化工进展 ›› 2024, Vol. 43 ›› Issue (3): 1637-1647.DOI: 10.16085/j.issn.1000-6613.2023-1600
• 资源与环境化工 • 上一篇
柴多生1(), 高峰2, 吴友兵3, 孙昕1(), 郝然1, 杨宇2, 焦翔飞1
收稿日期:
2023-09-11
修回日期:
2023-11-20
出版日期:
2024-03-10
发布日期:
2024-04-11
通讯作者:
孙昕
作者简介:
柴多生(1995—),男,硕士研究生,主要研究方向为微咸水淡化。E-mail:cds1712@126.com。
基金资助:
CHAI Duosheng1(), GAO Feng2, WU Youbing3, SUN Xin1(), HAO Ran1, YANG Yu2, JIAO Xiangfei1
Received:
2023-09-11
Revised:
2023-11-20
Online:
2024-03-10
Published:
2024-04-11
Contact:
SUN Xin
摘要:
开发脱盐率高、寿命长的电极材料是电容去离子(CDI)水处理技术的研究热点之一。通过一锅水热法将层状CuAl双金属氧化物与活性碳纤维复合,成功制备了CDI电极(γ-Al2O3/CuO-ACF)。采用SEM、XRD、FTIR和CV测试对样品的形貌、结构和电极性能进行了表征。当初始NaCl浓度为500mg/L时,随着电压从0.8V逐渐增加到1.6V,两种电极的比吸附量、脱盐效率、电流效率和电耗均有所增加,γ-Al2O3/CuO-ACF的四项参数依次比ACF提高23.4%~55.3%、44.8%~82.0%、65.5%~90.0%和降低15.0%~21.4%。当腐殖酸浓度为5~10mg/L时,ACF脱盐效率下降明显,而γ-Al2O3/CuO-ACF脱盐效率仅在腐殖酸浓度10mg/L时略有下降。在15次循环后,NaCl溶液体系的脱盐效率保留率为96%;但由于腐殖酸的存在,该值下降为92%。两种电极的电吸附除盐过程遵循Langmuir等温吸附方程,表示盐离子在电极表面为单分子层物理吸附。与传统ACF电极相比,γ-Al2O3/CuO-ACF电极具有优异的可回收性、稳定性和增强的电化学特性。
中图分类号:
柴多生, 高峰, 吴友兵, 孙昕, 郝然, 杨宇, 焦翔飞. γ-Al2O3/CuO-ACF电吸附除盐的影响因素及反应动力学[J]. 化工进展, 2024, 43(3): 1637-1647.
CHAI Duosheng, GAO Feng, WU Youbing, SUN Xin, HAO Ran, YANG Yu, JIAO Xiangfei. Reaction dynamics and influencing factors of capacitive deionization desalination using γ-Al2O3 / CuO-ACF[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1637-1647.
电极材料 | 外加电压 /V | 初始浓度 /mg·L-1 | SAC /mg·g-1 | 参考 文献 |
---|---|---|---|---|
ACF-HNO3 | 1.2 | 500 | 12.80 | [ |
NPC@ACF | 1.2 | 500 | 14.63 | [ |
Al2O3-ACF | 2.0 | 500 | 12.25 | [ |
ACF | 1.4 | 500 | 10.16 | 本工作 |
γ-Al2O3/CuO-ACF | 1.4 | 500 | 16.97 | 本工作 |
表1 不同电极材料除盐能力的比较
电极材料 | 外加电压 /V | 初始浓度 /mg·L-1 | SAC /mg·g-1 | 参考 文献 |
---|---|---|---|---|
ACF-HNO3 | 1.2 | 500 | 12.80 | [ |
NPC@ACF | 1.2 | 500 | 14.63 | [ |
Al2O3-ACF | 2.0 | 500 | 12.25 | [ |
ACF | 1.4 | 500 | 10.16 | 本工作 |
γ-Al2O3/CuO-ACF | 1.4 | 500 | 16.97 | 本工作 |
外加电压 /V | ACF | γ-Al2O3/CuO-ACF | ||||||
---|---|---|---|---|---|---|---|---|
R2 | Qm /mg·g-1 | KL | RL | R2 | Qm /mg·g-1 | KL | RL | |
0.8 | 0.9944 | 13.26 | 0.0048 | 0.8065 | 0.9988 | 11.12 | 0.0089 | 0.1841 |
1.0 | 0.9935 | 13.81 | 0.0053 | 0.7891 | 0.9960 | 14.06 | 0.0102 | 0.1633 |
1.2 | 0.9931 | 13.94 | 0.0067 | 0.7491 | 0.9966 | 15.20 | 0.0148 | 0.1189 |
1.4 | 0.9925 | 14.48 | 0.0080 | 0.7135 | 0.9912 | 15.73 | 0.0292 | 0.0640 |
1.6 | 0.9923 | 16.25 | 0.0086 | 0.6993 | 0.9946 | 19.05 | 0.0410 | 0.0465 |
表2 不同电压下ACF和γ-Al2O3/CuO-ACF电极的Langmuir等温线参数比较
外加电压 /V | ACF | γ-Al2O3/CuO-ACF | ||||||
---|---|---|---|---|---|---|---|---|
R2 | Qm /mg·g-1 | KL | RL | R2 | Qm /mg·g-1 | KL | RL | |
0.8 | 0.9944 | 13.26 | 0.0048 | 0.8065 | 0.9988 | 11.12 | 0.0089 | 0.1841 |
1.0 | 0.9935 | 13.81 | 0.0053 | 0.7891 | 0.9960 | 14.06 | 0.0102 | 0.1633 |
1.2 | 0.9931 | 13.94 | 0.0067 | 0.7491 | 0.9966 | 15.20 | 0.0148 | 0.1189 |
1.4 | 0.9925 | 14.48 | 0.0080 | 0.7135 | 0.9912 | 15.73 | 0.0292 | 0.0640 |
1.6 | 0.9923 | 16.25 | 0.0086 | 0.6993 | 0.9946 | 19.05 | 0.0410 | 0.0465 |
外加电压 /V | ACF | γ-Al2O3/CuO-ACF | ||||
---|---|---|---|---|---|---|
R2 | KF | n | R2 | KF | n | |
0.8 | 0.9689 | 0.1485 | 1.4858 | 0.9888 | 0.3918 | 1.9290 |
1.0 | 0.9706 | 0.1891 | 1.4570 | 0.9832 | 0.5065 | 1.9488 |
1.2 | 0.9765 | 0.1945 | 1.4270 | 0.9855 | 0.7124 | 1.9222 |
1.4 | 0.9894 | 0.2504 | 1.4531 | 0.9845 | 1.1903 | 2.0099 |
1.6 | 0.9915 | 0.2718 | 1.3894 | 0.9854 | 1.4228 | 1.9410 |
表3 不同电压下ACF和γ-Al2O3/CuO-ACF电极的Freundlich等温线参数比较
外加电压 /V | ACF | γ-Al2O3/CuO-ACF | ||||
---|---|---|---|---|---|---|
R2 | KF | n | R2 | KF | n | |
0.8 | 0.9689 | 0.1485 | 1.4858 | 0.9888 | 0.3918 | 1.9290 |
1.0 | 0.9706 | 0.1891 | 1.4570 | 0.9832 | 0.5065 | 1.9488 |
1.2 | 0.9765 | 0.1945 | 1.4270 | 0.9855 | 0.7124 | 1.9222 |
1.4 | 0.9894 | 0.2504 | 1.4531 | 0.9845 | 1.1903 | 2.0099 |
1.6 | 0.9915 | 0.2718 | 1.3894 | 0.9854 | 1.4228 | 1.9410 |
1 | ZHANG Douqing, LI Mingjun, JI Xiang, et al. Revealing potential of energy-saving behind emission reduction: A DEA-based empirical study[J]. Management of Environmental Quality: an International Journal, 2019, 30(4): 714-730. |
2 | TONG Yongjuan, ZHANG Qi, CAI Jiuju, et al. Water consumption and wastewater discharge in China’s steel industry[J]. Ironmaking & Steelmaking, 2018, 45(10): 868-877. |
3 | GENDEL Youri, ROMMERSKIRCHEN Alexandra Klara Elisabeth, DAVID Oana, et al. Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology[J]. Electrochemistry Communications, 2014, 46: 152-156. |
4 | YANG Zhiyu, JIN Linjian, LU Guoqian, et al. Sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance[J]. Advanced Functional Materials, 2014, 24(25): 3917-3925. |
5 | BLAIR John W, MURPHY George W. Electrochemical demineralization of water with porous electrodes of large surface area[M]//Advances in Chemistry. Washington D C: American Chemical Society, 1960: 206-223. |
6 | HAN Linchen, KARTHIKEYAN K G, ANDERSON Marc A, et al. Exploring the impact of pore size distribution on the performance of carbon electrodes for capacitive deionization[J]. Journal of Colloid and Interface Science, 2014, 430: 93-99. |
7 | WANG Hui, SHI Liyi, YAN Tingting, et al. Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization[J]. Journal of Materials Chemistry A, 2014, 2(13): 4739-4750. |
8 | ZORNITTA Rafael L, GARCÍA-MATEOS Francisco J, LADO Julio J, et al. High-performance activated carbon from polyaniline for capacitive deionization[J]. Carbon, 2017, 123: 318-333. |
9 | ZHOU Jianen, YANG Qingyun, XIE Qiongyi, et al. Recent progress in Co-based metal-organic framework derivatives for advanced batteries[J]. Journal of Materials Science & Technology, 2022, 96: 262-284. |
10 | RASINES G, LAVELA P, MACÍAS C, et al. Mesoporous carbon black-aerogel composites with optimized properties for the electro-assisted removal of sodium chloride from brackish water[J]. Journal of Electroanalytical Chemistry, 2015, 741: 42-50. |
11 | LUO Guoming, WANG Yuzhi, GAO Lixin, et al. Graphene bonded carbon nanofiber aerogels with high capacitive deionization capability[J]. Electrochimica Acta, 2018, 260: 656-663. |
12 | ZHAO Xiaoyu, WEI Hongxin, ZHAO Huachao, et al. Electrode materials for capacitive deionization: A review[J]. Journal of Electroanalytical Chemistry, 2020, 873: 114416. |
13 | CHU Dawei, SONG Xiumei, TAN Lichao, et al. Polyvinyl pyrrolidone-induced assembly of NiCo-LDHs nanosheets: A facile method for fabricating three-dimensional flower-like microspheres with excellent supercapacitor performance[J]. Inorganic Chemistry Communications, 2019, 110: 107587. |
14 | ZHU Fangfang, LIU Weijing, LIU Yu, et al. Construction of porous interface on CNTs@NiCo-LDH core-shell nanotube arrays for supercapacitor applications[J]. Chemical Engineering Journal, 2020, 383: 123150. |
15 | 郭宁, 郭婷, 陈方方. 电容去离子脱盐影响因素的研究进展[J]. 四川化工, 2023, 26(3): 11-15. |
GUO Ning, GUO Ting, CHEN Fangfang. Research progress on influencing factors of capacitive deionization desalination[J]. Sichuan Chemical Industry, 2023, 26(3): 11-15. | |
16 | XU Lina, LI Jiao, SUN Haibin, et al. In situ growth of Cu2O/CuO nanosheets on Cu coating carbon cloths as a binder-free electrode for asymmetric supercapacitors[J]. Frontiers in Chemistry, 2019, 7: 420. |
17 | 李谦, 刘志英, 许海辉, 等. 负载Al2O3的活性碳纤维电吸附除盐研究[J]. 工业水处理, 2017, 37(9): 48-52. |
LI Qian, LIU Zhiying, XU Haihui, et al. Research on Al2O3-loaded activated carbon fiber for the electro-adsorptive desalination[J]. Industrial Water Treatment, 2017, 37(9): 48-52. | |
18 | FAN Guoli, LI Feng, EVANS David G, et al. Catalytic applications of layered double hydroxides: Recent advances and perspectives[J]. Chemical Society Reviews, 2014, 43(20): 7040-7066. |
19 | LI Changming, WEI Min, EVANS David G, et al. Layered double hydroxide-based nanomaterials as highly efficient catalysts and adsorbents[J]. Small, 2014, 10(22): 4469-4486. |
20 | REN Qidi, WANG Gang, WU Tingting, et al. Calcined MgAl-layered double hydroxide/graphene hybrids for capacitive deionization[J]. Industrial & Engineering Chemistry Research, 2018, 57(18): 6417-6425. |
21 | LI Kaijian, GUO Dengfeng, LIN Furong, et al. Electrosorption of copper ions by poly(m-phenylenediamine)/reduced graphene oxide synthesized via a one-step in situ redox strategy[J]. Electrochimica Acta, 2015, 166: 47-53. |
22 | LEI Xiaodong, WANG Bo, LIU Junfeng, et al. Three-dimensional NiAl-mixed metal oxide film: Preparation and capacitive deionization performances[J]. RSC Advances, 2014, 4(78): 41642-41648. |
23 | WU Qinghao, LIANG Dawei, AVRAHAM Eran, et al. Enhanced capacitive deionization of an integrated membrane electrode by thin layer spray-coating of ion exchange polymers on activated carbon electrode[J]. Desalination, 2020, 491: 114460. |
24 | ELANG BARRUNA A G, MUHAMAD NAUFAL R, NUGRAHA Mohammad Ridho, et al. Material characteristics and electrochemical performance of lithium-ion capacitor with activated carbon cathode derived from sugarcane bagasse[J]. IOP Conference Series: Earth and Environmental Science, 2021, 673(1): 012018. |
25 | Abdul HAI, ALQASSEM Bayan, BHARATH G, et al. Cobalt and nickel ferrites based capacitive deionization electrode materials for water desalination applications[J]. Electrochimica Acta, 2020, 363: 137083. |
26 | JABBAR Saja Mohsen. Synthesis of CuO nano structure via sol-gel and precipitation chemical methods[J]. Al-Khwarizmi Engineering Journal, 2017, 12(4): 126-131. |
27 | KANWAL Aisha, SAJJAD Shamaila, LEGHARI Sajjad Ahmed Khan, et al. Cascade electron transfer in ternary CuO/α-Fe2O3/γ-Al2O3 nanocomposite as an effective visible photocatalyst[J]. Journal of Physics and Chemistry of Solids, 2021, 151: 109899. |
28 | ZHENG Run, LIN Qixuan, MENG Ling, et al. Flexible phosphorus-doped activated carbon fiber paper in situ loading of CuO for degradation of phenol[J]. Separation and Purification Technology, 2022, 298: 121619. |
29 | CHEN Baoliang, CHEN Zaiming, Shaofang LYU. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate[J]. Bioresource Technology, 2011, 102(2): 716-723. |
30 | DALMASCHIO Cleocir José, MASTELARO Valmor R, NASCENTE Pedro, et al. Oxide surface modification: Synthesis and characterization of zirconia-coated alumina[J]. Journal of Colloid and Interface Science, 2010, 343(1): 256-262. |
31 | KOTOMIN E A, STASHANS A, KANTOROVICH L N, et al. Calculations of the geometry and optical properties of FMg centers and dimer (F2-type) centers in corundum crystals[J]. Physical Review B, 1995, 51(14): 8770-8778. |
32 | XI Wen, LI Haibo. Vertically-aligned growth of CuAl-layered double oxides on reduced graphene oxide for hybrid capacitive deionization with superior performance[J]. Environmental Science Nano, 2020, 7: 764-772. |
33 | Vinod Vellora Thekkae Padil, Černík Miroslav. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application[J]. International Journal of Nanomedicine, 2013, 8: 889-898. |
34 | SHARMA Ajit, LEE Byeong-Kyu. Integrated ternary nanocomposite of TiO2/NiO/reduced graphene oxide as a visible light photocatalyst for efficient degradation of o-chlorophenol[J]. Journal of Environmental Management, 2016, 181: 563-573. |
35 | LIU Shiqi, ZHANG Zichen, HUANG Fei, et al. Carbonized polyaniline activated peroxymonosulfate (PMS) for phenol degradation: Role of PMS adsorption and singlet oxygen generation[J]. Applied Catalysis B: Environmental, 2021, 286: 119921. |
36 | HUPP Joseph T, POEPPELMEIER Kenneth R. Better living through nanopore chemistry[J]. Science, 2005, 309(5743): 2008-2009. |
37 | MAO Ping, QI Bingbing, LIU Ying, et al. AgII doped MIL-101 and its adsorption of iodine with high speed in solution[J]. Journal of Solid State Chemistry, 2016, 237: 274-283. |
38 | WU Tingting, WANG Gang, DONG Qiang, et al. Asymmetric capacitive deionization utilizing nitric acid treated activated carbon fiber as the cathode[J]. Electrochimica Acta, 2015, 176: 426-433. |
39 | Lijuan MEN, CHEN Chunyu, LIU An, et al. N-doped porous carbon-based capacitive deionization electrode materials loaded with activated carbon fiber for water desalination applications[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107943. |
40 | TANG Chuyang Y, KWON Young-Nam, LECKIE James O. Fouling of reverse osmosis and nanofiltration membranes by humic acid—Effects of solution composition and hydrodynamic conditions[J]. Journal of Membrane Science, 2007, 290(1/2): 86-94. |
41 | GABELICH Christopher J, TRAN Tri D, I H Mel SUFFET. Electrosorption of inorganic salts from aqueous solution using carbon aerogels[J]. Environmental Science & Technology, 2002, 36(13): 3010-3019. |
42 | WANG Changming, SONG Haiou, ZHANG Quanxing, et al. Parameter optimization based on capacitive deionization for highly efficient desalination of domestic wastewater biotreated effluent and the fouled electrode regeneration[J]. Desalination, 2015, 365: 407-415. |
43 | WIMALASIRI Yasodinee, MOSSAD Mohamed, ZOU Linda. Thermodynamics and kinetics of adsorption of ammonium ions by graphene laminate electrodes in capacitive deionization[J]. Desalination, 2015, 357: 178-188. |
[1] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[2] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[3] | 宗悦, 张瑞君, 高珊珊, 田家宇. “特殊稳定型”压力驱动薄膜复合(TFC)脱盐膜的研究进展[J]. 化工进展, 2023, 42(4): 2058-2067. |
[4] | 陈仪, 郭耀励, 叶海星, 李宇璇, 牛青山. 二维纳米材料在渗透汽化脱盐膜中的应用[J]. 化工进展, 2023, 42(3): 1437-1447. |
[5] | 张赫, 李小可, 熊颖, 文劲. 基于水凝胶界面光蒸发的压裂返排液脱盐降污处理[J]. 化工进展, 2023, 42(2): 1073-1079. |
[6] | 孙孟威, 刘壮, 谢锐, 巨晓洁, 汪伟, 褚良银. 镧离子插层MoS2膜的制备及印染高盐水处理[J]. 化工进展, 2023, 42(1): 346-353. |
[7] | 张辛亥, 赵思琛, 朱辉, 张首石, 王凯. 多种碳材料与碳酸钠复合后脱硫性能对比[J]. 化工进展, 2022, 41(S1): 424-435. |
[8] | 张辛亥, 赵思琛, 朱辉, 王凯, 张首石. 活性碳纤维负载型脱硫剂在矿井气体环境条件下的应用[J]. 化工进展, 2022, 41(S1): 415-423. |
[9] | 祁元, 徐欣蓉, 阮玮, 吴昊, 吴科, 周亚明, 杨宏旻. 改性活性碳纤维对苯胺吸附特性分析[J]. 化工进展, 2022, 41(S1): 622-630. |
[10] | 张华, 刘光全, 张晓飞, 罗臻. 电脱盐废水稳定性分析及破乳技术[J]. 化工进展, 2022, 41(9): 5047-5054. |
[11] | 袁权, 李海红, 刘浩杰. HNO3改性活性炭对不同价态离子的电吸附规律[J]. 化工进展, 2022, 41(9): 4986-4994. |
[12] | 洪波. 取消药剂消耗的电脱盐污水物理法预处理[J]. 化工进展, 2022, 41(5): 2788-2796. |
[13] | 石一慈, 潘艳秋, 王成宇, 范嘉禾, 俞路. 焦耳效应强化气隙式膜蒸馏脱盐过程的实验研究[J]. 化工进展, 2022, 41(5): 2285-2291. |
[14] | 周永泉, 张艾, 刘亚男, 王铮. 等离子体射流耦合活性碳纤维去除水中糖皮质激素[J]. 化工进展, 2022, 41(4): 2209-2215. |
[15] | 张群, 陈重军, 谢嘉玮, 邹馨怡. 高盐废水微生物脱盐池处理研究进展[J]. 化工进展, 2022, 41(2): 974-980. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |