化工进展 ›› 2021, Vol. 40 ›› Issue (9): 4931-4947.DOI: 10.16085/j.issn.1000-6613.2021-0402
李瑞松1,2(), 刘亚琳2, 田浩2, 王谦2, 饶鹏1,2, 李静1,2, 贾春满1,3, 田新龙1,2()
收稿日期:
2021-03-01
修回日期:
2021-04-08
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
田新龙
作者简介:
李瑞松(1989—),男,博士研究生,研究方向为燃料电池。E-mail:基金资助:
LI Ruisong1,2(), LIU Yalin2, TIAN Hao2, WANG Qian2, RAO Peng1,2, LI Jing1,2, JIA Chunman1,3, TIAN Xinlong1,2()
Received:
2021-03-01
Revised:
2021-04-08
Online:
2021-09-05
Published:
2021-09-13
Contact:
TIAN Xinlong
摘要:
燃料电池具有高能量转化效率、低环境污染等优势,近年来备受关注。然而,阴极氧还原反应和阳极小分子氧化反应成为燃料电池产业化的瓶颈,包括催化剂制备成本高、催化活性低和稳定性差等问题。如何设计高效、稳定的燃料电池催化剂,对于进一步推动燃料电池的应用十分关键,而发展先进的铂(Pt)基电催化剂是最为有效的途径之一。相比于单金属铂纳米晶,铂基无序合金和有序金属间化合物具有独特的物理化学特性,被认为是研究金属电催化剂结构-性能的理想模型。本文综述了高活性、高稳定性的铂基电催化剂的研究现状,首先阐述了铂基电催化剂的催化活性和稳定性的增强机制,着重介绍了铂基合金的调控因素与可控合成,进一步总结了铂基有序金属间化合物的制备策略。最后,对铂基电催化剂的未来发展方向进行了讨论及展望,以期为燃料电池中电催化剂的发展开拓新思路。
中图分类号:
李瑞松, 刘亚琳, 田浩, 王谦, 饶鹏, 李静, 贾春满, 田新龙. 燃料电池中铂基电催化剂的设计与合成[J]. 化工进展, 2021, 40(9): 4931-4947.
LI Ruisong, LIU Yalin, TIAN Hao, WANG Qian, RAO Peng, LI Jing, JIA Chunman, TIAN Xinlong. Design and preparation of platinum-based electrocatalysts for fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4931-4947.
组成 | 合成方法 | 结构/尺寸 | 催化应用 | 参考文献 |
---|---|---|---|---|
Pt4.8Fe | 乙二醇/NaOH体系130℃反应3h | (3.1±1)nm | 氧还原 | [ |
PtFe | 油胺/葡萄糖体系180℃反应8h | 一维层级 | 甲醇氧化 | [ |
PtFe/CNT | 瞬态电热法 | 约5nm | 氧还原 | [ |
Pt3Co | — | 约2.5nm | 氧还原 | [ |
PtM(Ni、Co、Cu) | H2氛围中350℃反应3h | 约3.0nm | 氧还原 | [ |
PtCo | 油胺体系240℃反应+HNO3刻蚀 | 纳米框架 | 甲醇氧化 | [ |
Pt1.5Ni | CO/H2氛围中200℃反应1h | (3.1±1.2)nm | 氧还原 | [ |
Pt3Ni | 硼氢化物还原+300℃热退火 | 约4.2nm | 氧还原 | [ |
Pt-Cu | 乙二醇/焦磷酸二氢钠160℃反应6h | 约2.4nm纳米线 | 氧还原 | [ |
PtCu | N, N-二甲基甲酰胺(DMF)/硼氢化钠/聚乙烯吡咯烷酮(PVP)还原+250℃煅烧2h | 纳米框架 | 甲醇氧化 | [ |
PtSn | 油胺/油酸130℃反应30min+320℃煅烧 | 超薄片层 | 甲醇、乙醇氧化 | [ |
Pt3Mn | 甘氨酸/PVP体系200℃反应6h+200℃煅烧2h | 凹面立方体 | 乙二醇氧化 | [ |
表1 近年发展的Pt基合金催化剂的合成方法、结构与应用
组成 | 合成方法 | 结构/尺寸 | 催化应用 | 参考文献 |
---|---|---|---|---|
Pt4.8Fe | 乙二醇/NaOH体系130℃反应3h | (3.1±1)nm | 氧还原 | [ |
PtFe | 油胺/葡萄糖体系180℃反应8h | 一维层级 | 甲醇氧化 | [ |
PtFe/CNT | 瞬态电热法 | 约5nm | 氧还原 | [ |
Pt3Co | — | 约2.5nm | 氧还原 | [ |
PtM(Ni、Co、Cu) | H2氛围中350℃反应3h | 约3.0nm | 氧还原 | [ |
PtCo | 油胺体系240℃反应+HNO3刻蚀 | 纳米框架 | 甲醇氧化 | [ |
Pt1.5Ni | CO/H2氛围中200℃反应1h | (3.1±1.2)nm | 氧还原 | [ |
Pt3Ni | 硼氢化物还原+300℃热退火 | 约4.2nm | 氧还原 | [ |
Pt-Cu | 乙二醇/焦磷酸二氢钠160℃反应6h | 约2.4nm纳米线 | 氧还原 | [ |
PtCu | N, N-二甲基甲酰胺(DMF)/硼氢化钠/聚乙烯吡咯烷酮(PVP)还原+250℃煅烧2h | 纳米框架 | 甲醇氧化 | [ |
PtSn | 油胺/油酸130℃反应30min+320℃煅烧 | 超薄片层 | 甲醇、乙醇氧化 | [ |
Pt3Mn | 甘氨酸/PVP体系200℃反应6h+200℃煅烧2h | 凹面立方体 | 乙二醇氧化 | [ |
1 | TIAN X L, LU X F, XIA B Y, et al. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies[J]. Joule, 2020, 4(1): 45-68. |
2 | ZHANG L, ZHANG X F, CHEN X L, et al. Facile solvothermal synthesis of Pt71Co29 lamellar nanoflowers as an efficient catalyst for oxygen reduction and methanol oxidation reactions[J]. Journal of Colloid and Interface Science, 2019, 536: 556-562. |
3 | ESLAMIBIDGOLI M J, HUANG J, KADYK T, et al. How theory and simulation can drive fuel cell electrocatalysis[J]. Nano Energy, 2016, 29: 334-361. |
4 | CASALONGUE H S, KAYA S, VISWANATHAN V, et al. Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode[J]. Nature Communications, 2013, 4: 2817. |
5 | XIAO M L, CHEN Y T, ZHU J B, et al. Climbing the apex of the ORR volcano plot via binuclear site construction: electronic and geometric engineering[J]. Journal of the American Chemical Society, 2019, 141 (44): 17763-17770. |
6 | LIU L C, CORMA A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles[J]. Chemical Reviews, 2018, 118(10): 4981-5079. |
7 | ROBINSON J E, LABRADOR N Y, CHEN H, et al. Silicon oxide-encapsulated platinum thin films as highly active electrocatalysts for carbon monoxide and methanol oxidation[J]. ACS Catalysis, 2018, 8 (12): 11423-11434. |
8 | BASHYAM R, ZELENAY P. A class of non-precious metal composite catalysts for fuel cells[M]//Materials for Sustainable Energy. London: Macmillan Publishers Ltd., UK, 2010: 247-250. |
9 | THOMPSON S T, PAPAGEORGOPOULOS D. Platinum group metal-free catalysts boost cost competitiveness of fuel cell vehicles[J]. Nature Catalysis, 2019, 2(7): 558-561. |
10 | BANHAM D, YE S Y. Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: an industrial perspective[J]. ACS Energy Letters, 2017, 2(3): 629-638. |
11 | YOSHIDA T, KOJIMA K. Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society[J]. Interface Magazine, 2015, 24(2): 45-49. |
12 | YANG L J, SHUI J L, DU L, et al. Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future[J]. Advanced Materials, 2019, 31(13): e1804799. |
13 | PEERA S G, MAIYALAGAN T, LIU C, et al. A review on carbon and non-precious metal based cathode catalysts in microbial fuel cells[J]. International Journal of Hydrogen Energy, 2021, 46(4): 3056-3089. |
14 | WANG Y, YANG Y, JIA S F, et al. Synergistic Mn-Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells[J]. Nature Communications, 2019, 10(1): 1506. |
15 | CUI C H, GAN L, HEGGEN M, et al. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis[J]. Nature Materials, 2013, 12(8): 765-771. |
16 | MA Z, CANO Z P, YU A P, et al. Enhancing oxygen reduction activity of Pt-based electrocatalysts: from theoretical mechanisms to practical methods[J]. Angewandte Chemie International Edition, 2020, 59(42): 18334-18348. |
17 | RÖBNER L, ARMBRÜSTER M. Electrochemical energy conversion on intermetallic compounds: a review[J]. ACS Catalysis, 2019, 9(3): 2018-2062. |
18 | NARAYANAN R, EL-SAYED M A. Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability[J]. The Journal of Physical Chemistry B, 2005, 109(26): 12663-12676. |
19 | SHAO M, PELES A, SHOEMAKER K. Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity[J]. Nano Letters, 2011, 11(9): 3714-3719. |
20 | GAMLER J T L, ASHBERRY H M, SKRABALAK S E, et al. Random alloyed versus intermetallic nanoparticles: a comparison of electrocatalytic performance[J]. Advanced Materials, 2018, 30(40): 1801563. |
21 | HUANG L L, ZHENG C Y, SHEN B, et al. High-index-facet metal-alloy nanoparticles as fuel cell electrocatalysts[J]. Advanced Materials, 2020, 32(30): 2002849. |
22 | CHOI S I, XIE S F, SHAO M H, et al. Synthesis and characterization of 9nm Pt-Ni octahedra with a record high activity of 3.3A/mgPt for the oxygen reduction reaction[J]. Nano Letters, 2013, 13(7): 3420-3425. |
23 | GREELEY J, STEPHENS I E, BONDARENKO A S, et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts[J]. Nature Chemistry, 2009, 1(7): 552-556. |
24 | LUO M C, GUO S J. Strain-controlled electrocatalysis on multimetallic nanomaterials[J]. Nature Reviews Materials, 2017, 2: 17059. |
25 | KARAMAD M, TRIPKOVIC V, ROSSMEISL J. Intermetallic alloys as CO electroreduction catalysts—Role of isolated active sites[J]. ACS Catalysis, 2014, 4(7): 2268-2273. |
26 | LUO S P, TANG M, SHEN P K, et al. Atomic-scale preparation of octopod nanoframes with high-index facets as highly active and stable catalysts[J]. Advanced Materials, 2017, 29(8). DOI: 10.1002/adma.201601687. |
27 | SASAKI K, KUTTIYIEL K A, ADZIC R R. Designing high performance Pt monolayer core-shell electrocatalysts for fuel cells[J]. Current Opinion in Electrochemistry, 2020, 21: 368-375. |
28 | CHEN S P, LI M F, GAO M Y, et al. High-performance Pt-Co nanoframes for fuel-cell electrocatalysis[J]. Nano Letters, 2020, 20(3): 1974-1979. |
29 | YAO W Q, JIANG X J, LI M, et al. Engineering hollow porous platinum-silver double-shelled nanocages for efficient electro-oxidation of methanol[J]. Applied Catalysis B: Environmental, 2021, 282: 119595. |
30 | XIAO W P, LEI W, GONG M X, et al. Recent advances of structurally ordered intermetallic nanoparticles for electrocatalysis[J]. ACS Catalysis, 2018, 8(4): 3237-3256. |
31 | PROKOP M, DRAKSELOVA M, BOUZEK K. Review of the experimental study and prediction of Pt-based catalyst degradation during PEM fuel cell operation[J]. Current Opinion in Electrochemistry, 2020, 20: 20-27. |
32 | GREELEY J, NØRSKOV J K. Electrochemical dissolution of surface alloys in acids: thermodynamic trends from first-principles calculations[J]. Electrochimica Acta, 2007, 52(19): 5829-5836. |
33 | VEJ-HANSEN U G, ROSSMEISL J, STEPHENS I E L, et al. Correlation between diffusion barriers and alloying energy in binary alloys[J]. Physical Chemistry Chemical Physics, 2016, 18(4): 3302-3307. |
34 | MAO L C, FU K, JIN J H, et al. PtFe alloy catalyst supported on porous carbon nanofiber with high activity and durability for oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2019, 44(33): 18083-18092. |
35 | WANG L J, TIAN X L, XU Y Y, et al. Engineering one-dimensional and hierarchical PtFe alloy assemblies towards durable methanol electrooxidation[J]. Journal of Materials Chemistry A, 2019, 7(21): 13090-13095. |
36 | ZENG S, LYU B, QIAO J, et al. PtFe Alloy nanoparticles confined on carbon nanotube networks as air cathodes for flexible and wearable energy devices[J]. ACS Applied Nano Materials, 2019, 2(12): 7870-7879. |
37 | STAMENKOVIC V R, MUN B S, ARENZ M, et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces[J]. Nature Materials, 2007, 6(3): 241-247. |
38 | JAYASAYEE K, VEEN J A R V, MANIVASAGAM T G, et al. Oxygen reduction reaction (ORR) activity and durability of carbon supported PtM (Co, Ni, Cu) alloys: influence of particle size and non-noble metals[J]. Applied Catalysis B: Environmental, 2012, 111/112: 515-526. |
39 | ZHANG C L, HWANG S Y, TROUT A, et al. Solid-state chemistry-enabled scalable production of octahedral Pt-Ni alloy electrocatalyst for oxygen reduction reaction[J]. Journal of the American Chemical Society, 2014, 136 (22): 7805-7808. |
40 | JEON T Y, YOO S J, CHO Y H, et al. Effect of de-alloying of Pt-Ni bimetallic nanoparticles on the oxygen reduction reaction[J]. Electrochemistry Communications, 2010, 12(12): 1796-1799. |
41 | FANG D H, WAN L K, JIANG Q K, et al. Wavy PtCu alloy nanowire networks with abundant surface defects enhanced oxygen reduction reaction[J]. Nano Research, 2019, 12(11): 2766-2773. |
42 | LI X L, ZHOU Y S, DU Y Y, et al. PtCu nanoframes as ultra-high performance electrocatalysts for methanol oxidation[J]. International Journal of Hydrogen Energy, 2019, 44(33): 18050-18057. |
43 | CHEN J Y, LIM S C, KUO C H, et al. Sub-1nm PtSn ultrathin sheet as an extraordinary electrocatalyst for methanol and ethanol oxidation reactions[J]. Journal of Colloid and Interface Science, 2019, 545: 54-62. |
44 | WANG Y, ZHUO H Y, SUN H, et al. Implanting Mo atoms into surface lattice of Pt3Mn alloys enclosed by high-indexed facets: promoting highly active sites for ethylene glycol oxidation[J]. ACS Catalysis, 2019, 9(1): 442-455. |
45 | CORRADINI P G, SANTOS N A, PEREZ J. Pt-Sn-Eu/C catalysts: application of rare earth metals as anodes in direct ethanol fuel cells[J]. Fuel Cells, 2018, 18(1): 73-81. |
46 | CHU T K, XIE M, YANG D J, et al. Highly active and durable carbon support Pt-rare earth catalyst for proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45(51): 27291-27298. |
47 | PEERA S G, LEE T G, SAHU A K. Pt-rare earth metal alloy/metal oxide catalysts for oxygen reduction and alcohol oxidation reactions: an overview[J]. Sustainable Energy & Fuels, 2019, 3(8): 1866-1891. |
48 | ZHAO P, QIN X Q, LI H B, et al. New insights into O and OH adsorption on the Pt-Co alloy surface: effects of Pt/Co ratios and structures[J]. Physical Chemistry Chemical Physics, 2020,22(37): 21124-21130. |
49 | CAO M N, WU D S, CAO R. Recent advances in the stabilization of platinum electrocatalysts for fuel-cell reactions[J]. ChemCatChem, 2014, 6(1): 26-45. |
50 | ZHOU Z Y, TIAN N, HUANG Z Z, et al. Nanoparticle catalysts with high energy surfaces and enhanced activity synthesized by electrochemical method[J]. Faraday Discussions, 2008, 140: 81-92. |
51 | DEBE M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7401): 43-51. |
52 | WU J B, QI L, YOU H J, et al. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities[J]. Journal of the American Chemical Society, 2012, 134(29): 11880-11883. |
53 | KOBAYASHI S, WAKISAKA M, TRYK D A, et al. Effect of alloy composition and crystal face of Pt-Skin/Pt100-xCox[(111), (100), and (110)] single crystal electrodes on the oxygen reduction reaction activity[J]. The Journal of Physical Chemistry C, 2017, 121(21): 11234-11240. |
54 | XU Y C, CUI X Q, WEI S T, et al. Highly active zigzag-like Pt-Zn alloy nanowires with high-index facets for alcohol electrooxidation[J]. Nano Research, 2019, 12(5): 1173-1179. |
55 | ZHANG Z C, HUI J F, GUO Z G, et al. Solvothermal synthesis of Pt-Pd alloys with selective shapes and their enhanced electrocatalytic activities[J]. Nanoscale, 2012, 4(8): 2633-2639. |
56 | HONG J W, KANG S W, CHOI B S, et al. Controlled synthesis of Pd-Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction[J]. ACS Nano, 2012, 6(3): 2410-2419. |
57 | SUI N, WANG K, SHAN X Y, et al. Facile synthesis of hollow dendritic Ag/Pt alloy nanoparticles for enhanced methanol oxidation efficiency[J]. Dalton Transactions, 2017, 46(44): 15541-15548. |
58 | WANG Q M, CHEN S G, SHI F, et al. Structural evolution of solid Pt nanoparticles to a hollow PtFe alloy with a Pt-skin surface via space-confined pyrolysis and the nanoscale kirkendall effect[J]. Advanced Materials, 2016, 28(48): 10673-10678. |
59 | TIAN X L, ZHAO X, SU Y Q, et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells[J]. Science, 2019, 366(6467): 850-856. |
60 | STRASSER P, KOH S, ANNIYEV T, et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts[J]. Nature Chemistry, 2010, 2(6): 454-460. |
61 | LYU X Y, JIA Y, MAO X, et al. Gradient-concentration design of stable core-shell nanostructure for acidic oxygen reduction electrocatalysis[J]. Advanced Materials, 2020, 32(32): 2003493. |
62 | LAMER V K, DINEGAR R H. Theory, production and mechanism of formation of monodispersed hydrosols[J]. Journal of the American Chemical Society, 1950, 72(11): 4847-4854. |
63 | WU J F, SHAN S Y, CRONK H, et al. Understanding composition-dependent synergy of PtPd alloy nanoparticles in electrocatalytic oxygen reduction reaction[J]. The Journal of Physical Chemistry C, 2017, 121(26): 14128-14136. |
64 | QI Y, BIAN T, CHOI S I, et al. Kinetically controlled synthesis of Pt-Cu alloy concave nanocubes with high-index facets for methanol electro-oxidation[J]. Chemical Communications, 2014, 50(5): 560-562. |
65 | WANG K L, WANG F, ZHAO Y F, et al. Surface-tailored PtPdCu ultrathin nanowires as advanced electrocatalysts for ethanol oxidation and oxygen reduction reaction in direct ethanol fuel cell[J]. Journal of Energy Chemistry, 2021, 52: 251-261. |
66 | WANG Y, JIANG X, FU G T, et al. Cu5Pt dodecahedra with low-Pt content: facile synthesis and outstanding formic acid electrooxidation[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 34869-34877. |
67 | LONG X Y, YIN P, LEI T, et al. Methanol electro-oxidation on Cu@Pt/C core-shell catalyst derived from Cu-MOF[J]. Applied Catalysis B: Environmental, 2020, 260: 118187. |
68 | ZOU J S, WU M, NING S L, et al. Ru@Pt core-shell nanoparticles: impact of the atomic ordering of the Ru metal core on the electrocatalytic activity of the Pt shell[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 9007-9016. |
69 | ALINEZHAD A, BENEDETTI T M, GLOAG L, et al. Controlling Pt crystal defects on the surface of Ni-Pt core-shell nanoparticles for active and stable electrocatalysts for oxygen reduction[J]. ACS Applied Nano Materials, 2020, 3(6): 5995-6000. |
70 | WANG J, LI B, YERSAK T, et al. Recent advances in Pt-based octahedral nanocrystals as high performance fuel cell catalysts[J]. Journal of Materials Chemistry A, 2016, 4(30): 11559-11581. |
71 | XIAO X Y, JEONG H, SONG J, et al. Facile synthesis of Pd@Pt core-shell nanocubes with low Pt content via direct seed-mediated growth and their enhanced activity for formic acid oxidation[J]. Chemical Communications, 2019, 55(79): 11952-11955. |
72 | HAN L, CUI P L, HE H Y, et al. A seed-mediated approach to the morphology-controlled synthesis of bimetallic copper-platinum alloy nanoparticles with enhanced electrocatalytic performance for the methanol oxidation reaction[J]. Journal of Power Sources, 2015, 286: 488-494. |
73 | BAO M J, AMIINU I S, PENG T, et al. Surface evolution of PtCu alloy shell over Pd nanocrystals leads to superior hydrogen evolution and oxygen reduction reactions[J]. ACS Energy Letters, 2018, 3(4): 940-945. |
74 | YOO T Y, YOO J M, SINHA A K, et al. Direct synthesis of intermetallic platinum-alloy nanoparticles highly loaded on carbon supports for efficient electrocatalysis[J]. Journal of the American Chemical Society, 2020, 142(33): 14190-14200. |
75 | SOHN H S, XIAO Q F, SEUBSAI A, et al. Thermally robust porous bimetallic (NixPt1-x) alloy mesocrystals within carbon framework: high-performance catalysts for oxygen reduction and hydrogenation reactions[J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21435-21444. |
76 | RONG H P, MAO J J, XIN P Y, et al. Kinetically controlling surface structure to construct defect-rich intermetallic nanocrystals: effective and stable catalysts[J]. Advanced Materials, 2016, 28(13): 2540-2546. |
77 | FENG Y G, SHAO Q, LV F, et al. Intermetallic PtBi nanoplates boost oxygen reduction catalysis with superior tolerance over chemical fuels[J]. Advanced Science, 2020, 7(1): 1800178. |
78 | YUAN X L, JIANG X J, CAO M H, et al. Intermetallic PtBi core/ultrathin Pt shell nanoplates for efficient and stable methanol and ethanol electro-oxidization[J]. Nano Research, 2019, 12(2): 429-436. |
79 | FENG Q C, ZHAO S, HE D S, et al. Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Pt3Ga[J]. Journal of the American Chemical Society, 2018, 140(8): 2773-2776. |
80 | ZHU Y M, BU L Z, SHAO Q, et al. Structurally ordered Pt3Sn nanofibers with highlighted antipoisoning property as efficient ethanol oxidation electrocatalysts[J]. ACS Catalysis, 2020, 10(5): 3455-3461. |
81 | KIM J, LEE Y, SUN S. Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction[J]. Journal of the American Chemical Society, 2010, 132(14): 4996-4997. |
82 | GONG M X, XIAO D D, DENG Z P, et al. Structure evolution of PtCu nanoframes from disordered to ordered for the oxygen reduction reaction[J]. Applied Catalysis B: Environmental, 2021, 282: 119617. |
83 | CHUNG D Y, JUN S W, YOON G, et al. Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction[J]. Journal of the American Chemical Society, 2015, 137(49): 15478-15485. |
84 | ZHAO Y G, WANG C, LIU J J, et al. PDA-assisted formation of ordered intermetallic CoPt3 catalysts with enhanced oxygen reduction activity and stability[J]. Nanoscale, 2018, 10(19): 9038-9043. |
85 | HU Y Z, SHEN T, ZHAO X R, et al. Combining structurally ordered intermetallics with N-doped carbon confinement for efficient and anti-poisoning electrocatalysis[J]. Applied Catalysis B: Environmental, 2020, 279: 119370. |
86 | KIM H Y, KWON T, HA Y, et al. Intermetallic PtCu nanoframes as efficient oxygen reduction electrocatalysts[J]. Nano Letters, 2020, 20(10): 7413-7421. |
87 | ZHANG B T, FU G T, LI Y T, et al. General strategy for synthesis of ordered Pt3 M intermetallics with ultrasmall particle size[J]. Angew. Chem. Int. Ed., 2020, 59(20): 7857-7863. |
88 | JUNG W S, LEE W H, OH H S, et al. Highly stable and ordered intermetallic PtCo alloy catalyst supported on graphitized carbon containing Co@CN for oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2020, 8(38): 19833-19842. |
89 | CHEN W, LEI Z, ZENG T, et al. Structurally ordered PtSn intermetallic nanoparticles supported on ATO for efficient methanol oxidation reaction[J]. Nanoscale, 2019, 11(42): 19895-19902. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[6] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[7] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[8] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[9] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[10] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[11] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[12] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[13] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[14] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[15] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |