyte for high-performance solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(38): 42653-42659. |
58 | TAN Darren H S, BANERJEE Abhik, DENG Zhi, et al. Enabling thin and flexible solid-state composite electrolytes by the scalable solution process[J]. ACS Applied Energy Materials, 2019, 2(9): 6542-6550. |
59 | NAGAO Motohiro, HAYASHI Akitoshi, TATSUMISAGO Masahiro. High-capacity Li2S-nanocarbon composite electrode for all-solid-state rechargeable lithium batteries[J]. Journal of Materials Chemistry, 2012, 22(19): 10015-10020. |
60 | ROSERO-NAVARRO Nataly Carolina, MIURA Akira, TADANAGA Kiyoharu. Composite cathode prepared by argyrodite precursor solution assisted by dispersant agents for bulk-type all-solid-state batteries[J]. Journal of Power Sources, 2018, 396: 33-40. |
61 | ZHANG Zhihua, WU Liping, ZHOU Dong, et al. Flexible sulfide electrolyte thin membrane with ultrahigh ionic conductivity for all-solid-state lithium batteries[J]. Nano Letters, 2021, 21(12): 5233-5239. |
62 | CAO Daxian, ZHANG Yubin, NOLAN Adelaide M, et al. Stable thiophosphate-based all-solid-state lithium batteries through conformally interfacial nanocoating[J]. Nano Letters, 2020, 20(3): 1483-1490. |
63 | WANG Changhong, LI Xia, ZHAO Yang, et al. Manipulating interfacial nanostructure to achieve high-performance all-solid-state lithium-ion batteries[J]. Small Methods, 2019, 3(10): 1900261. |
64 | LI Xuelei, JIN Liubing, SONG Dawei, et al. LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery[J]. Journal of Energy Chemistry, 2020, 40: 39-45. |
65 | WANG Chuanwei, REN Fucheng, ZHOU Yao, et al. Engineering the interface between LiCoO2 and Li10GeP2S12 solid electrolytes with an ultrathin Li2CoTi3O8 interlayer to boost the performance of all-solid-state batteries[J]. Energy & Environmental Science, 2021, 14(1): 437-450. |
66 | ZHENG Feng, KOTOBUKI Masashi, SONG Shufeng, et al. Review on solid electrolytes for all-solid-state lithium-ion batteries[J]. Journal of Power Sources, 2018, 389: 198-213. |
67 | CHEN Shaojie, HU Xiangchen, BAO Wenda, et al. Low-sintering-temperature garnet oxides by conformal sintering-aid coating[J]. Cell Reports Physical Science, 2021, 2: 100569. |
68 | HAN Xiaogang, GONG Yunhui, FU Kun, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nature Materials, 2017, 16: 572-579. |
69 | FU Kun Kelvin, GONG Yunhui, FU Zhezhen, et al. Transient behavior of the metal interface in lithium metal-garnet batteries[J]. Angewandte Chemie International Edition, 2017, 56(47): 14942-14947. |
70 | LUO Wei, GONG Yunhui, ZHU Yizhou, et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer[J]. Advanced Materials, 2017, 29(22):1606042. |
71 | 松本修明, 儿岛映理. 固体电解质片及全固体锂二次电池: CN112640179[P]. 2020-03-19. |
MATSUMOTO N, KOJIMA E. Solid electrolyte sheet and all-solid-state lithium secondary battery: CN112640179[P]. 2020-03-19. | |
72 | 孙溢, 唐昕雅, 袁鸽, 等. 一种含锂固态电解质及其致密化制备方法与应用: CN116387610A[P]. 2023-07-04. |
SUN Yi, TANG Xinya, YUAN Ge, et al. Lithium-containing solid electrolyte and densification preparation method and application thereof: CN116387610A[P]. 2023-07-04. | |
73 | KELLER Marlou, APPETECCHI Giovanni Battista, KIM Guk-Tae, et al. Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15LiTFSI[J]. Journal of Power Sources, 2017, 353: 287-297. |
74 | CROCE F, APPETECCHI G B, PERSI L, et al. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature, 1998, 394: 456-458. |
75 | LIANG Jianneng, CHEN Dachang, ADAIR Keegan, et al. Insight into prolonged cycling life of 4V all-solid-state polymer batteries by a high-voltage stable binder[J]. Advanced Energy Materials, 2021, 11(1): 2002455. |
76 | HAN Longfei, WANG Li, CHEN Zonghai, et al. Incombustible polymer electrolyte boosting safety of solid-state lithium batteries: A review[J]. Advanced Functional Materials, 2023, 33(32): 2300892. |
77 | WU Nan, CHIEN Po-Hsiu, QIAN Yumin, et al. Enhanced surface interactions enable fast Li+ conduction in oxide/polymer composite electrolyte[J]. Angewandte Chemie (International Ed in English), 2020, 59(10): 4131-4137. |
78 | ZHANG Xiangwu, YAN Chaoyi, DIRICAN Mahmut. Composite solid electrolytes for high-performance metallic or metal-ion batteries: US20210226247[P]. 2021-07-22. |
79 | BAO Wenda, ZHANG Yue, CAO Lei, et al. An H2O-initiated crosslinking strategy for ultrafine-nanoclusters-reinforced high-toughness polymer-In-plasticizer solid electrolyte[J]. Advanced Materials, 2023, 35(41): 2304712. |
80 | 任世杰, 肖琴, 邓纯, 等. 一种交联凝胶聚合物电解质及其制备方法: CN107910589[P]. 2018-04-13. |
REN Shijie, XIAO Qin, DENG Chun, et al. Crosslinked gel polymer electrolyte and its preparation method: CN107910589[P]. 2018-04-13. | |
81 | 张恒源, 刘建叶, 张师军, 等. 一种含纳米粉末橡胶的共混聚合物全固态电解质及其制备方法以及锂离子电池: CN117525567[P]. 2024-02-06. |
ZHANG Hengyuan, LIU Jianye, ZHANG Shijun, et al. A co-polymer all-solid electrolyte containing nano-powdered rubber and its preparation method and lithium-ion battery: CN117525567[P]. 2024-02-06. | |
82 | SUN Han, XIE Xiaoxin, HUANG Qiu, et al. Fluorinated poly-oxalate electrolytes stabilizing both anode and cathode interfaces for all-solid-state Li/NMC811 batteries[J]. Angewandte Chemie International Edition, 2021, 60(33): 18335-18343. |
83 | CHEN Fei, YANG Dunjie, ZHA Wenping, et al. Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries[J]. Electrochimica Acta, 2017, 258: 1106-1114. |
84 | ZHAO Yanran, WU Chuan, PENG Gang, et al. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries[J]. Journal of Power Sources, 2016, 301: 47-53. |
85 | ZHANG Dashan, SHI Yongzheng, AN Junwei, et al. Triallyl cyanurate copolymerization delivered nonflammable and fast ion conducting elastic polymer electrolytes[J]. Journal of Materials Chemistry A, 2022, 10(43): 23095-23102. |
86 | CUI Yi, WAN Jiayu, YE Yusheng, et al. A fireproof, lightweight, polymer-polymer solid-state electrolyte for safe lithium batteries[J]. Nano Letters, 2020, 20(3): 1686-1692. |
[1] | 王洋, 张苗苗, 吕阳, 侯翠红, 危常州, 马文奇, 张福锁, 申建波. pH响应材料及其在智能肥料中的应用[J]. 化工进展, 2024, 43(8): 4477-4489. |
[2] | 周皞, 王旭瑞, 赵辉爽, 温妮妮, 苏亚欣. CuCe-SAPO-34选择性催化丙烯还原柴油车尾气氮氧化物[J]. 化工进展, 2024, 43(6): 3093-3099. |
[3] | 李莹莹, 刘安, 姜乐妍, 李晖, 陈春钰, 居殿春. 过渡金属硫化物Co9S8的制备及电化学性能研究进展[J]. 化工进展, 2024, 43(6): 3114-3127. |
[4] | 刘京都, 余关龙, 龙志奇, 周璐, 包璞瑞, 滕骏毅, 杜春艳. 纳米球状LaAlO3的制备及其在酸性条件下的除氟性能[J]. 化工进展, 2024, 43(6): 3199-3208. |
[5] | 杨磊, 邱广薇, 李思言, 葛宏程, 孙园园, 王菲, 范晓光. 基于温度和葡萄糖双重响应性共聚物微囊的胰岛素控释载体[J]. 化工进展, 2024, 43(6): 3277-3284. |
[6] | 熊文婷, 罗启基, 鄢春根. 二氧化硅基气凝胶材料及其制备技术的专利分析[J]. 化工进展, 2024, 43(4): 1912-1922. |
[7] | 薛云娇, 张璇, 刘洋, 陈玉焕, 房静, 杨芳. 伪蛋白生物材料的分类、合成及其应用[J]. 化工进展, 2024, 43(4): 2001-2016. |
[8] | 刘方旺, 韩艺, 张佳佳, 步红红, 王兴鹏, 于传峰, 刘猛帅. CO2与环氧化物耦合制备环状碳酸酯的多相催化体系研究进展[J]. 化工进展, 2024, 43(3): 1252-1265. |
[9] | 王雄, 康文倩, 任悦, 乔彤森, 张鹏, 黄安平, 李广全. 多孔有机聚合物中试制备及其在聚烯烃催化剂中的应用[J]. 化工进展, 2024, 43(3): 1412-1417. |
[10] | 严昱, 夏芯, 骆俊鹏, 刘大朋, 钱飞跃. 氧化剂类型对rGO/CNTs催化膜去除水中消炎药成分的影响[J]. 化工进展, 2024, 43(3): 1436-1445. |
[11] | 王凯, 罗明良, 李明忠, 黄飞飞, 蒲春生, 蒲景阳, 樊乔. 水驱油藏聚乙烯亚胺交联聚合物凝胶体系研究进展[J]. 化工进展, 2024, 43(3): 1506-1523. |
[12] | 柴多生, 高峰, 吴友兵, 孙昕, 郝然, 杨宇, 焦翔飞. γ-Al2O3/CuO-ACF电吸附除盐的影响因素及反应动力学[J]. 化工进展, 2024, 43(3): 1637-1647. |
[13] | 于笑笑, 巢艳红, 刘海燕, 朱文帅, 刘植昌. D-A共轭聚合强化光电性能及光催化CO2转化[J]. 化工进展, 2024, 43(1): 292-301. |
[14] | 孙月, 王斯佳, 吴明侠, 宋先雨, 徐首红. pH/温度响应型聚合物PMAA-b-PDMAEMA的合成、性能调控及应用[J]. 化工进展, 2024, 43(1): 480-489. |
[15] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |