化工进展 ›› 2021, Vol. 40 ›› Issue (9): 4948-4961.DOI: 10.16085/j.issn.1000-6613.2021-1087
收稿日期:
2021-05-24
修回日期:
2021-07-30
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
陈四国,魏子栋
作者简介:
王敏键(1995—),男,博士研究生,研究方向为燃料电池。E-mail:基金资助:
WANG Minjian1(), CHEN Siguo1(), SHAO Minhua2, WEI Zidong1()
Received:
2021-05-24
Revised:
2021-07-30
Online:
2021-09-05
Published:
2021-09-13
Contact:
CHEN Siguo,WEI Zidong
摘要:
目前铂(Pt)及其合金仍是氢燃料电池首选催化剂,但是Pt高价格、低储量及循环稳定性差等缺点严重阻碍了氢燃料电池商业化,因此发展低成本、高性能的新型非Pt催化剂和低Pt催化剂是实现氢燃料电池商业化的关键。本文围绕燃料电池催化开发及使用过程中存在的成本、稳定性和毒化问题,回顾了近年来阴离子交换膜燃料电池和质子交换膜燃料电池催化剂分别在提高阳极催化剂活性、降低阴极催化剂成本领域的最新研究进展,包括催化剂的组成、结构以及颗粒尺寸等对催化活性、稳定性的影响。最后针对燃料电池催化剂存在的问题,指出未来应基于原位观测和表征技术加强对碱性氢氧化机理的研究,同时开发高温制备小尺寸高有序度的有序铂合金阴极催化剂的方法是未来的研究重点。
中图分类号:
王敏键, 陈四国, 邵敏华, 魏子栋. 氢燃料电池电催化剂研究进展[J]. 化工进展, 2021, 40(9): 4948-4961.
WANG Minjian, CHEN Siguo, SHAO Minhua, WEI Zidong. Recent advances of electrocatalysts in hydrogen fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4948-4961.
1 | CARRETTE L, FRIEDRICH K A, STIMMING U. Fuel cells: principles, types, fuels, and applications[J]. ChemPhysChem, 2000, 1(4): 162-193. |
2 | 孙华, 戚頔, 刘辉, 等, Pt基有序金属间化合物氧还原催化剂研究进展[J]. 材料科学,2019, 9(5): 479-488. |
SUN Hua, QI Di, LIU Hui, et al. Recent advances in Pt-based ordered intermetallic catalysts for oxygen recent advances in Pt-based ordered[J]. Material Sciences, 2019, 9(5): 479-488. | |
3 | NIE Y, LI L, WEI Z D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[J]. Chemical Society Reviews, 2015, 44(8): 2168-2201. |
4 | NORSKOV J K, ROSSMEISL J, LOGADOTTIR A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. Journal of Physical Chemistry B, 2004, 108(46): 17886-17892. |
5 | 李静,冯欣,魏子栋. 铂基燃料电池氧还原反应催化剂研究进展[J]. 电化学, 2018, 24(6): 589-601. |
LI Jing, FENG Xin, WEI Zidong. Recent progress in Pt-based catalysts for oxygen reduction reaction [J]. Journal of Electrochemistry, 2018, 24(6): 589-601. | |
6 | VARCOE J R, ATANASSOV P, DEKEL D R, et al. Anion-exchange membranes in electrochemical energy systems[J]. Energy and Environmental Science, 2014, 7(10): 3135-3191. |
7 | VARCOE J R, SLADE R C T. Prospects for alkaline anion-exchange membranes in low temperature fuel cells[J]. Fuel Cells, 2005, 5(2): 187-200. |
8 | ZHANG H W, SHEN P K. Recent development of polymer electrolyte membranes for fuel cells[J]. Chemical Reviews, 2012, 112(5): 2780-2832. |
9 | SETZLER B P, ZHUANG Z, WITTKOPF J A, et al. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells[J]. Nature Nanotechnology, 2016, 11(12): 1020-1025. |
10 | CHEN Y, GOKHALE R, SEROV A, et al. Novel highly active and selective Fe-NC oxygen reduction electrocatalysts derived from in-situ polymerization pyrolysis[J]. Nano Energy, 2017, 38: 201-209. |
11 | GOKHALE R, CHEN Y, SEROV, A, et al. Direct synthesis of platinum group metal-free Fe-N-C catalyst for oxygen reduction reaction in alkaline media[J]. Electrochemistry Communications, 2016, 72: 140-143. |
12 | WU G, ZELENAY P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction[J]. Accounts of Chemical Research, 2013, 46(8): 1878-1889. |
13 | SHENG W, GASTEIGER H A, SHAOHORN Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs. alkaline electrolytes[J]. Journal of the Electrochemical Society, 2010, 157(11): B1529. |
14 | STRMCNIK D, UCHIMURA M, WANG C, et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption[J]. Nature Chemistry, 2013, 5(4): 300-306. |
15 | DUTST J, SIEBEL A, SIMON C, et al. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism[J]. Energy and Environmental Science, 2014, 7(7): 2255-2260. |
16 | ZHENG J, SHENG W, ZHUANG Z, et al. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy[J]. Science Advances, 2016, 2(3): e1501602. |
17 | WANG Y, WANG G, LI G, et al. Pt-Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect?[J]. Energy and Environmental Science, 2015, 8(1): 177-181. |
18 | FENG Z, LI L, ZHENG X, et al. Role of hydroxyl species in hydrogen oxidation reaction: a DFT study[J]. The Journal of Physical Chemistry C, 2019, 123(39): 23931-23939. |
19 | OHYAMA J, SATO T, YAMAMOTO Y, et al. Size specifically high activity of Ru nanoparticles for hydrogen oxidation reaction in alkaline electrolyte[J]. Journal of the American Chemical Society, 2013, 135(21): 8016-8021. |
20 | SCOFIELD M E, ZHOU Y, YUE S, et al. Role of chemical composition in the enhanced catalytic activity of Pt-based alloyed ultrathin nanowires for the hydrogen oxidation reaction under alkaline conditions[J]. ACS Catalysis, 2016, 6(6): 3895-3908. |
21 | ELBERT K, HU J, MA Z, et al. Elucidating hydrogen oxidation/evolution kinetics in base and acid by enhanced activities at the optimized Pt shell thickness on the Ru core[J]. ACS Catalysis, 2015, 5(11): 6764-6772. |
22 | DAVYDOVA E S, MUKERJEE S, JAOUEN F D R, et al. Electrocatalysts for hydrogen oxidation reaction in alkaline electrolytes[J]. ACS Catalysis, 2018, 8(7): 6665-6690. |
23 | LI J, GHOSHAL S, BATES M K, et al. Experimental proof of the bifunctional mechanism for the hydrogen oxidation in alkaline media[J]. Angewandte Chemie International Edition, 2017, 56(49): 15594-15598. |
24 | ZHOU Y, XIE Z, JIANG J, et al. Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction[J]. Nature Catalysis, 2020, 3(5): 454-462. |
25 | ZHENG J, ZHUANG Z, XU B, et al. Correlating hydrogen oxidation/evolution reaction activity with the minority weak hydrogen-binding sites on Ir/C catalysts[J]. ACS Catalysis, 2015, 5(7): 4449-4455. |
26 | LIAO J, DING W, TAO S, et al. Carbon supported IrM (M=Fe, Ni, Co) alloy nanoparticles for the catalysis of hydrogen oxidation in acidic and alkaline medium[J]. Chinese Journal of Catalysis, 2016, 37(7): 1142-1148. |
27 | DE S, ZHANG J, LUQUE R, et al. Ni-based bimetallic heterogeneous catalysts for energy and environmental applications[J]. Energy and Environmental Science, 2016, 9(11): 3314-3347. |
28 | ROY A, TALARPOSHTI M R, NORMILE S J, et al. Nickelcopper supported on a carbon black hydrogen oxidation catalyst integrated into an anion-exchange membrane fuel cell[J]. Sustainable Energy & Fuels, 2018, 2(10): 2268-2275. |
29 | SHENG W, BIVENS A P, MYINT M, et al. Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes[J]. Energy and Environmental Science, 2014, 7(5): 1719-1724. |
30 | LU S, PAN J, HUANG A, et al. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts[J]. Proceedings of the National Academy of Sciences, 2008, 105(52): 20611-20614. |
31 | WANG T, WANG M, YANG H, et al. Weakening hydrogen adsorption on nickel via interstitial nitrogen doping promotes bifunctional hydrogen electrocatalysis in alkaline solution[J]. Energy and Environmental Science, 2019, 12(12): 3522-3529. |
32 | NI W, KRAMMER A, HSU C S, et al. Ni3N as an active hydrogen oxidation reaction catalyst in alkaline medium[J]. Angewandte Chemie International Edition, 2019, 58(22): 7445-7449. |
33 | DEBE M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7401): 43-51. |
34 | MA Z, CANO Z P, YU A, et al. Enhancing oxygen reduction activity of Pt-based electrocatalysts: from theoretical mechanisms to practical methods[J]. Angewandte Chemie International Edition, 2020, 59(42): 18334-18348. |
35 | CHEN C, KANG Y, HUO Z, et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces[J]. Science, 2014, 343(6177): 1339-1343. |
36 | ZHU Y, SUN W, CHEN W, et al. Scale-up biomass pathway to cobalt single-site catalysts anchored on N-doped porous carbon nanobelt with ultrahigh surface area[J]. Advanced Functional Materials, 2018, 28(37): 1802167. |
37 | CHENG Y, ZHAO S, JOHANNESSEN, B, et al. Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction[J]. Advanced Materials, 2018, 30(13): 1706287. |
38 | YANG H B, HUNG S F, LIU S, et al. Atomically dispersed Ni (Ⅰ) as the active site for electrochemical CO2 reduction[J]. Nature Energy, 2018, 3(2): 140-147. |
39 | MA L, CHEN S, PEI Z, et al. Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc-air battery[J]. ACS Nano, 2018, 12(2): 1949-1958. |
40 | ZHU C, FU S, SONG J, et al. Self-assembled Fe-N-doped carbon nanotube aerogels with single-atom catalyst feature as high-efficiency oxygen reduction electrocatalysts[J]. Small, 2017, 13(15): 1603407. |
41 | CHEN W, PEI J, HE C, et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2017, 56(50): 16086-16090. |
42 | TANG C, WANG B, WANG H, et al. Defect engineering toward atomic Co-Nx-C in hierarchical graphene for rechargeable flexible solid Zn-air batteries[J]. Advanced Materials, 2017, 29(37): 1703185. |
43 | WAN C, DUAN X, HUANG Y. Molecular design of single-atom catalysts for oxygen reduction reaction[J]. Advanced Energy Materials, 2020, 10(14): 1903815. |
44 | YIN P, YAO T, WU Y, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts[J]. Angewandte Chemie International Edition, 2016, 55(36): 10800-10805. |
45 | ZHANG H, CHUNG H T, CULLEN D A, et al. High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites[J]. Energy and Environmental Science, 2019, 12(8): 2548-2558. |
46 | CHEN Y, JI S, WANG Y, et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2017, 56(24): 6937-6941. |
47 | WANG J, HAN G, WANG L, et al. ZIF-8 with ferrocene encapsulated: a promising precursor to single-atom Fe embedded nitrogen-doped carbon as highly efficient catalyst for oxygen electroreduction[J]. Small, 2018, 14(15): 1704282. |
48 | LI J, CHEN S, LI W, et al. A eutectic salt-assisted semi-closed pyrolysis route to fabricate high-density active-site hierarchically porous Fe/N/C catalysts for the oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2018, 6(32): 15504-15509. |
49 | WU J, ZHOU H, LI Q, et al. Densely populated isolated single Co-N site for efficient oxygen electrocatalysis[J]. Advanced Energy Materials, 2019, 9(22): 1900149. |
50 | LI J, CHEN M, CULLEN D A, et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells[J]. Nature Catalysis, 2018, 1(12): 935-945. |
51 | CHEN Y, JI S, ZHAO S, et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell[J]. Nature Communications, 2018, 9(1): 1-12. |
52 | SONG P, LUO M, LIU X, et al. Zn single atom catalyst for highly efficient oxygen reduction reaction[J]. Advanced Functional Materials, 2017, 27(28):1700802. |
53 | LI J, CHEN S, YANG N, et al. Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media[J]. Angewandte Chemie International Edition, 2019, 58(21): 7035-7039. |
54 | ERIKSON H, SARAPUU A, SOLLA-GULLON J, et al. Recent progress in oxygen reduction electrocatalysis on Pd-based catalysts[J]. Journal of Electroanalytical Chemistry, 2016, 780: 327-336. |
55 | SHAO M. Palladium-based electrocatalysts for hydrogen oxidation and oxygen reduction reactions[J]. Journal of Power Sources, 2011, 196(5): 2433-2444. |
56 | SHAO M, YU T, ODELL J H, et al. Structural dependence of oxygen reduction reaction on palladium nanocrystals[J]. Chemical Communications, 2011, 47(23): 6566-6568. |
57 | SAVADOGO O, LEE K, OISHI K, et al. New palladium alloys catalyst for the oxygen reduction reaction in an acid medium[J]. Electrochemistry Communications, 2004, 6(2): 105-109. |
58 | FERNANDEZ J L, RAGHUVEER V, MANTHIRAM A, et al. Pd-Ti and Pd-Co-Au electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells[J]. Journal of the American Chemical Society, 2005, 127(38):13100-13101. |
59 | LUO M, ZHAO Z, ZHANG Y, et al. PdMo bimetallene for oxygen reduction catalysis[J]. Nature, 2019, 574(7776): 81-85. |
60 | JIANG J, DING W, LI W, et al. Freestanding single-atom-layer Pd-based catalysts: oriented splitting of energy bands for unique stability and activity[J]. Chem, 2020, 6(2): 431-447. |
61 | ZHANG J, SASAKI K, SUTTER E, et al. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters[J]. Science, 2007, 315(5809): 220-222. |
62 | LIM B, JIANG M, CAMARGO P H, et al. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction[J]. Science, 2009, 324(5932): 1302-1305. |
63 | STEPHENS I E, BONDARENKO A S, GRONBJERG U, et al. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys[J]. Energy & Environmental Science, 2012, 5(5): 6744-6762. |
64 | STAMENKOVIC V R, MUN B S, ARENZ M, et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces[J]. Nature Materials, 2007, 6(3): 241-247. |
65 | LI J R, SUN S H. Intermetallic nanoparticles: synthetic control and their enhanced electrocatalysis[J]. Accounts of Chemical Research, 2019, 52(7): 2015-2025. |
66 | HUANG X, ZHAO Z, CAO L, et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction[J]. Science, 2015, 348(6240): 1230-1234. |
67 | STAMENKOVIC V R, FOWLER B, MUN B S, et al. Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability[J]. Science, 2007, 315(5811): 493-497. |
68 | NESSELBERGER M, ASHTON S, MEIER J C, et al. The particle size effect on the oxygen reduction reaction activity of Pt catalysts: influence of electrolyte and relation to single crystal models[J]. Journal of the American Chemical Society, 2011, 133(43): 17428-17433. |
69 | KATSOUNAROS I, CHEREVKO S, ZERODJANIN A R, et al. Oxygen electrochemistry as a cornerstone for sustainable energy conversion[J]. Angewandte Chemie International Edition, 2014, 53(1): 102-121. |
70 | NESSELBERGER M, ROEFZAAD M, HAMOU R F, et al. The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters[J]. Nature Materials, 2013, 12(10): 919-924. |
71 | CHUNG D Y, YOO J M, SUNG Y E. Highly durable and active Pt-based nanoscale design for fuel-cell oxygen-reduction electrocatalysts[J]. Advanced Materials, 2018, 30(42): 1704123. |
72 | ZHANG Y, CHEN S, WANG Y, et al. Study of the degradation mechanisms of carbon-supported platinum fuel cells catalyst via different accelerated stress test[J]. Journal of Power Sources, 2015, 273: 62-69. |
73 | WEI G F, LIU Z P. Towards active and stable oxygen reduction cathodes: a density functional theory survey on Pt2M skin alloys[J]. Energy & Environmental Science, 2011, 4(4): 1268-1272. |
74 | GAN L, CUI C, HEGGEN M, et al. Element-specific anisotropic growth of shaped platinum alloy nanocrystals[J]. Science, 2014, 346(6216): 1502-1506. |
75 | NIU Z, BECKNELL N, YU Y, et al. Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts[J]. Nature Materials, 2016, 15(11): 1188-1194. |
76 | LI M, ZHAO Z, CHENG T, et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction[J]. Science, 2016, 354(6318): 1414-1419. |
77 | LI H H, CUI C H, ZHAO S, et al. Mixed-PtPd-shell PtPdCu nanoparticle nanotubes templated from copper nanowires as efficient and highly durable electrocatalysts[J]. Advanced Energy Materials, 2012, 2(10): 1182-1187. |
78 | LOU X W, ARCHER L A, YANG Z. Hollow micro-nanostructures: synthesis and applications[J]. Advanced Materials, 2008, 20(21): 3987-4019. |
79 | AN K, HYEON T. Synthesis and biomedical applications of hollow nanostructures[J]. Nano Today, 2009, 4(4): 359-373. |
80 | JANA S, CHANG J W, RIOUX R M. Synthesis and modeling of hollow intermetallic Ni-Zn nanoparticles formed by the Kirkendall effect[J]. Nano Letters, 2013, 13(8): 3618-3625. |
81 | YIN Y, ERDONMEZ C K, CABOT A, et al. Colloidal synthesis of hollow cobalt sulfide nanocrystals[J]. Advanced Functional Materials, 2006, 16(11): 1389-1399. |
82 | TU K N, GOSELE U. Hollow nanostructures based on the kirkendall effect: design and stability considerations[J]. Applied Physics Letters, 2005, 86(9): 093111. |
83 | WANG Q, CHEN S, SHI F, et al. Structural evolution of solid Pt nanoparticles to a hollow PtFe alloy with a Pt-skin surface via space-confined pyrolysis and the nanoscale kirkendall effect[J]. Advanced Materials, 2016, 28(48): 10673-10678. |
84 | TIAN X, ZHAO X, SU Y Q, et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells[J]. Science, 2019, 366(6467): 850-856. |
85 | XIN H L, MUNDY J A, LIU Z, et al. Atomic-resolution spectroscopic imaging of ensembles of nanocatalyst particles across the life of a fuel cell[J]. Nano letters, 2012, 12(1): 490-497. |
86 | WANG D, XIN H L, HOVDEN R, et al. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts[J]. Nature Materials, 2013, 12(1): 81-87. |
87 | ZHANG B, FU G, LI Y, et al. General strategy for synthesis of ordered Pt3M intermetallics with ultrasmall particle size[J]. Angewandte Chemie International Edition, 2020, 132(20): 7931-7937. |
88 | LI Q, WU L, WU G, et al. New approach to fully ordered FCT-FePt nanoparticles for much enhanced electrocatalysis in acid[J]. Nano Letters, 2015, 15(4): 2468-2473. |
89 | WANG X X, SOKOLOWSKI J, LIU H, et al. Pt alloy oxygen-reduction electrocatalysts: synthesis, structure, and property[J]. Chinese Journal of Catalysis, 2020, 41(5): 739-755. |
90 | LI J, SHARMA S, LIU X, et al. Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis[J]. Joule, 2019, 3(1): 124-135 |
91 | WANG T, LIANG J, ZHAO Z, et al. Sub-6nm fully ordered L10-Pt-Ni-Co nanoparticles enhance oxygen reduction via Co doping induced ferromagnetism enhancement and optimized surface strain[J]. Advanced Energy Materials, 2019, 9(17): 1803771. |
92 | ZOU X, CHEN S, WANG Q, et al. Leaching-and sintering-resistant hollow or structurally ordered intermetallic PtFe alloy catalysts for oxygen reduction reactions[J]. Nanoscale, 2019, 11(42): 20115-20122. |
93 | XIE X, CHEN S, DING W, et al. An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X=OH, F) nanosheets for oxygen reduction reaction[J]. Chemical Communications, 2013, 49(86): 10112-10114. |
[1] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[2] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[3] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[4] | 冯江涵, 宋钫. 阴离子交换膜电解池的研究进展[J]. 化工进展, 2023, 42(7): 3501-3509. |
[5] | 蒋博龙, 崔艳艳, 史顺杰, 常嘉城, 姜楠, 谭伟强. 过渡金属Co3O4/ZnO-ZIF氧还原催化剂Co/Zn-ZIF模板法制备及其产电性能[J]. 化工进展, 2023, 42(6): 3066-3076. |
[6] | 马哲杰, 张文励, 赵炫凯, 李平. PEMFC阴极催化层氧传质阻力影响的研究进展[J]. 化工进展, 2023, 42(6): 2860-2873. |
[7] | 于海强, 郭泉忠, 杜克勤, 汪川. 脉冲电沉积PbO2涂层在PEMFC不锈钢双极板上的应用[J]. 化工进展, 2023, 42(2): 917-924. |
[8] | 高帷韬, 殷屺男, 涂自强, 龚繁, 李阳, 徐宏, 王诚, 毛宗强. 金属有机框架材料中的质子传导及其在质子交换膜中的应用[J]. 化工进展, 2022, 41(S1): 260-268. |
[9] | 张洪铭, 卢炯元, 王三反. 燃料电池用阴离子交换膜分子结构研究进展[J]. 化工进展, 2022, 41(S1): 318-330. |
[10] | 胡兵, 徐立军, 何山, 苏昕, 汪继伟. 碳达峰与碳中和目标下PEM电解水制氢研究进展[J]. 化工进展, 2022, 41(9): 4595-4604. |
[11] | 陈哲坤, 潘伟童, 姚顶松, 丁路, 王辅臣. 质子交换膜燃料电池微孔层浆液微观结构与流变性[J]. 化工进展, 2022, 41(7): 3808-3815. |
[12] | 潘文政, 纪志永, 汪婧, 李淑明, 黄智辉, 郭小甫, 刘杰, 赵颖颖, 袁俊生. 微生物燃料电池处理偶氮含盐废水的产电性能和降解过程[J]. 化工进展, 2022, 41(6): 3306-3313. |
[13] | 张东, 张瑞, 张彬, 安周建, 雷彻. 基于质子交换膜燃料电池的冷热电联产系统研究进展[J]. 化工进展, 2022, 41(3): 1608-1621. |
[14] | 高帷韬, 雷一杰, 张勋, 胡晓波, 宋平平, 赵卿, 王诚, 毛宗强. 质子交换膜燃料电池研究进展[J]. 化工进展, 2022, 41(3): 1539-1555. |
[15] | 陈诗雨, 许志成, 杨婧, 徐浩, 延卫. 微生物燃料电池在废水处理中的研究进展[J]. 化工进展, 2022, 41(2): 951-963. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |