化工进展 ›› 2025, Vol. 44 ›› Issue (10): 5828-5837.DOI: 10.16085/j.issn.1000-6613.2024-1386
• 材料科学与技术 • 上一篇
收稿日期:2024-08-23
修回日期:2024-10-31
出版日期:2025-10-25
发布日期:2025-11-10
通讯作者:
吴艳杰
作者简介:文钰颖(1999—),女,硕士研究生,研究方向为纳米纤维空气过滤材料。E-mail:wenyuying01@163.com。
基金资助:
WEN Yuying(
), CHEN Ziyi, CHEN Mingxing, ZHANG Wei, WU Yanjie(
)
Received:2024-08-23
Revised:2024-10-31
Online:2025-10-25
Published:2025-11-10
Contact:
WU Yanjie
摘要:
空气污染会对人体健康和生态环境产生不利影响,目前,空气过滤材料被广泛用于缓解空气污染问题,然而,传统空气过滤材料难以兼顾高过滤效率和低过滤阻力之间的竞争关系。为此本文以聚间苯二甲酰间苯二胺(PMIA)和聚偏氟乙烯-六氟丙烯(PVDF-HFP)为原料,基于静电纺丝技术制备了PMIA/PVDF-HFP纳米纤维空气过滤材料。通过改变纺丝液中PMIA和PVDF-HFP的配比,探究了其对纳米纤维膜形貌、孔结构和过滤性能的影响。通过高温热处理可以调控膜孔结构,并提高复合纳米纤维膜对空气中微小颗粒物的拦截能力。结果表明,当纺丝液中PMIA和PVDF-HFP的质量比为8∶1时,所制备的不同纤维直径的PMIA/PVDF-HFP复合纳米纤维空气过滤材料性能较为优异,其平均孔径为1.51μm,透气率为148.96mm/s,断裂强力为13.57MPa,对PM1.0的空气过滤效率和压降分别是99.51%和45.3Pa。同时,本文所制备的PMIA/PVDF-HFP纳米纤维空气过滤材料经高温处理一定时间后,其空气过滤性能依然保持稳定。在空气过滤领域,尤其是高温空气过滤领域,具有极大应用潜力。
中图分类号:
文钰颖, 陈子依, 陈明星, 张威, 吴艳杰. 高效低阻PMIA/PVDF-HFP纳米纤维膜制备及其细微颗粒去除性能[J]. 化工进展, 2025, 44(10): 5828-5837.
WEN Yuying, CHEN Ziyi, CHEN Mingxing, ZHANG Wei, WU Yanjie. Preparation of PMIA/PVDF-HFP nanofiber membrane with high efficiency and low pressure drop for particulate matter removal[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5828-5837.
| 工艺参数 | 设定值 |
|---|---|
| 纺丝电压 | 15kV |
| 接收距离 | 11cm |
| 供料速度 | 0.15mL/h |
| 接收辊速度 | 300r/min |
| 温度 | 常温 |
| 湿度 | 70%~80% |
| 纺丝时间 | 1h |
表1 静电纺丝工艺参数
| 工艺参数 | 设定值 |
|---|---|
| 纺丝电压 | 15kV |
| 接收距离 | 11cm |
| 供料速度 | 0.15mL/h |
| 接收辊速度 | 300r/min |
| 温度 | 常温 |
| 湿度 | 70%~80% |
| 纺丝时间 | 1h |
| 空气过滤材料 | 过滤颗粒物大小 | 过滤效率/% | 压降/Pa | 参考文献 |
|---|---|---|---|---|
| PMIA/PVDF-HFP | PM1.0 | 99.51 | 45.3 | 本文 |
| AgNPs/PAN | PM2.5 | 99.1 | 83 | [ |
| PBI | PM2.5 | 98.5 | 130 | [ |
| PMIA/TiO2 | PM2.5 | 99.3 | 61 | [ |
| PA-6S | PM2.5 | 99.4 | 85.5 | [ |
| PVDF/GO/PI | PM2.5 | 99.6 | 123 | [ |
| PVC | PM2.5 | 94.35 | 119.12 | [ |
表2 不同纳米纤维膜的空气过滤性能
| 空气过滤材料 | 过滤颗粒物大小 | 过滤效率/% | 压降/Pa | 参考文献 |
|---|---|---|---|---|
| PMIA/PVDF-HFP | PM1.0 | 99.51 | 45.3 | 本文 |
| AgNPs/PAN | PM2.5 | 99.1 | 83 | [ |
| PBI | PM2.5 | 98.5 | 130 | [ |
| PMIA/TiO2 | PM2.5 | 99.3 | 61 | [ |
| PA-6S | PM2.5 | 99.4 | 85.5 | [ |
| PVDF/GO/PI | PM2.5 | 99.6 | 123 | [ |
| PVC | PM2.5 | 94.35 | 119.12 | [ |
| [1] | ADAMKIEWICZ Gary, LIDDIE Jahred, GAFFIN Jonathan M. The respiratory risks of ambient/outdoor air pollution[J]. Clinics in Chest Medicine, 2020, 41(4): 809-824. |
| [2] | SCHRAUFNAGEL Dean E, BALMES John R, COWL Clayton T, et al. Air pollution and noncommunicable diseases: A review by the forum of international respiratory societies' environmental committee, part 2: Air pollution and organ systems[J]. Chest, 2019, 155(2): 417-426. |
| [3] | SCHRAUFNAGEL Dean E, BALMES John R, COWL Clayton T, et al. Air pollution and noncommunicable diseases A review by the forum of international respiratory societies’ environmental committee, part 1: The damaging effects of air pollution[J]. Chest, 2019, 155(2): 409-416. |
| [4] | FENG Shaolong, GAO Dan, LIAO Fen, et al. The health effects of ambient PM2.5 and potential mechanisms[J]. Ecotoxicology and Environmental Safety, 2016, 128: 67-74. |
| [5] | LI Qiao, KANG Zhihua, JIANG Shuo, et al. Effects of ambient fine particles PM2.5 on human HaCaT cells[J]. International Journal of Environmental Research and Public Health, 2017, 14(1): 72. |
| [6] | LIU Hui, ZHU Yanting, ZHANG Chenwei, et al. Electrospun nanofiber as building blocks for high-performance air filter: A review[J]. Nano Today, 2024, 55: 102161. |
| [7] | Fabian MÜLLER, ZAINUDDIN Shakir, SCHEIBEL Thomas. Roll-to-roll production of spider silk nanofiber nonwoven meshes using centrifugal electrospinning for filtration applications[J]. Molecules, 2020, 25(23): 5540. |
| [8] | LIU Yibo, JIA Chao, LI Pan, et al. Mass production of hierarchically designed engine-intake air filters by multinozzle electroblow spinning[J]. Nano Letters, 2022, 22(11): 4354-4361. |
| [9] | TIAN Xu, ZHANG Fuli, XIN Binjie, et al. Electrospun meta-aramid/polysulfone-amide nanocomposite membranes for the filtration of industrial PM2.5 particles[J]. Nanotechnology, 2020, 31(5): 055702. |
| [10] | DENG Yankang, LU Tao, ZHANG Xiaoli, et al. Multi-hierarchical nanofiber membrane with typical curved-ribbon structure fabricated by green electrospinning for efficient, breathable and sustainable air filtration[J]. Journal of Membrane Science, 2022, 660: 120857. |
| [11] | Tan Tan BUI, SHIN Min Kyoung, Seung Yong JEE, et al. Ferroelectric PVDF nanofiber membrane for high-efficiency PM0.3 air filtration with low air flow resistance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640: 128418. |
| [12] | SHAO Zungui, JIANG Jiaxin, WANG Xiang, et al. Self-powered electrospun composite nanofiber membrane for highly efficient air filtration[J]. Nanomaterials, 2020, 10(9): 1706-1715. |
| [13] | YANG Xue, PU Yi, ZHANG Yifei, et al. Multifunctional composite membrane based on BaTiO3@PU/PSA nanofibers for high-efficiency PM2.5 removal[J]. Journal of Hazardous Materials, 2020, 391: 122254. |
| [14] | SHAO Weili, NIU Jingyi, HAN Ruikai, et al. Electrospun multiscale poly(lactic acid) nanofiber membranes with a synergistic antibacterial effect for air-filtration applications[J]. ACS Applied Polymer Materials, 2023, 5(11): 9632-9641. |
| [15] | ZHANG Rufan, LIU Chong, HSU Po-Chun, et al. Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources[J]. Nano Letters, 2016, 16(6): 3642-3649. |
| [16] | ZHU Miaomiao, HAN Jingquan, WANG Fang, et al. Electrospun nanofibers membranes for effective air filtration[J]. Macromolecular Materials and Engineering, 2017, 302(1): 1600353-1600380. |
| [17] | REN Xiaojing, SHI Li, HE Peiran, et al. Effects of carboxylated MWCNTs additives on the structure and performance of PMIA membrane: Size, content and PPCPs removal specificity[J]. Applied Surface Science, 2023, 629: 157454. |
| [18] | CHEN Mingxing, XIAO Changfa, WANG Chun, et al. Preparation and characterization of a novel thermally stable thin film composite nanofiltration membrane with poly(m-phenyleneisophthalamide) (PMIA) substrate[J]. Journal of Membrane Science, 2018, 550: 36-44. |
| [19] | YU Jia, TIAN Xu, XIN Binjie, et al. Preparation and characterization of PMIA nanofiber filter membrane for air filter[J]. Fibers and Polymers, 2021, 22(9): 2413-2423. |
| [20] | 陈明星, 王新亚, 张威, 等. 纤维基耐高温空气过滤材料研究进展[J]. 化工进展, 2023, 42(5): 2439-2453. |
| CHEN Mingxing, WANG Xinya, ZHANG Wei, et al. Development of thermally stable fiber-based air filter materials[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2439-2453. | |
| [21] | Dan LYU, ZHU Miaomiao, JIANG Zhicheng, et al. Green electrospun nanofibers and their application in air filtration[J]. Macromolecular Materials and Engineering, 2018, 303(12): 1800336. |
| [22] | CHEN Jian, CHENG Zhiqiang, YUAN Yafeng, et al. Shape-controllable nanofibrous membranes with well-aligned fibers and robust mechanical properties for PM2.5 capture[J]. RSC Advances, 2019, 9(30): 17473-17478. |
| [23] | SONG Qingquan, FENG Yuan, WU Wenwen, et al. Blending modification of PMIA with poly(vinyl pyrrolidone): Towards high-performance material with enhanced mechanical property[J]. The Journal of the Textile Institute, 2021, 112(12): 2004-2012. |
| [24] | LIU Yanan, PARK Mira, DING Bin, et al. Facile electrospun polyacrylonitrile/poly(acrylic acid) nanofibrous membranes for high efficiency particulate air filtration[J]. Fibers and Polymers, 2015, 16(3): 629-633. |
| [25] | ZHANG Hongnan, XIE Yongxin, SONG Yan, et al. Preparation of high-temperature resistant poly(m-phenylene isophthalamide)/polyacrylonitrile composite nanofibers membrane for air filtration[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624: 126831-126840. |
| [26] | ZHAO Huijuan, KANG Weimin, DENG Nanping, et al. A fresh hierarchical-structure gel poly-m-phenyleneisophthalamide nanofiber separator assisted by electronegative nanoclay-filler towards high-performance and advanced-safety lithium-ion battery[J]. Chemical Engineering Journal, 2020, 384: 123312-123356. |
| [27] | LI Huilan, FENG Tingting, LIANG Yufeng, et al. Construction of PMIA@PAN/PVDF-HFP/TiO2 coaxial fibrous separator with enhanced mechanical strength and electrolyte affinity for lithium-ion batteries[J]. Chinese Chemical Letters, 2023, 34(12): 108350. |
| [28] | ZHAO Huijuan, DENG Nanping, WANG Gang, et al. A core@sheath nanofiber separator with combined hardness and softness for lithium-metal batteries[J]. Chemical Engineering Journal, 2021, 404: 126542. |
| [29] | WANG Liyuan, DENG Nanping, JU Jingge, et al. A novel core-shell structured poly-m-phenyleneisophthalamide @polyvinylidene fluoride nanofiber membrane for lithium ion batteries with high-safety and stable electrochemical performance[J]. Electrochimica Acta, 2019, 300: 263-273. |
| [30] | 李欣, 贾清秀, 裴广玲. PVDF-HFP和PMIA对静电纺锂电隔膜性能的影响[J]. 化工新型材料, 2022, 50(6): 161-167. |
| LI Xin, JIA Qingxiu, PEI Guangling. Influence of PVDF-HFP and PMIA on the performance of electrospinning separator of Li-ion battery[J]. New Chemical Materials, 2022, 50(6): 161-167. | |
| [31] | CHEN Yue, QIU Linlin, MA Xiangyu, et al. Electrospun PMIA and PVDF-HFP composite nanofibrous membranes with two different structures for improved lithium-ion battery separators[J]. Solid State Ionics, 2020, 347: 115253. |
| [32] | 马文龙, 郭状, 张威, 等. PP/PMIA@PVDF-HFP纳米纤维复合滤材的制备及性能[J]. 高等学校化学学报, 2023, 44(12): 87-95. |
| MA Wenlong, GUO Zhuang, ZHANG Wei, et al. Preparation and performance of PP/PMIA@PVDF-HFP composite air filter material[J]. Chemical Journal of Chinese Universities, 2023, 44(12): 87-95. | |
| [33] | ZHONG Longgang, WANG Tao, LIU Liyuan, et al. Ultra-fine SiO2 nanofilament-based PMIA: A double network membrane for efficient filtration of PM particles[J]. Separation and Purification Technology, 2018, 202: 357-364. |
| [34] | LU Tao, CUI Jiaxin, QU Qingli, et al. Multistructured electrospun nanofibers for air filtration: A review[J]. ACS Applied Materials & Interfaces, 2021, 13(20): 23293-23313. |
| [35] | WANG Guangyao, XU Zhitong, QI Ye, et al. Electrospun nanofibrous membranes with antimicrobial activity for air filtration[J]. Chinese Chemical Letters, 2024, 35(10): 109503. |
| [36] | YANG Wenxiu, LI Lin, WANG Shuo, et al. Preparation of multifunctional AgNPs/PAN nanofiber membrane for air filtration by one-step process[J]. Pigment & Resin Technology, 2020, 49(5): 355-361. |
| [37] | LEE Sol, CHO A Ra, PARK Daehoon, et al. Reusable polybenzimidazole nanofiber membrane filter for highly breathable PM2.5 dust proof mask[J]. ACS Applied Materials & Interfaces, 2019, 11(3): 2750-2757. |
| [38] | WEN Yuying, HU Qian, WANG Xinya, et al. Electrospun poly(m-phenyleneisophthalamide)/TiO2 nanofiber membranes for particulate matter removal under high-temperature conditions[J]. ACS Applied Polymer Materials, 2024, 6(3): 1633-1644. |
| [39] | YAN Shaole, YU Yuxi, MA Rui, et al. The formation of ultrafine polyamide 6 nanofiber membranes with needleless electrospinning for air filtration[J]. Polymers for Advanced Technologies, 2019, 30(7): 1635-1643. |
| [40] | CHEN Hangdong, SUN Xun, WANG Ying, et al. Polyvinylidene fluoride/graphene oxide/polyimide composite high-efficiency PM2.5 filtration nanofiber membranes[J]. RSC Advances, 2024, 14(24): 16828-16834. |
| [41] | AMALIA Ratih, NOVIYANTO Alfian, RAHMA Lara Ardhia, et al. PVC waste-derived nanofiber: Simple fabrication with high potential performance for PM removal in air filtration[J]. Sustainable Materials and Technologies, 2024, 40: e00928. |
| [1] | 孙明楷, 陈文静, 李明聪, 陈影, 蒋树军, 鹿贵滨, 周蓉. 高温复合滤料的纤维分析检测研究进展[J]. 化工进展, 2025, 44(4): 2133-2140. |
| [2] | 徐忠正, 赵明伟, 刘佳伟, 戴彩丽. 超深层耐高温压裂液研究进展与展望[J]. 化工进展, 2024, 43(9): 4845-4858. |
| [3] | 陈明星, 王新亚, 张威, 肖长发. 纤维基耐高温空气过滤材料研究进展[J]. 化工进展, 2023, 42(5): 2439-2453. |
| [4] | 宗悦, 张瑞君, 高珊珊, 田家宇. “特殊稳定型”压力驱动薄膜复合(TFC)脱盐膜的研究进展[J]. 化工进展, 2023, 42(4): 2058-2067. |
| [5] | 刘朝军, 刘俊杰, 丁伊可, 张建青. 高效空气过滤用PTFE膜材料的结构和性能[J]. 化工进展, 2022, 41(8): 4367-4374. |
| [6] | 张传保, 王彦玲, 陈孟鑫, 梁诗南, 史文静. 耐高温胍胶压裂液及其对储层的伤害机理研究进展[J]. 化工进展, 2022, 41(11): 5912-5924. |
| [7] | 潘一,廖松泽,杨双春,马迪,丛禾. 耐高温聚胺类页岩抑制剂的研究现状[J]. 化工进展, 2020, 39(2): 686-695. |
| [8] | 鲁道欢, 王斌, 黄月文. 耐高温丙烯酸酯类压敏胶的研究进展[J]. 化工进展, 2019, 38(05): 2269-2275. |
| [9] | 潘一, 夏晨, 杨双春, 马欣. 耐高温水基压裂液研究进展[J]. 化工进展, 2019, 38(04): 1913-1920. |
| [10] | 张春芳,张倩,白云翔,顾瑾,孙余凭. 热致相分离法制备聚(偏氟乙烯-六氟丙烯)/离子液体凝胶膜及 气体渗透性能[J]. 化工进展, 2014, 33(08): 2117-2122. |
| [11] | 彭小琴1,陈 亮2,陈炳耀3,凌 辉2,李 军2. 耐高温厌氧胶的研制及其贮存稳定性研究[J]. 化工进展, 2012, 31(09): 2058-2063. |
| [12] | 陈循军,崔英德,尹国强,胡文斌. 聚亚苯基硅氧烷交联网络的热性能 [J]. 化工进展, 2008, 27(8): 1246-. |
| [13] | 吴超波,李 伟,高大海,贾梦秋. 聚亚芳基有机硅氧烷的研究进展 [J]. 化工进展, 2008, 27(8): 1175-. |
| [14] | 陈循军,崔英德,尹国强,贾振宇. 聚(四甲基对硅亚苯基-二甲基)硅氧烷共聚物的制备及其热性质 [J]. 化工进展, 2007, 26(9): 1333-. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |