1 |
ZHANG Qian, WANG Shuaihao, WANG Xueyang, et al. Recent progress in daytime radiative cooling: Advanced material designs and applications[J]. Small Methods, 2022, 6(4): e2101379.
|
2 |
ZHAO Bin, HU Mingke, AO Xianze, et al. Radiative cooling: A review of fundamentals, materials, applications, and prospects[J]. Applied Energy, 2019, 236: 489-513.
|
3 |
GENTLE Angus R, SMITH Geoff B. A subambient open roof surface under the mid-summer Sun[J]. Advanced Science, 2015, 2(9): 1500119.
|
4 |
ZHU Linxiao, RAMAN Aaswath P, FAN Shanhui. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(40): 12282-12287.
|
5 |
RAMAN Aaswath P, ABOU ANOMA Marc, ZHU Linxiao, et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 2014, 515(7528): 540-544.
|
6 |
CHEN Meijie, PANG Dan, MANDAL Jyotirmoy, et al. Designing mesoporous photonic structures for high-performance passive daytime radiative cooling[J]. Nano Letters, 2021, 21(3): 1412-1418.
|
7 |
ZHAI Yao, MA Yaoguang, DAVID Sabrina N, et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling[J]. Science, 2017, 355(6329): 1062-1066.
|
8 |
Soomin SON, JEON Sanghyun, CHAE Dongwoo, et al. Colored emitters with silica-embedded perovskite nanocrystals for efficient daytime radiative cooling[J]. Nano Energy, 2021, 79: 105461.
|
9 |
HSU Po-Chun, SONG Alex Y, CATRYSSE Peter B, et al. Radiative human body cooling by nanoporous polyethylene textile[J]. Science, 2016, 353(6303): 1019-1023.
|
10 |
WANG Tong, WU Yi, SHI Lan, et al. A structural polymer for highly efficient all-day passive radiative cooling[J]. Nature Communications, 2021, 12(1): 365.
|
11 |
KIM Hannah, MCSHERRY Sean, BROWN Brendon, et al. Selectively enhancing solar scattering for direct radiative cooling through control of polymer nanofiber morphology[J]. ACS Applied Materials & Interfaces, 2020, 12(39): 43553-43559.
|
12 |
TANG Kechao, DONG Kaichen, LI Jiachen, et al. Temperature-adaptive radiative coating for all-season household thermal regulation[J]. Science, 2021, 374(6574): 1504-1509.
|
13 |
JIN Shenghao, XIAO Ming, ZHANG Wenbin, et al. Daytime sub-ambient radiative cooling with vivid structural colors mediated by coupled nanocavities[J]. ACS Applied Materials & Interfaces, 2022, 14(49): 54676-54687.
|
14 |
LEE Gil Ju, KIM Yeong Jae, KIM Hyun Myung, et al. Colored, daytime radiative coolers with thin-film resonators for aesthetic purposes[J]. Advanced Optical Materials, 2018, 6(22): 1800707.
|
15 |
ATIGANYANUN Sarun, PLUMLEY John B, HAN Seok Jun, et al. Effective radiative cooling by paint-format microsphere-based photonic random media[J]. ACS Photonics, 2018, 5(4): 1181-1187.
|
16 |
MARKEL Vadim A. Introduction to the Maxwell Garnett approximation: Tutorial[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2016, 33(7): 1244-1256.
|
17 |
LI Xiangyu, PEOPLES Joseph, YAO Peiyan, et al. Ultrawhite BaSO4 paints and films for remarkable daytime subambient radiative cooling[J]. ACS Applied Materials & Interfaces, 2021, 13(18): 21733-21739.
|
18 |
HUANG Jie, FAN Desong, LI Qiang. Structural rod-like particles for highly efficient radiative cooling[J]. Materials Today Energy, 2022, 25: 100955.
|
19 |
MANDAL Jyotirmoy, YANG Yuan, YU Nanfang, et al. Paints as a scalable and effective radiative cooling technology for buildings[J]. Joule, 2020, 4(7): 1350-1356.
|
20 |
XUE Xiao, QIU Meng, LI Yanwen, et al. Creating an eco-friendly building coating with smart subambient radiative cooling[J]. Advanced Materials, 2020, 32(42): 1906751.
|
21 |
JIANG Kaiyu, ZHANG Kai, SHI Zijie, et al. Experimental and numerical study on the potential of a new radiative cooling paint boosted by SiO2 microparticles for energy saving[J]. Energy, 2023, 283: 128473.
|
22 |
CHENG Ziming, HAN Han, WANG Fuqiang, et al. Efficient radiative cooling coating with biomimetic human skin wrinkle structure[J]. Nano Energy, 2021, 89: 106377.
|
23 |
TANG Huajie, LI Shuai, ZHANG Yunfei, et al. Radiative cooling performance and life-cycle assessment of a scalable MgO paint for building applications[J]. Journal of Cleaner Production, 2022, 380: 135035.
|
24 |
ZHU Rongkang, HU Dawei, CHEN Zhi, et al. Plasmon-enhanced infrared emission approaching the theoretical limit of radiative cooling ability[J]. Nano Letters, 2020, 20(10): 6974-6980.
|
25 |
ZHANG Yubo, TAN Xinyu, QI Guiguang, et al. Effective radiative cooling with ZrO2/PDMS reflective coating[J]. Solar Energy Materials and Solar Cells, 2021, 229: 111129.
|
26 |
HUANG Jie, LI Mingzhang, FAN Desong. Core-shell particles for devising high-performance full-day radiative cooling paint[J]. Applied Materials Today, 2021, 25: 101209.
|
27 |
KANG Hongjun, QIAO Yadong, LI Yang, et al. Keep cool: Polyhedral ZnO@ZIF-8 polymer coatings for daytime radiative cooling[J]. Industrial & Engineering Chemistry Research, 2020, 59(34): 15226-15232.
|
28 |
HU Dandan, SUN Shuai, DU Peiyao, et al. Hollow core-shell particle-containing coating for passive daytime radiative cooling[J]. Composites A: Applied Science and Manufacturing, 2022, 158: 106949.
|
29 |
GUAN Qingfang, YANG Huaibin, YIN Chonghan, et al. Nacre-inspired sustainable coatings with remarkable fire-retardant and energy-saving cooling performance[J]. ACS Materials Letters, 2021, 3(2): 243-248.
|
30 |
LI Xiangyu, PEOPLES Joseph, HUANG Zhifeng, et al. Full daytime sub-ambient radiative cooling in commercial-like paints with high figure of merit[J]. Cell Reports Physical Science, 2020, 1(10): 100221.
|
31 |
SONG Jianing, ZHANG Wenluan, SUN Zhengnan, et al. Durable radiative cooling against environmental aging[J]. Nature Communications, 2022, 13(1): 4805.
|
32 |
LIU Rong, ZHOU Zhengui, MO Xiwei, et al. Green-manufactured and recyclable coatings for subambient daytime radiative cooling[J]. ACS Applied Materials & Interfaces, 2022, 14(41): 46972-46979.
|
33 |
DONG Shihua, WU Qian, ZHANG Wenluan, et al. Slippery passive radiative cooling supramolecular siloxane coatings[J]. ACS Applied Materials & Interfaces, 2022, 14(3): 4571-4578.
|
34 |
XIANG Bo, ZHANG Rong, LUO Yanlong, et al. 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling[J]. Nano Energy, 2021, 81: 105600.
|
35 |
MANDAL Jyotirmoy, FU Yanke, OVERVIG Adam C, et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling[J]. Science, 2018, 362(6412): 315-319.
|
36 |
NIE Xiao, YOO Youngjae, HEWAKURUPPU Hasitha, et al. Cool white polymer coatings based on glass bubbles for buildings[J]. Scientific Reports, 2020, 10: 6661.
|
37 |
YU Xinxian, YAO Fengju, HUANG Wenjie, et al. Enhanced radiative cooling paint with broken glass bubbles[J]. Renewable Energy, 2022, 194: 129-136.
|
38 |
HUANG Wenlong, CHEN Yijun, LUO Yu, et al. Scalable aqueous processing-based passive daytime radiative cooling coatings[J]. Advanced Functional Materials, 2021, 31(19): 2010334.
|
39 |
WANG Jing, SUN Junyu, GUO Taotao, et al. High-strength flexible membrane with rational pore architecture as a selective radiator for high-efficiency daytime radiative cooling[J]. Advanced Materials Technologies, 2022, 7(1): 2100528.
|
40 |
Soomin SON, LIU Yuting, CHAE Dongwoo, et al. Cross-linked porous polymeric coating without a metal-reflective layer for sub-ambient radiative cooling[J]. ACS Applied Materials & Interfaces, 2020, 12(52): 57832-57839.
|
41 |
QI Guiguang, TAN Xinyu, TU Yiteng, et al. Ordered-porous-array polymethyl methacrylate films for radiative cooling[J]. ACS Applied Materials & Interfaces, 2022, 14(27): 31277-31284.
|
42 |
CHEN Yijun, MANDAL Jyotirmoy, LI Wenxi, et al. Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling[J]. Science Advances, 2020, 6(17): eaaz5413.
|
43 |
WEI Wei, ZHU Yong, LI Qiu, et al. An Al2O3-cellulose acetate-coated textile for human body cooling[J]. Solar Energy Materials and Solar Cells, 2020, 211: 110525.
|
44 |
SUN Yilan, JI Yating, JAVED Muhammad, et al. Preparation of passive daytime cooling fabric with the synergistic effect of radiative cooling and evaporative cooling[J]. Advanced Materials Technologies, 2022, 7(3): 2100803.
|
45 |
沈自才, 欧阳晓平, 高鸿. 我国深空探测对航天材料及工艺的需求[J]. 宇航材料工艺, 2021, 51(5): 1-14.
|
|
SHEN Zicai, OUYANG Xiaoping, GAO Hong. Demand for aerospace materials and technology for China’s deep space exploration[J]. Aerospace Materials & Technology, 2021, 51(5): 1-14.
|
46 |
CHEN Guoliang, WANG Yaming, QIU Jun, et al. Robust inorganic daytime radiative cooling coating based on a phosphate geopolymer[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 54963-54971.
|