化工进展 ›› 2024, Vol. 43 ›› Issue (9): 4845-4858.DOI: 10.16085/j.issn.1000-6613.2023-1401
• 能源加工与技术 • 上一篇
徐忠正1,2(), 赵明伟1,2(), 刘佳伟3, 戴彩丽1,2()
收稿日期:
2023-08-13
修回日期:
2023-09-26
出版日期:
2024-09-15
发布日期:
2024-09-30
通讯作者:
赵明伟,戴彩丽
作者简介:
徐忠正(1996—),男,博士研究生,研究方向为提高采收率与采油化学。E-mail:upc_xzz@163.com。
基金资助:
XU Zhongzheng1,2(), ZHAO Mingwei1,2(), LIU Jiawei3, DAI Caili1,2()
Received:
2023-08-13
Revised:
2023-09-26
Online:
2024-09-15
Published:
2024-09-30
Contact:
ZHAO Mingwei, DAI Caili
摘要:
深层/超深层油气资源是我国未来油气勘探开发和增储上产的重点突破领域。压裂是实现超深层油气高效开发的重要手段,但超深层压裂面临的苛刻条件对压裂液提出了新的挑战。现从增稠剂、交联剂和延迟交联技术三方面对超深层耐高温压裂液研究进展进行综述。回顾国内外常用稠化剂和交联剂对于提升压裂液耐温性能的发展历程,明确现有深层/超深层压裂液的耐温界限。目前在压裂液延迟交联的技术方法中依靠环境响应的延迟交联技术最具有应用潜力,但耐温压裂液仍然存在“用剂浓度高、分子结构复杂、井筒摩阻高”的问题。研发具有低伤害、高减阻、低成本的耐高温延迟交联压裂液将是超深层压裂液未来的发展方向,可为进一步完善我国深层/超深层油气高效开发压裂工作液技术提供借鉴。
中图分类号:
徐忠正, 赵明伟, 刘佳伟, 戴彩丽. 超深层耐高温压裂液研究进展与展望[J]. 化工进展, 2024, 43(9): 4845-4858.
XU Zhongzheng, ZHAO Mingwei, LIU Jiawei, DAI Caili. Advances and prospects of high temperature-resistant fracturing fluid in ultra-deep reservoir[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4845-4858.
方法 | 表面活性剂 | 分子结构 | 参考文献 |
---|---|---|---|
增加表面活性剂链长 | 芥酸类超长疏水链双子阳离子表面活性剂 | [ | |
引入耐温功能基团 | 长碳链双子季铵盐表面活性剂 | [ | |
芥酸酰胺丙基二甲基叔胺三子表面活性剂 | [ | ||
具有刚性环己烷结构的双阳离子表面活性剂 | [ | ||
含有羟基的C16表面活性剂 | [ | ||
含有羟基和酰胺基团的Gemini双子表面活性剂 | [ | ||
引入无机纳米材料 | 双子阳离子聚表面活性剂+纳米TiO2 | [ | |
两性离子油酰胺丙基甜菜碱表面活性剂+ 羟基化多壁碳纳米管 | [ | ||
十六烷基三甲基溴化铵+纳米SiO2 | [ |
表1 VES压裂液提升耐温性的主要途径
方法 | 表面活性剂 | 分子结构 | 参考文献 |
---|---|---|---|
增加表面活性剂链长 | 芥酸类超长疏水链双子阳离子表面活性剂 | [ | |
引入耐温功能基团 | 长碳链双子季铵盐表面活性剂 | [ | |
芥酸酰胺丙基二甲基叔胺三子表面活性剂 | [ | ||
具有刚性环己烷结构的双阳离子表面活性剂 | [ | ||
含有羟基的C16表面活性剂 | [ | ||
含有羟基和酰胺基团的Gemini双子表面活性剂 | [ | ||
引入无机纳米材料 | 双子阳离子聚表面活性剂+纳米TiO2 | [ | |
两性离子油酰胺丙基甜菜碱表面活性剂+ 羟基化多壁碳纳米管 | [ | ||
十六烷基三甲基溴化铵+纳米SiO2 | [ |
方法 | 优缺点 | 典型结构 | 参考文献 |
---|---|---|---|
提高分子量 | 分子量过高会导致稠化剂溶解和注入困难 | [ | |
支化/梯形/杂化构型 | 工艺流程复杂,产率低 | [ | |
引入疏水基团 | 可大幅度提高增黏耐温能力,存在水溶性和产出液处理的问题 | [ | |
引入杂原子耐温型基团 | 技术成熟,可兼具刚性侧基、支化优势 | [ | |
引入大位阻刚性侧基 | 有效提高耐温耐盐性能,聚合过程存在接枝率问题 | [ |
表2 合成聚合物提升耐温性的主要途径
方法 | 优缺点 | 典型结构 | 参考文献 |
---|---|---|---|
提高分子量 | 分子量过高会导致稠化剂溶解和注入困难 | [ | |
支化/梯形/杂化构型 | 工艺流程复杂,产率低 | [ | |
引入疏水基团 | 可大幅度提高增黏耐温能力,存在水溶性和产出液处理的问题 | [ | |
引入杂原子耐温型基团 | 技术成熟,可兼具刚性侧基、支化优势 | [ | |
引入大位阻刚性侧基 | 有效提高耐温耐盐性能,聚合过程存在接枝率问题 | [ |
1 | 杨海军, 陈永权, 田军, 等. 塔里木盆地轮探1井超深层油气勘探重大发现与意义[J]. 中国石油勘探, 2020, 25(2): 62-72. |
YANG Haijun, CHEN Yongquan, TIAN Jun, et al. Great discovery and its significance of ultra-deep oil and gas exploration in well Luntan-1 of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(2): 62-72. | |
2 | 李阳, 薛兆杰, 程喆, 等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探, 2020, 25(1): 45-57. |
LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1): 45-57. | |
3 | 李阳, 薛兆杰. 中国石化油气田开发工程技术面临的挑战与发展方向[J]. 石油钻探技术, 2016, 44(1): 1-5. |
LI Yang, XUE Zhaojie. Challenges and development tendency of engineering technology in oil and gas development in sinopec[J]. Petroleum Drilling Techniques, 2016, 44(1): 1-5. | |
4 | 郭旭升. 以关键核心技术突破带动我国深层、超深层油气勘探开发突破[J]. 能源, 2022(9): 46-50. |
GUO Xusheng. Drive the breakthrough of deep and ultra-deep oil and gas exploration and development in China with the breakthrough of key core technologies[J]. Energy, 2022(9): 46-50. | |
5 | 马永生, 黎茂稳, 蔡勋育, 等. 中国海相深层油气富集机理与勘探开发: 研究现状、关键技术瓶颈与基础科学问题[J]. 石油与天然气地质, 2020, 41(4): 655-672, 683. |
MA Yongsheng, LI Maowen, CAI Xunyu, et al. Mechanisms and exploitation of deep marine petroleum accumulations in China: Advances, technological bottlenecks and basic scientific problems[J]. Oil & Gas Geology, 2020, 41(4): 655-672, 683. | |
6 | 李国欣, 田军, 段晓文, 等. 大幅提高超深致密砂岩气藏采收率对策与实践——以塔里木盆地克拉苏气田为例[J]. 天然气工业, 2022, 42(1): 93-101. |
LI Guoxin, TIAN Jun, DUAN Xiaowen, et al. Countermeasures and practice of greatly improving oil recovery of ultra-deep tight sandstone gas reservoir—Taking crassus gas field in Tarim Basin as an example[J]. Natural Gas Industry, 2022, 42(01): 93-101. | |
7 | 雷群, 胥云, 杨战伟, 等. 超深油气储集层改造技术进展与发展方向[J]. 石油勘探与开发, 2021, 48(1): 193-201. |
LEI Qun, XU Yun, YANG Zhanwei, et al. Progress and development directions of stimulation techniques for ultra-deep oil and gas reservoirs[J]. Petroleum Exploration and Development, 2021, 48(1): 193-201. | |
8 | 徐春春, 邹伟宏, 杨跃明, 等. 中国陆上深层油气资源勘探开发现状及展望[J]. 天然气地球科学, 2017, 28(8): 1139-1153. |
XU Chunchun, ZOU Weihong, YANG Yueming, et al. Status and prospects of exploration and exploitation of the deep oil & gas resources onshore China[J]. Natural Gas Geoscience, 2017, 28(8): 1139-1153. | |
9 | 王建云, 韩涛, 赵宽心, 等. 塔深5井超深层钻井关键技术[J]. 石油钻探技术, 2022, 50(5): 27-33. |
WANG Jianyun, HAN Tao, ZHAO Kuanxin, et al. Key drilling technologies for the ultra-deep drilling in well Tashen 5[J]. Petroleum Drilling Techniques, 2022, 50(5): 27-33. | |
10 | 许可, 侯宗锋, 翁定为, 等. 耐高温压裂液及其添加剂研究进展[J]. 当代化工, 2022, 51(4): 936-940, 974. |
XU Ke, HOU Zongfeng, WENG Dingwei, et al. Research progress of high temperature resistant fracturing fluid system and additives[J]. Contemporary Chemical Industry, 2022, 51(4): 936-940, 974. | |
11 | 王丽伟, 杨竞旭, 高莹, 等. 深层油气用加重滑溜水压裂液体系[J]. 钻井液与完井液, 2020, 37(6): 794-797, 802. |
WANG Liwei, YANG Jingxu, GAO Ying, et al. Study on weighted slick water fracturing fluid for deep buried oil and gas[J]. Drilling Fluid & Completion Fluid, 2020, 37(6): 794-797, 802. | |
12 | 戴秀兰, 刘通义, 魏俊, 等. 一种延迟交联的抗高温加重胍胶压裂液的研究[J]. 西南石油大学学报(自然科学版), 2021, 43(1): 176-182. |
DAI Xiulan, LIU Tongyi, WEI Jun, et al. A study on a kind of delayed crosslinking anti-high temperature weighted guanidine gel fracture fluid[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2021, 43(1): 176-182. | |
13 | 陈晓知, 刘建明, 罗子立. 钻井与压裂液用摩芋粉的改性试验研究[J]. 探矿工程(岩土钻掘工程), 2004, 31(12): 40-41. |
CHEN Xiaozhi, LIU Jianming, LUO Zili. Test study on dasheen powder modification used in drilling and fracturing fluid[J]. Exploration Engineering (Drilling & Tunneling), 2004, 31(12): 40-41. | |
14 | 罗建辉, 陈桂英, 孙广华, 等. 一种耐温耐盐共聚物增稠剂: CN1125094C[P]. 2003-10-22. |
LUO Jianhui, CHEN Guiying, SUN Guanghua, et al. Heat-resistant salt-resistant thickening agent of copolymer: CN1125094C[P]. 2003-10-22. | |
15 | 何定凯. 羧甲基香豆胶压裂液在乾安油田的研究与应用[J]. 精细石油化工进展, 2014, 15(4): 11-13, 37. |
HE Dingkai. Research of carboxymethyl fenugreek gum fracturing fluid and its application in Qian'an oilfield[J]. Advances in Fine Petrochemicals, 2014, 15(4): 11-13, 37. | |
16 | 王著, 牛春梅, 吴文辉, 等. 羟丙基香豆胶-有机锆交联冻胶压裂液的性能[J]. 油田化学, 2006, 23(1): 23-26. |
WANG Zhu, NIU Chunmei, WU Wenhui, et al. Performance properties of hydroxypropyl fenugreek gum zirconium gelling fracturing fluid[J]. Oilfield Chemistry, 2006, 23(1): 23-26. | |
17 | VIJAYENDRAN B R, BONE T. Absolute molecular weight and molecular weight distribution of guar by size exclusion chromatography and low-angle laser light scattering[J]. Carbohydrate Polymers, 1984, 4(4): 299-313. |
18 | HUANG Qiming, LIU Shimin, WANG Gang, et al. Coalbed methane reservoir stimulation using guar-based fracturing fluid: A review[J]. Journal of Natural Gas Science and Engineering, 2019, 66: 107-125. |
19 | 郭建春, 王世彬, 伍林. 超高温改性瓜胶压裂液性能研究与应用[J]. 油田化学, 2011, 28(2): 201-205. |
GUO Jianchun, WANG Shibin, WU Lin. Research and application of ultra-high temperature fracture fluids[J]. Oilfield Chemistry, 2011, 28(2): 201-205. | |
20 | 张应安, 刘光玉, 周学平, 等. 新型羧甲基胍胶超高温压裂液在松辽盆地南部深层火山岩气井的应用[J]. 中国石油勘探, 2009, 14(4): 70-73, 10. |
ZHANG Ying'an, LIU Guangyu, ZHOU Xueping, et al. Application of new CMG ultra-high temperature fracturing fluid to deep volcanic gas wells in southern Songliao Basin[J]. China Petroleum Exploration, 2009, 14(4): 70-73, 10. | |
21 | KALGAONKAR Rajendra, PATIL Prajakta. Performance enhancements in metal-crosslinked fracturing fluid[C]. Cairo, Egypt. SPE, 2012: SPE-152040-MS. |
22 | YOUNG N W G, WILLIAMS P A, MEADOWS J, et al. A promising hydrophobicaly-modified guar for completion applications[C]. USA. SPE, 1998: SPE-39700-MS. |
23 | WANG Chen, LI Xiaorui, DU Biao, et al. Associating and rheological behaviors of fluorinated cationic guar gum in aqueous solutions[J]. Carbohydrate Polymers, 2013, 95(2): 637-643. |
24 | 罗炎生, 方波, 卢拥军, 等. 耐高温压裂液研究进展[J]. 油田化学, 2018, 35(3): 545-549. |
LUO Yansheng, FANG Bo, LU Yongjun, et al. Research progress of high temperature fracturing fluid[J]. Oilfield Chemistry, 2018, 35(3): 545-549. | |
25 | 王超, 崔明月, 张旭, 等. 缓速交联超高温合成聚合物压裂液稠化剂研究[J]. 钻井液与完井液, 2022, 39(3): 390-396. |
WANG Chao, CUI Mingyue, ZHANG Xu, et al. Study on fracturing fluid formulated with ultra-high temperature retarded crosslinking polymers[J]. Drilling Fluid & Completion Fluid, 2022, 39(3): 390-396. | |
26 | 王均, 何兴贵, 周小平, 等. 粘弹性表面活性剂压裂液新技术进展[J]. 西南石油大学学报(自然科学版), 2009, 31(2): 125-129, 189. |
WANG Jun, HE Xinggui, ZHOU Xiaoping, et al. The progress of new technologies for viscoelastic surfactant fracturing liquids[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2009, 31(2): 125-129, 189. | |
27 | GAO Mingwei, LIU Peng, XUE Qiang, et al. Non-ionic polar small molecules induced transition from elastic hydrogel via viscoelastic wormlike micelles to spherical micelles in zwitterionic surfactant systems[J]. Journal of Molecular Liquids, 2022, 359: 119343. |
28 | CHU Zonglin, FENG Yujun. Thermo-switchable surfactant gel[J]. Chemical Communications, 2011, 47(25): 7191-7193. |
29 | 林龙生, 王文文, 宋茂林, 等. 具有高温流变学稳定的VES压裂液性能的分析研究[J]. 当代化工, 2021, 50(6): 1333-1336, 1341. |
LIN Longsheng, WANG Wenwen, SONG Maolin, et al. Performance analysis of VES fracturing fluid with high temperature rheological stability[J]. Contemporary Chemical Industry, 2021, 50(6): 1333-1336, 1341. | |
30 | ZHAO Jinzhou, FAN Jinming, MAO Jincheng, et al. High performance clean fracturing fluid using a new tri-cationic surfactant[J]. Polymers, 2018, 10(5): 535. |
31 | LIU Peng, DAI Caili, GAO Mingwei, et al. Development of the gemini gel-forming surfactant with ultra-high temperature resistance to 200℃[J]. Gels, 2022, 8(10): 600. |
32 | Meng CUN, MAO Jincheng, SUN Hailin, et al. Development of a novel temperature-resistant and salt-resistant double-cationic surfactant with “super thick hydration layer” for clean fracturing fluid[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617:126306. |
33 | BARUAH Atrayee, SHEKHAWAT Dushyant S, PATHAK Akhilendra K, et al. Experimental investigation of rheological properties in zwitterionic-anionic mixed-surfactant based fracturing fluids[J]. Journal of Petroleum Science and Engineering, 2016, 146: 340-349. |
34 | 乐雷, 秦文龙, 杨江. 一种耐高温低伤害纳米复合清洁压裂液性能评价[J]. 石油与天然气化工, 2016, 45(6): 65-69. |
YUE Lei, QIN Wenlong, YANG Jiang. Performance evaluation of a high temperature-resistant & low damage nano-VES fluids[J]. Chemical Engineering of Oil & Gas, 2016, 45(6): 65-69. | |
35 | 牛华, 娄平均, 丁徽, 等. 新型吉米奇(Gemini)季铵盐(NGA)的研制及其在VES清洁压裂液中的应用[J]. 石油化工应用, 2010, 29(7): 13-16. |
NIU Hua, LOU Pingjun, DING Hui, et al. Preparation of a new Gemini quaternary ammonium salt(NGA) and the application in VES clean fracturing fluid[J]. Petrochemical Industry Application, 2010, 29(7): 13-16. | |
36 | MA Xiping, ZHU Zhongxiang, DAI Leiyang, et al. Introducing hydroxyl into cationic surfactants as viscoelastic surfactant fracturing fluid with high temperature resistance[J]. Russian Journal of Applied Chemistry, 2016, 89(12): 2016-2026. |
37 | ZHOU Ming, YANG Xiaoling, GAO Zhendong, et al. Preparation and performance evaluation of nanoparticle modified clean fracturing fluid[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636: 128117. |
38 | QIN Wenlong, YUE Lei, LIANG Guoqi, et al. Effect of multi-walled carbon nanotubes on linear viscoelastic behavior and microstructure of zwitterionic wormlike micelle at high temperature[J]. Chemical Engineering Research and Design, 2017, 123: 14-22. |
39 | NETTESHEIM Florian, LIBERATORE Matthew W, HODGDON Travis K, et al. Influence of nanoparticle addition on the properties of wormlike micellar solutions[J]. Langmuir, 2008, 24(15): 7718-7726. |
40 | WEAVER J, SCHMELZL E, JAMIESON M, et al. New fluid technology allows fracturing without internal breakers[C] Alberta, Canada. SPE, 2002: SPE-75690-MS. |
41 | 赵辉, 戴彩丽, 梁利, 等. 煤层气井用非离子聚丙烯酰胺锆冻胶压裂液优选[J]. 石油钻探技术, 2012, 40(1): 64-68. |
ZHAO Hui, DAI Caili, LIANG Li, et al. Research on nonionic polyacrylamide zirconium gel fracturing fluids in coalbed methane gas wells[J]. Petroleum Drilling Techniques, 2012, 40(1): 64-68. | |
42 | 杜涛, 姚奕明, 蒋廷学, 等. 合成聚合物压裂液最新研究及应用进展[J]. 精细石油化工进展, 2016, 17(1): 1-5. |
DU Tao, YAO Yiming, JIANG Tingxue, et al. Recent progress of research on synthetic polymer fracturing fluids and their application[J]. Advances in Fine Petrochemicals, 2016, 17(1): 1-5. | |
43 | 任奕, 易飞, 刘观军, 等. AM/AMPS/DMAM三元共聚物的制备及其性能[J]. 油田化学, 2019, 36(2): 314-319. |
REN Yi, YI Fei, LIU Guanjun, et al. Preparation and properties of the temperature resistant and salt tolerant AM/AMPS/DMAM copolymer[J]. Oilfield Chemistry, 2019, 36(2): 314-319. | |
44 | 张浩, 张玉广, 王贤君, 等. 深层致密气藏超高温压裂液复合稠化剂[J]. 大庆石油学院学报, 2012, 36(1): 59-63, 3. |
ZHANG Hao, ZHANG Yuguang, WANG Xianjun, et al. Composite gelatinizer of super-high temperature fracturing fluid for deep buried and dense gas reservoir[J]. Journal of Daqing Petroleum Institute, 2012, 36(1): 59-63, 3. | |
45 | 郑焰, 罗于建, 白小丹. 抗温抗盐聚合物清洁压裂液增稠剂及其制备方法: CN102352232A[P]. 2012-02-15. |
ZHENG Yan, LUO Yujian, BAI Xiaodan. Temperature-resistant and salt-resistant polymer clean fracturing fluid thickening agent and preparation method thereof: CN102352232A[P]. 2012-02-15. | |
46 | 刘萍, 管保山, 徐敏杰, 等. 220℃超高温聚合物压裂液性能研究[J]. 石油化工应用, 2018, 37(8): 12-15. |
LIU Ping, GUAN Baoshan, XU Minjie, et al. Performance study of 220℃ ultrahigh-temperature polymer fracturing fluid[J]. Petrochemical Industry Application, 2018, 37(8): 12-15. | |
47 | 赵明伟, 戴彩丽, 程云龙, 等. 聚合物稠化剂及其制备方法以及冻胶压裂液: CN113980172B[P]. 2023-03-21. |
ZHAO Mingwei, DAI Caili, CHENG Yunlong, et al. Polymer thickening agent, preparation method thereof and gel fracturing fluid: CN113980172B[P]. 2023-03-21. | |
48 | HOLTSCLAW Jeremy, FUNKHOUSER Gary P. A crosslinkable synthetic-polymer system for high-temperature hydraulic-fracturing applications[C]. San Antonio, Texas, USA. SPE, 2009: SPE-125250-MS. |
49 | GUPTA D, CARMAN P. Fracturing fluid for extreme temperature conditions is just as easy as the rest[C]. The Woodlands, Texas, USA. SPE, 2011: SPE-140176-MS. |
50 | LEE W, MAKARYCHEV-MIKHAILOV S M, BUELVAS M J, et al. Fast hydrating fracturing fluid for ultrahigh temperature reservoirs[C]. Abu Dhabi, UAE. SPE, 2014: SPE-172018-MS. |
51 | 张正宝. 中石油压裂液技术现状与展望[J]. 当代化工研究, 2018(6): 159-160. |
ZHANG Zhengbao. Present situation and prospect of fracturing fluid technology in petro China[J]. Modern Chemical Research, 2018(6): 159-160. | |
52 | 刘付臣, 杨振周, 宋璐璐, 等. 国外超高温压裂液添加剂的研发进展与分析[J]. 化工管理, 2018(31): 107-109. |
LIU Fuchen, YANG Zhenzhou, SONG Lulu, et al. Development and analysis of additives for ultra-high temperature fracturing fluid abroad[J]. Chemical Engineering Management, 2018(31): 107-109. | |
53 | 何青, 姚昌宇, 袁胥, 等. 水基压裂液体系中交联剂的应用进展[J]. 油田化学, 2017, 34(1): 184-190. |
HE Qing, YAO Changyu, YUAN Xu, et al. Progress on cross-linker in hydro-fracturing fluid system[J]. Oilfield Chemistry, 2017, 34(1): 184-190. | |
54 | BRANNON H D, AULT M G. New, delayed borate-crosslinked fluid provides improved fracture conductivity in high-temperature applications[C]. Dallas, Texas, USA. SPE, 1991: SPE-22838-MS. |
55 | 陈馥, 杨洋, 卜涛, 等. 利用废弃粉煤灰制备压裂液用硼交联剂的研究[J]. 硅酸盐通报, 2017, 36(3): 1040-1045. |
CHEN Fu, YANG Yang, BU Tao, et al. Preparation of boron cross linking agent for fracturing fluid using waste fly ash[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(3): 1040-1045. | |
56 | 白海涛, 赵建平, 田培蓉, 等. 有机胺硼交联剂AB-1的合成及应用[J]. 精细化工, 2015, 32(10): 1157-1161. |
BAI Haitao, ZHAO Jianping, TIAN Peirong, et al. Synthesis and application of organic amine boron crosslinker AB-1[J]. Fine Chemicals, 2015, 32(10): 1157-1161. | |
57 | 李小凡, 刘贺, 江安, 等. 超高温有机硼交联剂的研究与应用[J]. 油田化学, 2012, 29(1): 80-82, 115. |
LI Xiaofan, LIU He, JIANG An, et al. Research and application of ultra-high temperature organic borate crosslinker[J]. Oilfield Chemistry, 2012, 29(1): 80-82, 115. | |
58 | 王健, 刘玮玮. 耐高温有机锆线性胶压裂液性能评价[J]. 大庆石油地质与开发, 2020, 39(4): 101-105. |
WANG Jian, LIU Weiwei. Evaluation of the performances of high-temperature-resistant organic zirconium linear-gel fracturing liquid[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(4): 101-105. | |
59 | ZHANG Yin, YU Rangang, YANG Wendong, et al. Initiation characteristics of tight sandstone reservoir under different fracturing fluid infiltrations[J]. IOP Conference Series: Earth and Environmental Science, 2021, 671(1): 012011. |
60 | 刘庆旺, 王继刚, 范振忠, 等. 有机锆交联剂及耐温220℃的羟丙基胍胶压裂液: CN104212437A[P]. 2014-12-17. |
LIU Qingwang, WANG Jigang, FAN Zhenzhong, et al. Organic zirconium crosslinking agent and hydroxypropyl guanidine gum fracturing fluid resisting temperature of 220 DEG C: CN104212437A[P]. 2014-12-17. | |
61 | 卢拥军, 翟文, 丁云宏, 等. 一种耐高温冻胶压裂液、制备方法及其应用: CN103484094A[P]. 2014-01-01. |
LU Yongjun, ZHAI Wen, DING Yunhong, et al. High-temperature-resistant gelled fracturing fluid, and preparation method and application thereof: CN103484094A[P]. 2014-01-01. | |
62 | 张国宝, 赵根锁, 曹健. 有机钛耐高温交联剂的合成及性能评价[J]. 河南科学, 1997, 15(4): 405-409. |
ZHANG Guobao, ZHAO Gensuo, CAO Jian. Shnthesis of high temperature titanate crosslinking agent[J]. Henan Science, 1997, 15(4): 405-409. | |
63 | 刘洪升, 王俊英, 王稳桃, 等. 高温延缓型有机硼交联剂OB-200合成研究[J]. 油田化学, 2003, 20(2): 121-124. |
LIU Hongsheng, WANG Junying, WANG Wentao, et al. Synthesis of heat resistant delayed organic boron crosslinker OB-200 for aqueous gelling fracturing fluids[J]. Oilfield Chemistry, 2003, 20(2): 121-124. | |
64 | 王栋, 王俊英, 刘洪升, 等. 水基压裂液高温延缓型有机硼锆交联剂CZB-03的制备[J]. 油田化学, 2004, 21(2): 113-115, 119. |
WANG Dong, WANG Junying, LIU Hongsheng, et al. Preparation of high temperature organic borate-zirconate crosslinker CZB-03 of delayed action for aqueous hydrofracturing fluids[J]. Oilfield Chemistry, 2004, 21(2): 113-115, 119. | |
65 | 胡世平, 李建平, 韩俊华, 等. 有机硼锆交联剂的制备与延缓交联效果[J]. 油田化学, 2016, 33(1): 37-39, 62. |
HU Shiping, LI Jianping, HAN Junhua, et al. Preparation of organic boron-zirconium crosslinker and the effect of retarding crosslinking[J]. Oilfield Chemistry, 2016, 33(1): 37-39, 62. | |
66 | 吴志明. 硼钛复合交联剂的合成及交联瓜尔胶研究[J]. 化学研究与应用, 2020, 32(2): 282-286. |
WU Zhiming. Synthesis of boron-titanium composite crosslinking agent and study on crosslinking guar gum[J]. Chemical Research and Application, 2020, 32(2): 282-286. | |
67 | 张林, 沈一丁, 隋明炜, 等. 低浓度胍胶压裂液有机硼交联剂YJ-P的合成与应用[J]. 精细化工, 2013, 30(1): 104-107. |
ZHANG Lin, SHEN Yiding, SUI Mingwei, et al. Synthesis and application of organic boron crosslinker YJ-P for low-concentration guanidine gum fracturing fluids[J]. Fine Chemicals, 2013, 30(1): 104-107. | |
68 | 严芳芳. 有机锆交联聚合物和羟丙基瓜胶压裂液及流变动力学研究[D]. 上海: 华东理工大学, 2014. |
YAN Fangfang. Study on fracturing fluid and rheological kinetics of organozirconium crosslinked polymer and hydroxypropyl guar gum[D]. Shanghai: East China University of Science and Technology, 2014. | |
69 | 何建平, 宫大军, 邓明宇, 等. 一种有机钛交联剂及其制备方法和应用: CN108276982B[P]. 2020-12-11. |
HE Jianping, GONG Dajun, DENG Mingyu, et al. Organic titanium cross-linking agent as well as preparation method and application thereof: CN108276982B[P]. 2020-12-11. | |
70 | 陈静, 马政生, 田义, 等. 延长油田压裂液用有机硼交联剂的研究[J]. 油田化学, 2012, 29(3): 267-270. |
CHEN Jing, MA Zhengsheng, TIAN Yi, et al. Study of organic boron crosslinker for water base hydro-fracturing gelling fluid in Yanchang oilfield[J]. Oilfield Chemistry, 2012, 29(3): 267-270. | |
71 | 彭继, 张成娟, 周平, 等. 青海油田低浓度胍胶压裂液的性能研究与现场应用[J]. 天然气勘探与开发, 2014, 37(1): 79-82, 101. |
PENG Ji, ZHANG Chengjuan, ZHOU Ping, et al. Performance of low-concentration guar gum fracturing fluid and its application to Qinghai oilfield[J]. Natural Gas Exploration & Development, 2014, 37(1): 79-82, 101. | |
72 | 王丽伟, 程兴生, 卢拥军, 等. 适合聚合物交联的超高温有机锆交联剂及其制得的压裂液: CN102838781A[P]. 2012-12-26. |
WANG Liwei, CHENG Xingsheng, LU Yongjun, et al. Ultra-temperature organic zirconium crosslinker suitable for polymer crosslinking and prepared fracturing solutions of ultra-temperature organic zirconium crosslinker: CN102838781A[P]. 2012-12-26. | |
73 | 王彦玲, 张传保, 戎旭峰, 等. 压裂用纳米交联剂的研究进展[J]. 科学技术与工程, 2020, 20(3): 874-882. |
WANG Yanling, ZHANG Chuanbao, RONG Xufeng, et al. The progress in research of nano-crosslinking agent for fracturing[J]. Science Technology and Engineering, 2020, 20(3): 874-882. | |
74 | LIANG Feng, AL-MUNTASHERI Ghaithan A, LI Leiming. Maximizing performance of residue-free fracturing fluids using nanomaterials at high temperatures[C]. Anchorage, Alaska, USA. SPE, 2016: SPE-180402-MS. |
75 | CANNIZZO Caroline, Sonia AMIGONI-GERBIER, LARPENT Chantal. Boronic acid-functionalized nanoparticles: Synthesis by microemulsion polymerization and application as a re-usable optical nanosensor for carbohydrates[J]. Polymer, 2005, 46(4): 1269-1276. |
76 | HURNAUS Thomas, PLANK Johann. Crosslinking of guar and HPG based fracturing fluids using ZrO2 nanoparticles[C]. The Woodlands, Texas, USA. SPE, 2015: SPE-173778-MS. |
77 | 贾文峰, 陈作, 姚奕明, 等. 纳米二氧化硅交联剂的合成及其交联形成羟丙基胍胶压裂液的性能研究[J]. 精细石油化工, 2015, 32(5): 15-18. |
JIA Wenfeng, CHEN Zuo, YAO Yiming, et al. Fabrication of nanosilica crosslinker and formation of crosslinked hydroxypropyl guar-based fracturing fluids[J]. Speciality Petrochemicals, 2015, 32(5): 15-18. | |
78 | LIU Jiawen, WANG Shibin, WANG Chuan, et al. Influence of nanomaterial morphology of guar-gum fracturing fluid, physical and mechanical properties[J]. Carbohydrate Polymers, 2020, 234: 115915. |
79 | 车航, 崔会杰, 邱兵, 等. 压裂液延迟交联与快速破胶技术[J]. 钻井液与完井液, 2003, 20(4): 24-26. |
CHE Hang, GUI Huijie, QIU Bing, et al. Delayed crosslink and rapid break techniques of fracturing fluid[J]. Driuing Fluid and Completion Fluld, 2003, 20(4): 24-26. | |
80 | 王佳, 怡宝安, 杨文, 等. 压裂液用硼交联剂作用机理分析[J]. 精细石油化工进展, 2009, 10(8): 23-26. |
WANG Jia, YI Baoan, YANG Wen, et al. Analysis on action mechanism of boron crosslinker for fracturing fluid[J]. Advances in Fine Petrochemicals, 2009, 10(8): 23-26. | |
81 | 秦义, 石峥, 刘玉莉, 等. PAM/PEI凝胶成胶时间影响因素分析[J]. 现代化工, 2017, 37(9): 95-98. |
QIN Yi, SHI Zheng, LIU Yuli, et al. Analysis on influence factors on gelation time of PAM/PEI gel system[J]. Modern Chemical Industry, 2017, 37(9): 95-98. | |
82 | EL-KARSANI Khalid S M, AL-MUNTASHERI Ghaithan A, SULTAN Abdullah S, et al. Gelation kinetics of PAM/PEI system[J]. Journal of Thermal Analysis and Calorimetry, 2014, 116(3): 1409-1415. |
83 | 贾艳平, 王业飞, 何龙, 等. 堵剂聚乙烯亚胺冻胶成冻影响因素研究[J]. 油田化学, 2007, 24(4): 316-319. |
JIA Yanping, WANG Yefei, HE Long, et al. Influencing factors for polyacrylamide/polyethyleneimine gelling fluid as water shutoff/profile modification agent[J]. Oilfield Chemistry, 2007, 24(4): 316-319. | |
84 | 王鉴, 赵福麟. 高价金属离子与聚丙烯酰胺的交联机理[J]. 石油大学学报(自然科学版), 1992, 16(3): 32-39. |
WANG Jian, ZHAO Fulin. Crosslinking mechanism of multivalent metal ions with polyacrylamide[J]. Journal of the University of Petroleum, China, 1992, 16(3): 32-39. | |
85 | 叶荣俊, 田润丰, 谢泽龙, 等. 金属交联压裂液交联机理研究[J]. 内江科技, 2022, 43(1): 86-87. |
YE Rongjun, TIAN Runfeng, XIE Zelong, et al. Study on crosslinking mechanism of metal crosslinking fracturing fluid[J]. Nei Jiang Science & Technology, 2022, 43(1): 86-87. | |
86 | TILLET Guillaume, BOUTEVIN Bernard, AMEDURI Bruno. Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature[J]. Progress in Polymer Science, 2011, 36(2): 191-217. |
[1] | 周亚峰, 杨江, 马诚, 刘海玲. 压裂用耐温乳液稠化剂的制备及性能[J]. 化工进展, 2023, 42(5): 2647-2654. |
[2] | 陈明星, 王新亚, 张威, 肖长发. 纤维基耐高温空气过滤材料研究进展[J]. 化工进展, 2023, 42(5): 2439-2453. |
[3] | 宗悦, 张瑞君, 高珊珊, 田家宇. “特殊稳定型”压力驱动薄膜复合(TFC)脱盐膜的研究进展[J]. 化工进展, 2023, 42(4): 2058-2067. |
[4] | 张艺夕, 张丰润泽, 桑宇彤, 郑憬希, 刘学敏, 张华, 张鹏. 适合北方冬季施工的清洁压裂液应用现状及思考[J]. 化工进展, 2022, 41(9): 5003-5010. |
[5] | 张传保, 王彦玲, 陈孟鑫, 梁诗南, 史文静. 耐高温胍胶压裂液及其对储层的伤害机理研究进展[J]. 化工进展, 2022, 41(11): 5912-5924. |
[6] | 潘一,廖松泽,杨双春,马迪,丛禾. 耐高温聚胺类页岩抑制剂的研究现状[J]. 化工进展, 2020, 39(2): 686-695. |
[7] | 鲁道欢, 王斌, 黄月文. 耐高温丙烯酸酯类压敏胶的研究进展[J]. 化工进展, 2019, 38(05): 2269-2275. |
[8] | 潘一, 夏晨, 杨双春, 马欣. 耐高温水基压裂液研究进展[J]. 化工进展, 2019, 38(04): 1913-1920. |
[9] | 郭辉, 庄玉伟, 褚艳红, 曹健, 赵根锁, 张国宝. 双子表面活性剂类清洁压裂液的研究进展[J]. 化工进展, 2018, 37(08): 3155-3163. |
[10] | 黄福芝, 周倩. 诱导聚结法过硫酸铵缓释微胶囊的制备[J]. 化工进展, 2018, 37(08): 3076-3085. |
[11] | 潘一, 王瞳煜, 杨双春, 王世栋, ABDUL QAYUM Zain Ullah, 刘子杰. 黏弹性表面活性剂压裂液的研究与应用进展[J]. 化工进展, 2018, 37(04): 1566-1574. |
[12] | 王瞳煜, 杨双春, 潘一, ONGARBAYEV Asset, 张海燕. 阳离子表面活性剂清洁压裂液耐温性研究进展[J]. 化工进展, 2017, 36(12): 4607-4612. |
[13] | 张锋三, 沈一丁, 吴金桥, 原敏, 孙晓. 水包水型疏水缔合聚丙烯酰胺增稠剂的合成及在压裂中的应用[J]. 化工进展, 2017, 36(08): 3058-3065. |
[14] | 杨兆中, 朱静怡, 李小刚, 费阳, 徐彬予. 纳米颗粒稳定泡沫在油气开采中的研究进展[J]. 化工进展, 2017, 36(05): 1675-1681. |
[15] | 张锋三, 沈一丁, 王磊, 马国艳, 苏莹, 任婷. 聚丙烯酰胺压裂液减阻剂的合成及性能[J]. 化工进展, 2016, 35(11): 3640-3644. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |