化工进展 ›› 2024, Vol. 43 ›› Issue (7): 3660-3671.DOI: 10.16085/j.issn.1000-6613.2024-0023
• 专栏:热化学反应工程技术 • 上一篇
收稿日期:
2024-01-04
修回日期:
2024-04-28
出版日期:
2024-07-10
发布日期:
2024-08-14
通讯作者:
申淼,王建强
作者简介:
李文哲(1999—),男,硕士研究生,研究方向为锌离子电池、储能材料。E-mail:liwenzhe@sinap.ac.cn。
基金资助:
LI Wenzhe1,2(), SHEN Miao1(), WANG Jianqiang1()
Received:
2024-01-04
Revised:
2024-04-28
Online:
2024-07-10
Published:
2024-08-14
Contact:
SHEN Miao, WANG Jianqiang
摘要:
二维金属碳氮化物(MXene)是由过渡金属元素(铝、钛、铌、钼等)和X元素(碳、氮)组成的一种新型二维材料,在能源存储与转换、电磁屏蔽、传感器、催化等领域具有广泛的应用前景。其中,过渡金属M、X元素组合、表面官能团T x 元素种类调控是影响MXene结构和物理化学性质的关键,开发元素组合可调控的合成方法是MXene族材料制备和应用的热点和难点。熔盐合成法是制备MXene的方法之一,利用熔盐介质无水无氧、富含阴阳离子、弱溶剂化、电化学窗口宽等诸多特性,可以合成一些常规水溶液中无法获得的特殊组成和结构的MXene材料,这大大拓展了该材料的应用范围。本文综述了高温熔盐作为氧化刻蚀剂或溶剂制备新型MXene材料的最新研究进展,并讨论了不同共晶盐、反应物和反应条件调控MAX和MXene材料结构的影响机制。同时,对熔盐法未来的发展方向和面临的主要挑战也进行了展望。
中图分类号:
李文哲, 申淼, 王建强. 熔盐法制备新型二维层状金属碳/氮化物(MXene)的研究进展[J]. 化工进展, 2024, 43(7): 3660-3671.
LI Wenzhe, SHEN Miao, WANG Jianqiang. Research progress in the preparation of new two-dimensional layered metal carbon/nitrides by molten salt method[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3660-3671.
熔盐组成 | 摩尔分数/% | 熔点 /℃ |
---|---|---|
LiCl∶KCl | 59∶41 | 352 |
NaCl∶KCl | 50∶50 | 658 |
AlCl3∶NaCl | 50∶50 | 154 |
LiF∶NaF∶KF | 46.5∶11.5∶42 | 459 |
LI∶KI | 63∶37 | 286 |
表1 常用金属卤化物的熔点和组成[53]
熔盐组成 | 摩尔分数/% | 熔点 /℃ |
---|---|---|
LiCl∶KCl | 59∶41 | 352 |
NaCl∶KCl | 50∶50 | 658 |
AlCl3∶NaCl | 50∶50 | 154 |
LiF∶NaF∶KF | 46.5∶11.5∶42 | 459 |
LI∶KI | 63∶37 | 286 |
1 | XU Guangwen, BAI Dingrong, XU Chunming, et al. Challenges and opportunities for engineering thermochemistry in carbon-neutralization technologies[J]. National Science Review, 2023, 10(9): nwac217. |
2 | GUO Zhancheng, WANG Shiwei, BAI Dingrong. Engineering thermochemistry: The science critical for the paradigm shift toward carbon neutrality[J]. Resources Chemicals and Materials, 2023, 2(4): 331-334. |
3 | BEYENE Anteneh Marelign, BAEK Changyeon, JUNG Wook Ki, et al. Understanding the role of oxygen ion (O2-) activity in 1-D crystal growth of rutile TiO2 in molten salts[J]. CrystEngComm, 2018, 20(4): 487-495. |
4 | BOLTERSDORF Jonathan, KING Nacole,et al. MAGGARD Paul A. Flux-mediated crystal growth of metal oxides: Synthetic tunability of particle morphologies, sizes, and surface features for photocatalysis research[J]. CrystEngComm, 2015, 17(11): 2225-2241. |
5 | Ethan C AHN, WONG H-S Philip, Eric POP. Carbon nanomaterials for non-volatile memories[J]. Nature Reviews Materials, 2018, 3(3): 18009. |
6 | CAI Yu, WEI Zheng, SONG Chuanhui, et al. Optical nano-agents in the second near-infrared window for biomedical applications[J]. Chemical Society Reviews, 2019, 48(1): 22-37. |
7 | Gangotri DEY, YANG Letao, LEE Ki-Bum, et al. Characterizing molecular adsorption on biodegradable MnO2 nanoscaffolds[J]. The Journal of Physical Chemistry C, 2018, 122(50): 29017-29027. |
8 | GHODSI Vahid, LU Wenhuan, RADOVANOVIC Pavle V. Synergistic effect of the electronic structure and defect formation enhances photocatalytic efficiency of gallium tin oxide nanocrystals[J]. The Journal of Physical Chemistry C, 2019, 123(1): 433-442. |
9 | GOGOTSI Yurry. Nanomaterials handbook[M]. Boca Raton: CRC Press, 2006. |
10 | MAO Yuanbing, PARK Tae-Jin, ZHANG Fen, et al. Environmentally friendly methodologies of nanostructure synthesis[J]. Small, 2007, 3(7): 1122-1139. |
11 | MAO Yuanbing, PARK Tae-Jin, WONG Stanislaus S. Synthesis of classes of ternary metal oxide nanostructures[J]. Chemical Communications, 2005(46): 5721. |
12 | ZHANG Haijun, LI Faliang, JIA Quanli. Preparation of titanium nitride ultrafine powders by sol-gel and microwave carbothermal reduction nitridation methods[J]. Ceramics International, 2009, 35(3): 1071-1075. |
13 | YANG Hong, LIU Xiaohui, LU Guanzhong, et al. Synthesis of SAPO-34 nanoplates via hydrothermal method[J]. Microporous and Mesoporous Materials, 2016, 225: 144-153. |
14 | ARENDT R H. Liquid-phase sintering of magnetically isotropic and anise by the reaction of BaFe2O4 with Fe2O3 [J]. Journal of Solid State Chemistry,1973.8(4): 339 |
15 | KANATZIDIS Mercouri G, PARK Younbong. Molten salt synthesis of low-dimensional ternary chalcogenides. Novel structure types in the K/Hg/Q system (Q = S, Se)[J]. Chemistry of Materials, 1990, 2(2): 99-101. |
16 | CHIU Chien C, LI Chen C, DESU Seshu B. Molten salt synthesis of a complex perovskite, Pb(Fe0.5Nb0.5)O3 [J]. Journal of the American Ceramic Society, 1991, 74(1): 38-41. |
17 | HOOKER Paul D, KLABUNDE Kenneth J. Reaction of nickel atoms with molten salts. A new approach to the synthesis of nanoscale metal, metal oxide, and metal carbide particles[J]. Chemistry of Materials, 1993, 5(8): 1089-1093. |
18 | MALYSHEV V V, KUSHKHOV H B, SHAPOVAL V I. High-temperature electrochemical synthesis of carbides, silicides and borides of Ⅵ-group metals in ionic melts[J]. Journal of Applied Electrochemistry, 2002, 32(5): 573-579. |
19 | KONONOV A I, ELIZAROV D V, KUZNETSOV S A, et al. Mechanism of formation of Ni-Sc intermetallic compound layers on a nickel surface in molten halides[J]. Journal of Alloys and Compounds, 1995, 219(1/2): 149-151. |
20 | MAO Y, S WONG S. Composition and shape control of crystalline Ca1- x Sr x TiO3 perovskite nanoparticles[J]. Advanced Materials, 2005, 17(18): 2194-2199. |
21 | BAO Zhihao, WEATHERSPOON Michael R, SHIAN Samuel, et al. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas[J]. Nature, 2007, 446(7132): 172-175. |
22 | SHOEMAKER Daniel P, CHUNG Duck Young, MITCHELL J F, et al. Understanding fluxes as media for directed synthesis: In situ local structure of molten potassium polysulfides[J]. Journal of the American Chemical Society, 2012, 134(22): 9456-9463. |
23 | LIU Bin, CHEN Hao ming, LIU Chong, et al. Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential[J]. Journal of the American Chemical Society, 2013, 135(27): 9995-9998. |
24 | CHANG Kun, Xiao HAI, PANG Hong, et al. Targeted synthesis of 2H- and 1T-phase MoS2 monolayers for catalytic hydrogen evolution[J]. Advanced Materials, 2016, 28(45): 10033-10041. |
25 | ZHOU Jiadong, LIN Junhao, HUANG Xiangwei, et al. A library of atomically thin metal chalcogenides[J]. Nature, 2018, 556(7701): 355-359. |
26 | DASH Apurv, Robert VAßEN, GUILLON Olivier, et al. Molten salt shielded synthesis of oxidation prone materials in air[J]. Nature Materials, 2019, 18(5): 465-470. |
27 | SUSMAN Mariano D, PHAM Hien N, ZHAO Xiaohui, et al. Synthesis of NiO crystals exposing stable high-index facets[J]. Angewandte Chemie International Edition, 2020, 59(35): 15119-15123. |
28 | NAGUIB Michael, KURTOGLU Murat, PRESSER Volker, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2 [J]. Advanced Materials, 2011, 23(37): 4248-4253. |
29 | NAGUIB Michael, MOCHALIN Vadym N, BARSOUM Michel W, et al. 25th anniversary article: MXenes: A new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7): 992-1005. |
30 | ANASORI Babak, LUKATSKAYA Maria R, GOGOTSI Yury. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2(2): 16098. |
31 | NICOLOSI Valeria, CHHOWALLA Manish, KANATZIDIS Mercouri G, et al. Liquid exfoliation of layered materials[J]. Science, 2013, 340(6139): e1226419. |
32 | GHIDIU Michael, LUKATSKAYA Maria R, ZHAO Mengqiang, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-81. |
33 | LUKATSKAYA Maria R, KOTA Sankalp, LIN Zifeng, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides[J]. Nature Energy, 2017, 2(8), 17105. |
34 | HUSMANN Samantha, Öznil BUDAK, SHIM Hwirim, et al. Ionic liquid-based synthesis of MXene[J]. Chemical Communications, 2020, 56(75): 11082-11085. |
35 | HALIM Joseph, LUKATSKAYA Maria R, COOK Kevin M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films[J]. Chemistry of Materials, 2014, 26(7): 2374-2381. |
36 | VAHIDMOHAMMADI A, ROSEN J, GOGOTSI Y. The world of two-dimensional carbides and nitrides (MXenes)[J]. Science, 2021, 372(6547): eabf1581. |
37 | ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2(2), 16098. |
38 | LI Mian, LU Jun, LUO Kan, et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes[J]. Journal of the American Chemical Society, 2019, 141(11): 4730-4737. |
39 | LI Youbing, SHAO Hui, LIN Zifeng, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials, 2020, 19(8): 894-899. |
40 | DJIRE Abdoulaye, Andre BOS, LIU Jun, et al. Pseudocapacitive storage in nanolayered Ti2NT x MXene using Mg-ion electrolyte[J]. ACS Applied Nano Materials, 2019, 2(5): 2785-2795. |
41 | URBANKOWSKI Patrick, ANASORI Babak, MAKARYAN Taron, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene)[J]. Nanoscale, 2016, 8(22): 11385-11391. |
42 | SHEN Miao, JIANG Weiyan, LIANG Kun, et al. One-pot green process to synthesize mxene with controllable surface terminations using molten salts[J]. Angewandte Chemie International Edition, 2021, 60(52): 27013-27018. |
43 | HUANG Liang, HU Zhimi, JIN Hongrun, et al. Salt-assisted synthesis of 2D materials[J]. Advanced Functional Materials, 2020, 30(19): 1908486. |
44 | NAGUIB Michael, MOCHALIN Vadym N, BARSOUM Michel W, et al. 25th anniversary article: MXenes: A new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7): 992-1005. |
45 | WILLIAMS David F, DEL CUL Guillermo D, TOTH Louis M, et al. The influence of lewis acid/base chemistry on the removal of gallium by volatility from weapons-grade plutonium dissolved in molten chlorides[J]. Nuclear Technology, 2001, 136(3): 367-370. |
46 | ZHANG Hao, DASBISWAS Kinjal, LUDWIG Nicholas B, et al. Stable colloids in molten inorganic salts[J]. Nature, 2017, 542(7641): 328-331. |
47 | BIGGIN S, ENDERBY J E. The structure of molten zinc chloride[J]. Journal of Physics C: Solid State Physics, 1981, 14(22): 3129-3136. |
48 | LI Hefeng, LU Kunquan, WU Zhonghua, et al. EXAFS studies of molten ZnCl2, RbCl and Rb2ZnCl4 [J]. Journal of Physics: Condensed Matter, 1994, 6(20): 3629-3640. |
49 | SUN Jian, WANG Lei, ZHANG Suojiang, et al. ZnCl2/phosphonium halide: An efficient Lewis acid/base catalyst for the synthesis of cyclic carbonate[J]. Journal of Molecular Catalysis A: Chemical, 2006, 256(1/2): 295-300. |
50 | KERRIDGE D H, TARIQ S A. The solution of zinc in fused zinc chloride[J]. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1967: 1122. |
51 | BUYERS A G,et al. A study of the rate of isotopic exchange for Zn65 in molten zinc-zinc chloride systems at 433°—681°[J]. The Journal of Physical Chemistry, 1961, 65(12): 2253-2257. |
52 | LI Peiwen, MOLINA Edgar, WANG Kai, et al. Thermal and transport properties of NaCl-KCl-ZnCl2 eutectic salts for new generation high-temperature heat-transfer fluids[J]. Journal of Solar Energy Engineering, 2016, 138(5): 054501. |
53 | LIU Xiaofeng, FECHLER Nina, ANTONIETTI Markus. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures[J]. Chemical Society Reviews, 2013, 42(21): 8237-8265. |
54 | BUGARIS Daniel E, LOYE Hans-Conrad ZUR. Materials discovery by flux crystal growth: Quaternary and higher order oxides[J]. Angewandte Chemie International Edition, 2012, 51(16): 3780-3811. |
55 | Isabel GONZALO-JUAN, RIEDEL Ralf. Ceramic synthesis from condensed phases[J]. ChemTexts, 2016, 2(2): 6. |
56 | VON BARNER J H, BREKKE P B, BJERRUM N J. Chloro complexes in molten salts. 10. Potentiometric and spectrophotometric study of the system potassium chloride-aluminum chloride-copper (Ⅱ) chloride at 300℃[J]. Inorganic Chemistry, 1985, 24(14): 2162-2168. |
57 | Pedro SMITH G, GRIFFITHS Trevor R. Tetrahedral tetrachlorocopper (Ⅱ) complex in molten salt solutions[J]. Journal of the American Chemical Society, 1963, 85(24): 4051-4052. |
58 | BOSTON Charles R, Pedro SMITH G. Tetrahedral NiCl4 2- in molten salts. the complete spin-allowed spectrum of 3d orbital transitions[J]. Journal of the American Chemical Society, 1963, 85(7): 1006-1007. |
59 | TUMIDAJSKI Peter J, BLANDER M. Solubility of CoCl2 in molten NaCl-AlCl3 [J]. The Journal of Physical Chemistry, 1995, 99(24): 9992-9995. |
60 | MA Guoliang, SHAO Hui, XU Jin, et al. Li-ion storage properties of two-dimensional titanium-carbide synthesized via fast one-pot method in air atmosphere[J]. Nature Communications, 2021, 12: 5085. |
61 | CHEN Jinjin, JIN Qianqian, LI Youbing, et al. Molten salt shielded synthesis (MS3) of MXene in air[J]. Energy & Environmental Materials, 2023, 6(2): e12328. |
62 | KHAZAEI Mohammad, RANJBAR Ahmad, ESFARJANI Keivan, et al. Insights into exfoliation possibility of MAX phases to MXenes[J]. Physical Chemistry Chemical Physics: PCCP, 2018, 20(13): 8579-8592. |
63 | SANG Xiahan, XIE Yu, LIN Mingwei, et al. Atomic defects in monolayer titanium carbide (Ti3C2T x ) MXene[J]. ACS Nano, 2016, 10(10): 9193-9200. |
64 | LI Xufan, PURETZKY Alexander A, SANG Xiahan, et al. Suppression of defects and deep levels using isoelectronic tungsten substitution in monolayer MoSe2 [J]. Advanced Functional Materials, 2017, 27(19): 1603850. |
65 | SANTOSH K C, LONGO Roberto C, ADDOU Rafik, et al. Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers[J]. Nanotechnology, 2014, 25(37): 375703. |
66 | YAZYEV Oleg V, HELM Lothar. Defect-induced magnetism in graphene[J]. Physical Review B, 2007, 75(12): 125408. |
67 | ZHANG Ning, HONG Yu, YAZDANPARAST Sanaz, et al. Superior structural, elastic and electronic properties of 2D titanium nitride MXenes over carbide MXenes: A comprehensive first principles study[J]. 2D Materials, 2018, 5(4): 045004. |
68 | SALAMAT A, HECTOR A, KROLL P, et al. Nitrogen-rich transition metal nitrides[J]. Coordination Chemistry Reviews, 2013, 257(13/14): 2063-2072. |
69 | WANG Shanmin, GE Hui, SUN Shouli, et al. A new molybdenum nitride catalyst with rhombohedral MoS2 structure for hydrogenation applications[J]. Journal of the American Chemical Society, 2015, 137(14): 4815-4822. |
70 | YU Huimin, YANG Xin, XIAO Xu, et al. Atmospheric-pressure synthesis of 2D nitrogen-rich tungsten nitride[J]. Advanced Materials, 2018, 30(51): e1805655. |
71 | URBANKOWSKI Patrick, ANASORI Babak, HANTANASIRISAKUL Kanit, et al. 2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes)[J]. Nanoscale, 2017, 9(45): 17722-17730. |
72 | JIN Huanyu, GU Qinfen, CHEN Bo, et al. Molten salt-directed catalytic synthesis of 2D layered transition-metal nitrides for efficient hydrogen evolution[J]. Chem, 2020, 6(9): 2382-2394. |
73 | LANTELME F, GROULT H. Molten salts chemistry: From lab to applications[B]. 2013. |
74 | DELPECH Sylvie, CABET Céline, SLIM Cyrine, et al. Molten fluorides for nuclear applications[J]. Materials Today, 2010, 13(12): 34-41. |
75 | LI Mian, LI Xinliang, QIN Guifang, et al. Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries[J]. ACS Nano, 2021, 15(1): 1077-1085. |
76 | SRIVASTAVA Vishwas, KAMYSBAYEV Vladislav, HONG Liang, et al. Colloidal chemistry in molten salts: Synthesis of luminescent In1– x Ga x P and In1– x Ga x As quantum dots[J]. Journal of the American Chemical Society, 2018, 140(38): 12144-12151. |
77 | GUO Liang, JIANG Weiyan, SHEN Miao, et al. High capacitance of MXene (Ti3C2T x ) through Intercalation and Surface Modification in Molten Salt[J]. Electrochimica Acta, 2022, 401: 139476. |
78 | XU Cong, JIANG Weiyan, GUO Liang, et al. High supercapacitance performance of nitrogen-doped Ti3C2T x prepared by molten salt thermal treatment[J]. Electrochimica Acta, 2022, 403: 139528. |
79 | LIU Jincheng, XIAO Hai, LI Jun. Constructing high-loading single-atom/cluster catalysts via an electrochemical potential window strategy[J]. Journal of the American Chemical Society, 2020, 142(7): 3375-3383. |
80 | FU Z H, ZHANG Q F, LEGUT D, et al. Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide[J]. Physical Review B, 2016, 94(10): 104103. |
81 | DING Haoming, LI Youbing, LI Mian, et al. Chemical scissor-mediated structural editing of layered transition metal carbides[J]. Science, 2023, 379(6637): 1130-1135. |
82 | WANG Ya, GAO Zihan, ZHANG Xiuqing, et al. Modulation of the cobalt content in Ti3C2T x by molten salt method for hydrogen evolution reaction[J]. Journal of the Electrochemical Society, 2024, 171(1): 016502. |
[1] | 张鑫, 汤吉昀, 陈娟, 宋占龙, 董勇, 姚洪. 高温烟气热解废轮胎过程中痕量金属Cu、Pb的迁移特性分析[J]. 化工进展, 2024, 43(3): 1606-1613. |
[2] | 邓磊, 袁茂博, 杨家辉, 岳洋, 姜家豪, 车得福. 适应锅炉调峰运行的水冷壁高温腐蚀预测模型[J]. 化工进展, 2024, 43(2): 925-936. |
[3] | 李昕, 杨早, 钟欣茹, 韩昊轩, 庄绪宁, 白建峰, 董滨, 徐祖信. 污泥超高温堆肥衍生胡敏酸对Pb2+的结合机制[J]. 化工进展, 2023, 42(9): 4957-4966. |
[4] | 李由, 吴越, 钟禹, 林琦璇, 任俊莉. 酸性熔盐水合物预处理麦秆高效制备木糖及其对酶解效率的影响[J]. 化工进展, 2023, 42(9): 4974-4983. |
[5] | 陈明星, 王新亚, 张威, 肖长发. 纤维基耐高温空气过滤材料研究进展[J]. 化工进展, 2023, 42(5): 2439-2453. |
[6] | 赵重阳, 赵磊, 石详文, 黄俊, 李治尧, 沈凯, 张亚平. O2/H2O/SO2 对改性富铁凹凸棒石高温吸附PbCl2 的影响[J]. 化工进展, 2023, 42(4): 2190-2200. |
[7] | 宗悦, 张瑞君, 高珊珊, 田家宇. “特殊稳定型”压力驱动薄膜复合(TFC)脱盐膜的研究进展[J]. 化工进展, 2023, 42(4): 2058-2067. |
[8] | 刘广平, 陆振能, 龚宇烈. 高温热泵蒸汽系统的动态响应及扰动优化[J]. 化工进展, 2023, 42(4): 1719-1727. |
[9] | 侯婉, 陈汇龙, 程谦, 陈英健, 卫泽鹏, 赵斌娟. 高温密封润滑膜汽液固流动特性数值计算分析[J]. 化工进展, 2023, 42(2): 699-710. |
[10] | 龙彩梅, 武帅山, 王建成, 米杰, 冯宇. 基于分子筛结构特性的高温煤气脱硫剂应用现状[J]. 化工进展, 2023, 42(11): 5943-5955. |
[11] | 罗源皓, 林凌, 郭拥军, 杨玉坤, 熊贵霞, 任仁, 屈沅治. 纳米材料在抗高温钻井液中的应用进展[J]. 化工进展, 2022, 41(9): 4895-4906. |
[12] | 黄明, 祖韵秋, 高亢, 韦韡, 张娜, 朱华平, 刘春太. 大丝束CF/EP汽车地板VARTM模拟与高温力学性能[J]. 化工进展, 2022, 41(5): 2546-2554. |
[13] | 王新宇, 黄亚继, 徐力刚, 李志远, 李偲, 刘晓东. 调节同层二次风以缓解双切圆锅炉高温腐蚀的数值模拟[J]. 化工进展, 2022, 41(5): 2292-2300. |
[14] | 张喻, 高宁博, 全翠, 王凤超. 低阶煤热解高温油气除尘技术进展[J]. 化工进展, 2022, 41(4): 1814-1824. |
[15] | 杨晓域, 于梦竹, 黄亚继, 李金壘, 朱志成, 李志远, 王圣, 李秋白. 高温抗烧结吸附剂对SeO2捕集性能[J]. 化工进展, 2022, 41(12): 6711-6722. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |