化工进展 ›› 2021, Vol. 40 ›› Issue (4): 2338-2346.DOI: 10.16085/j.issn.1000-6613.2020-1060
田帅(), 朱易春(), 黄书昌, 连军锋, 秦欣欣, 任黎晔, 李鑫
收稿日期:
2020-06-11
出版日期:
2021-04-05
发布日期:
2021-04-14
通讯作者:
朱易春
作者简介:
田帅(1996—),男,硕士研究生,研究方向为污水厌氧生物处理。E-mail:基金资助:
TIAN Shuai(), ZHU Yichun(), HUANG Shuchang, LIAN Junfeng, QIN Xinxin, REN Liye, LI Xin
Received:
2020-06-11
Online:
2021-04-05
Published:
2021-04-14
Contact:
ZHU Yichun
摘要:
厌氧生物处理技术具有节能降耗及回收资源的优点,但在处理低浓度污水(COD<1000mg/L)时,污泥活性较差、处理效率偏低等问题使其应用受到严重限制。为促进厌氧生物处理低浓度污水技术的发展,本文在介绍微生物间电子传递类型和厌氧功能菌的基础上,阐明厌氧生物处理的作用机理;随后基于厌氧消化原理,探讨了温度、pH、挥发性脂肪酸(VFA)和氨氮等因素对厌氧生物处理的影响;接着从厌氧膜生物反应器、厌氧微生物活性及直接种间电子传递三个层面出发,对强化低浓度污水厌氧生物处理的方法进行归纳总结;最后从“耐饥饿”菌种的筛选和微生物活性强化途径角度展望了厌氧生物处理低浓度污水的发展趋势和研究方向,旨在为推广厌氧生物处理低浓度污水、加快污水中有机物的资源化利用提供参考。
中图分类号:
田帅, 朱易春, 黄书昌, 连军锋, 秦欣欣, 任黎晔, 李鑫. 厌氧生物处理低浓度污水研究进展[J]. 化工进展, 2021, 40(4): 2338-2346.
TIAN Shuai, ZHU Yichun, HUANG Shuchang, LIAN Junfeng, QIN Xinxin, REN Liye, LI Xin. Research progress in anaerobic biological treatment of low-strength sewage[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2338-2346.
反应式 | 代表菌属 | |
---|---|---|
①还原CO2型:利用H2、甲酸、CO作为电子供体还原CO2产CH4 | ||
4H2+CO2 | -135 | Methanothermus,Methanocaldococcus |
4HCOOH | -130 | Methanobacterium,Methanothermococcus |
4CO+2H2O | -196 | Methanothermobacter,Methanosarcina |
②甲基营养型:以H2作为电子供体,还原甲基化合物中的甲基基团产CH4;或通过甲基化合物自身的歧化作用产CH4 | ||
4CH3OH | -105 | Methanosarcina,Methanohalobium |
CH3OH+H2 | -113 | Methanomicrococcus blatticola,Methanosphaera |
2(CH3)2-S+2H2O | -49 | Methanosalsum,Methanomethylovorans |
4CH3-NH2+2H2O | -75 | Methanococcoides,Methanosarcina |
2(CH3)2-NH+2H2O | -73 | Methanococcoides,Methanosarcina |
4(CH3)3-N+6H2O | -74 | Methanosarcina,Methanohalobium |
4CH3NH3Cl+2H2O | -74 | Methanosalsum,Methanohalophilus |
③乙酸营养型:通过裂解乙酸,将乙酸的羧基氧化为CO2,甲基还原为CH4 | ||
CH3COOH | -33 | Methanosarcina,Methanosaeta |
表1 不同类型产甲烷菌的反应过程及代表菌属[8,10-11]
反应式 | 代表菌属 | |
---|---|---|
①还原CO2型:利用H2、甲酸、CO作为电子供体还原CO2产CH4 | ||
4H2+CO2 | -135 | Methanothermus,Methanocaldococcus |
4HCOOH | -130 | Methanobacterium,Methanothermococcus |
4CO+2H2O | -196 | Methanothermobacter,Methanosarcina |
②甲基营养型:以H2作为电子供体,还原甲基化合物中的甲基基团产CH4;或通过甲基化合物自身的歧化作用产CH4 | ||
4CH3OH | -105 | Methanosarcina,Methanohalobium |
CH3OH+H2 | -113 | Methanomicrococcus blatticola,Methanosphaera |
2(CH3)2-S+2H2O | -49 | Methanosalsum,Methanomethylovorans |
4CH3-NH2+2H2O | -75 | Methanococcoides,Methanosarcina |
2(CH3)2-NH+2H2O | -73 | Methanococcoides,Methanosarcina |
4(CH3)3-N+6H2O | -74 | Methanosarcina,Methanohalobium |
4CH3NH3Cl+2H2O | -74 | Methanosalsum,Methanohalophilus |
③乙酸营养型:通过裂解乙酸,将乙酸的羧基氧化为CO2,甲基还原为CH4 | ||
CH3COOH | -33 | Methanosarcina,Methanosaeta |
影响因素 | 数值范围 | 参考文献 |
---|---|---|
温度 | 30~40℃ | [ |
pH | 6.5~7.2 | [ |
VFA | 50~250mg·L-1 | [ |
总氨氮(TAN) | 50~200mg·L-1 | [ |
C/N | 20~30 | [ |
表2 厌氧处理适宜运行参数
影响因素 | 数值范围 | 参考文献 |
---|---|---|
温度 | 30~40℃ | [ |
pH | 6.5~7.2 | [ |
VFA | 50~250mg·L-1 | [ |
总氨氮(TAN) | 50~200mg·L-1 | [ |
C/N | 20~30 | [ |
1 | XU Zuxin, XU Jin, YIN Hailong, et al. Urban river pollution control in developing countries[J]. Nature Sustainability, 2019, 2(3): 158-160. |
2 | VINARDELL S, ASTALS S, PECES M, et al. Advances in anaerobic membrane bioreactor technology for municipal wastewater treatment: a 2020 updated review[J]. Renewable and Sustainable Energy Reviews, 2020, 130: 109936. |
3 | LIEW Yuh Xiu, CHAN Yi Jing, MANICKAM Sivakumar, et al. Enzymatic pretreatment to enhance anaerobic bioconversion of high strength wastewater to biogas: a review[J]. Science of the Total Environment, 2020, 713: 136373. |
4 | HAHN Martha J, FIGUEROA Linda A. Pilot scale application of anaerobic baffled reactor for biologically enhanced primary treatment of raw municipal wastewater[J]. Water Research, 2015, 87: 494-502. |
5 | BANDARA Wasala M K R T W, SATOH Hisashi, SASAKAWA Manabu, et al. Removal of residual dissolved methane gas in an upflow anaerobic sludge blanket reactor treating low-strength wastewater at low temperature with degassing membrane[J]. Water Research, 2011, 45(11): 3533-3540. |
6 | WANG Pan, WANG Hongtao, QIU Yinquan, et al. Microbial characteristics in anaerobic digestion process of food waste for methane production—A review[J]. Bioresource Technology, 2018, 248: 29-36. |
7 | 唐涛涛, 李江, 杨钊, 等. 污泥厌氧消化功能微生物群落结构的研究进展[J]. 化工进展, 2020, 39(1): 320-328. |
TANG Taotao, LI Jiang, YANG Zhao, et al. Research progress in on microbial community structure of anaerobic digestion of sludge[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 320-328. | |
8 | 方晓瑜, 李家宝, 芮俊鹏, 等. 产甲烷生化代谢途径研究进展[J]. 应用与环境生物学报, 2015, 21(1): 1-9. |
FANG Xiaoyu, LI Jiabao, RUI Junpeng, et al. Research progress in biochemical pathways of methanogenesis[J]. Chin. J. Appl. Environ. Biol., 2015, 21(1): 1-9. | |
9 | 张安龙, 汪琴, 侯银萍, 等. 高钙废水颗粒污泥中古菌菌群结构变化的分析[J]. 环境科学学报, 2019, 39(12): 3956-3965. |
ZHANG Anlong, WANG Qin, HOU Yinping, et al. Analysis of the shift of archaea community structure in granular sludge of high calcium wastewater[J]. Acta Scientiae Circumstantiae, 2019, 39(12): 3956-3965. | |
10 | LIU Yuchen, WHITMAN William B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea[J]. Annals of the New York Academy of Sciences, 2008, 1125(1): 171-189. |
11 | 李煜珊, 李耀明, 欧阳志云. 产甲烷微生物研究概况[J]. 环境科学, 2014, 35(5): 2025-2030. |
LI Yushan, LI Yaoming, OUYANG Zhiyun. A research overview of methanogens[J]. Environmental Science, 2014, 35(5): 2025-2030. | |
12 | 王宇轩, 罗锋, 谢海迎, 等. 餐厨垃圾干发酵滚动式质热交换反应器设计与性能试验[J]. 农业工程学报, 2019, 35(7): 210-216. |
WANG Yuxuan, LUO Feng, XIE Haiying, et al. Design and performance test of rolling type mass and heat transfer reactor for dry anaerobic fermentation of kitchen waste[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(7): 210-216. | |
13 | 蒋海明, 王路路, 李侠. 微生物种间直接电子传递方式耦合产甲烷研究进展[J]. 高校化学工程学报, 2019, 33(6): 1303-1313. |
JIANG Haiming, WANG Lulu, LI Xia. Advances in co-culture stoichiometrically producing methane via direct interspecies electron transfer within microbes[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(6): 1303-1313. | |
14 | STAMS Alfons J M, PLUGGE Caroline M. Electron transfer in syntrophic communities of Anaerobic bacteria and Archaea[J]. Nature Reviews Microbiology, 2009, 7(8): 568-577. |
15 | SUMMERS Zarath M, FOGARTY Heather E, LEANG Ching, et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of Anaerobic bacteria[J]. Science, 2010, 330(6009): 1413-1415. |
16 | ROTARU Amelia-Elena, SHRESTHA Pravin Malla, LIU Fanghua, et al. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J]. Energy and Environmental Science, 2014, 7(1): 408-415. |
17 | ROTARU Amelia-Elena, SHRESTHA Pravin Malla, LIU Fanghua, et al. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri[J]. Applied and Environmental Microbiology, 2014, 80(15): 4599-4605. |
18 | YIN Qidong, WU Guangxue. Advances in direct interspecies electron transfer and conductive materials: electron flux, organic degradation and microbial interaction[J]. Biotechnology Advances, 2019, 37(8): 107443. |
19 | 黄玲艳, 刘星, 周顺桂. 微生物直接种间电子传递: 机制及应用[J]. 土壤学报, 2018, 55(6): 1313-1324. |
HUANG Lingyan, LIU Xing, ZHOU Shungui. Direct interspecies electron transfer of microbes: mechanism and application[J]. Acta Pedologica Sinica, 2018, 55(6): 1313-1324. | |
20 | GAHLOT Pallavi, AHMED Banafsha, TIWARI Satya Brat, et al. Conductive material engineered direct interspecies electron transfer (DIET) in anaerobic digestion: mechanism and application[J]. Environmental Technology & Innovation, 2020, 20: 101056. |
21 | WATANABE Keiko, KOYAMA Mitsuhiko, UEDA Junko, et al. Effect of operating temperature on anaerobic digestion of the Brazilian waterweed Egeria densa and its microbial community[J]. Anaerobe, 2017, 47: 8-17. |
22 | APPELS Lise, BAEYENS Jan, DEGREVE Jan, et al. Principles and potential of the anaerobic digestion of waste-activated sludge[J]. Progress in Energy and Combustion Science, 2008, 34(6): 755-781. |
23 | REN Yuanyuan, YU Miao, WU Chuanfu, et al. A comprehensive review on food waste anaerobic digestion: research updates and tendencies[J]. Bioresource Technology, 2018, 247: 1069-1076. |
24 | 孟晓山, 张玉秀, 隋倩雯, 等. 氨氮浓度对猪粪厌氧消化及产甲烷菌群结构的影响[J]. 环境工程学报, 2018, 12(8): 2346-2356. |
MENG Xiaoshan, ZHANG Yuxiu, Qianwen SUI, et al. Effects of ammonia concentration on anaerobic digestion of swine manure and community structure of methanogens[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2346-2356. | |
25 | ROCAMORA Ildefonso, WAGLAND Stuart T, VILLA Raffaella, et al. Dry anaerobic digestion of organic waste: a review of operational parameters and their impact on process performance[J]. Bioresource Technology, 2020, 299: 122681. |
26 | 魏海娟. 白龙港污水处理厂污泥厌氧消化运行特性分析[J]. 给水排水, 2018, 44(10): 53-55. |
WEI Haijuan. Operation characteristics analysis of anaerobic digestion of sludge in Bailonggang wastewater treatment plant[J]. Water and Wastewater Engineering, 2018, 44(10): 53-55. | |
27 | 张立国, 班巧英, 李建政. UASB反应器中产甲烷菌对温度胁迫的响应[J]. 中国环境科学, 2016, 36(4): 1082-1086. |
ZHANG Liguo, BAN Qiaoying, LI Jianzheng. Response of methanogens on temperature stress in an UASB reactor[J]. China Environmental Science, 2016, 36(4): 1082-1086. | |
28 | 刘智斌, 刘秀红, 周桐, 等.温度对城市污水厌氧生物滤池运行效果与菌群结构的影响[J]. 环境科学, 2020, 41(9): 4141-4149. |
LIU Zhibin, LIU Xiuhong, ZHOU Tong, et al. Effect of temperature on the performance and microbial community structure in anaerobic biofilter treat domestic sewage[J]. Environmental Science, 2020, 41(9): 4141-4149. | |
29 | Jaeho HO, SUNG Shihwu. Methanogenic activities in anaerobic membrane bioreactors (AnMBR) treating synthetic municipal wastewater[J]. Bioresource Technology, 2010, 101: 2191-2196. |
30 | PANIGRAHI Sagarika, DUBEY Brajesh K. A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste[J]. Renewable Energy, 2019, 143: 779-797. |
31 | 张超, 郭于翔, 朱易春, 等. 低强度超声波强化ABR抗冲击负荷的试验研究[J]. 江西理工大学学报, 2016, 37(3): 1-6. |
ZHANG Chao, GUO Yuxiang, ZHU Yichun, et al. Experimental study on intensification of the anti shock load of ABR by low energy ultrasonic[J]. Journal of Jiangxi University of Science and Technology, 2016, 37(3): 1-6. | |
32 | KANNAN Arvind Damodara, EVANS Patrick, PARAMESWARAN Prathap. Long-term microbial community dynamics in a pilot-scale gas sparged anaerobic membrane bioreactor treating municipal wastewater under seasonal variations[J]. Bioresource Technology, 2020, 310: 123425. |
33 | 郁达伟, 孟晓山, 魏源送. 高负荷厌氧生物反应器的三元酸碱缓冲体系特征与调控[J]. 环境科学学报, 2019, 39(2): 279-289. |
YU Dawei, MENG Xiaoshan, WEI Yuansong. Formation and regulation of ternary pH buffer system for anaerobic bioreactor at high loading rate[J]. Acta Scientiae Circumstantiae, 2019, 39(2): 279-289. | |
34 | 卡佳. 水力停留时间对UAFBR处理市政污水的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
EKATERINA SHUSHARINA. Effect of hydraulic retention time on upflow anaerobic fixed bed reactor treatment of domestic wastewater[D]. Harbin: Harbin Institute of Technology, 2017. | |
35 | 刘扬扬. 沉降式污泥循环厌氧法处理生活污水的试验研究[D]. 济南: 山东大学, 2018. |
LIU Yangyang. Experimental study on domestic wastewater treatment by downflow sludge recirculation anaerobic process[D]. Jinan: Shandong University, 2018. | |
36 | 陈泓, 王雯, 严湖, 等. 氨氮对有机废弃物厌氧消化的影响及调控策略[J]. 环境科学与技术, 2016, 39(9): 88-95. |
CHEN Hong, WANG Wen, YAN Hu, et al. Ammonia inhibition on anaerobic digestion and control strategy: a review[J]. Environmental Science and Technology, 2016, 39(9): 88-95. | |
37 | RYUE John, LIN Long, KAKAR Farokh Laqa, et al. A critical review of conventional and emerging methods for improving process stability in thermophilic anaerobic digestion[J]. Energy for Sustainable Development, 2020, 54: 72-84. |
38 | 吴麒, 陈颖, 邱凯瑞, 等. 产甲烷条件下岩溶湿地沉积物中古菌群落的变化规律[J]. 微生物学通报, 2019, 46(12): 3193-3204. |
WU Qi, CHEN Ying, QIU Kairui, et al. Characterization of archaeal communities in a karst wetland under methanogenic conditions[J]. Microbiology China, 2019, 46(12): 3193-3204. | |
39 | 强虹, 李玉友, 裴梦富. COD/SO42-对青霉素菌渣厌氧消化影响[J]. 环境科学, 2018, 39(7): 3443-3451. |
QIANG Hong, LI Yuyou, PEI Mengfu. Effect of COD/SO42- ratio on anaerobic digestion of penicillin bacterial residues[J]. Environmental Science, 2018, 39(7): 3443-3451. | |
40 | LEI Zhen, YANG Shuming, LI Yuyou, et al. Application of anaerobic membrane bioreactors to municipal wastewater treatment at ambient temperature: a review of achievements, challenges, and perspectives[J]. Bioresource Technology, 2018, 267: 756-768. |
41 | SONG Xiaoye, LUO Wenhai, Faisal I. HAI, et al. Resource recovery from wastewater by anaerobic membrane bioreactors: opportunities and challenges[J]. Bioresource Technology, 2018, 270: 669-677. |
42 | FOGLIA Alessia, Çağrı AKYOL, FRISON Nicola, et al. Long-term operation of a pilot-scale anaerobic membrane bioreactor (AnMBR) treating high salinity low loaded municipal wastewater in real environment[J]. Separation and Purification Technology, 2020, 236: 116279. |
43 | STAZI Valentina, TOMEI Maria Concetta. Enhancing anaerobic treatment of domestic wastewater: state of the art, innovative technologies and future perspectives[J]. Science of the Total Environment, 2018, 635: 78–91. |
44 | 潘阳, 支忠祥, 牛承鑫, 等. 厌氧膜生物反应器的现状、挑战和前景[J]. 环境污染与防治, 2020, 42(1): 101-106. |
PAN Yang, ZHI Zhongxiang, NIU Chengxin, et al. Anaerobic membrane bioreactors: research status, challenges and prospects[J]. Environmental Pollution and Control, 2020, 42(1): 101-106. | |
45 | LIN Hongjun, CHEN Jianrong, WANG Fangyuan, et al. Feasibility evaluation of submerged anaerobic membrane bioreactor for municipal secondary wastewater treatment[J]. Desalination, 2011, 280(1/3): 120-126. |
46 | 许得雨, 李正浩, 盛国平, 等. 厌氧膜生物反应器处理低浓度废水的运行效能及膜污染特性[J]. 环境工程学报, 2019, 13(12): 2878-2883. |
XU Deyu, LI Zhenghao, SHENG Guoping, et al. Performance and membrane fouling properties of anaerobic biofilm membrane bioreactor for low-concentration wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2019, 13(12): 2878-2883. | |
47 | HU Yisong, WANG Xiaochang C, Huu Hao NGO, et al. Anaerobic dynamic membrane bioreactor (AnDMBR) for wastewater treatment: a review[J]. Bioresource Technology, 2018, 247: 1107-1118. |
48 | HU Yisong, YANG Yuan, YU Shichun, et al. Psychrophilic anaerobic dynamic membrane bioreactor for domestic wastewater treatment: effects of organic loading and sludge recycling[J]. Bioresource Technology, 2018, 270: 62-69. |
49 | YANG Yuan, ZANG Ying, HU Yisong, et al. Upflow anaerobic dynamic membrane bioreactor (AnDMBR) for wastewater treatment at room temperature and short HRTs: process characteristics and practical applicability[J]. Chemical Engineering Journal, 2020, 383: 123186. |
50 | 杨忠启, 刘秀红, 李海鑫, 等. 上向流厌氧滤池(UAF)处理城市生活污水的运行效能[J]. 环境科学, 2019, 40(9): 4121-4127. |
YANG Zhongqi, LIU Xiuhong, LI Haixin, et al. Performances analysis of an upflow anaerobic filter for domestic sewage treatment[J]. Environmental Science, 2019, 40(9): 4121-4127. | |
51 | LIU Yangyang, HUANG Lihui, DONG Guihua, et al. Enhanced granulation and methane recovery at low load by downflow sludge circulation in anaerobic treatment of domestic wastewater[J]. Bioresource Technology, 2018, 249: 851-857. |
52 | 李光蕾, 向韬, 李军. 低温下Ni+和EDTA对厌氧产甲烷的影响[J]. 水处理技术, 2019, 45(2): 115-119. |
LI Guanglei, XIANG Tao, LI Jun. Effects of Ni+ and EDTA on the anaerobic methane production at low temperature[J]. Technology of Water Treatment, 2019, 45(2): 115-119. | |
53 | XIE Beizhen, LIU Hong, YAN Yixin. Improvement of the activity of anaerobic sludge by low-intensity ultrasound[J]. Journal of Environmental Management, 2009, 90(1): 260-264. |
54 | ZHU Yichun, LI Xin, DU Maoan, et al. Improve bio-activity of anaerobic sludge by low energy ultrasound[J]. Water Science and Technology, 2015, 72(12): 2221-2228. |
55 | ZHAO Zhiqiang, LI Yang, HE Jingyi, et al. Establishing direct interspecies electron transfer during laboratory-scale anaerobic digestion of waste activated sludge via biological ethanol-type fermentation pretreatment[J]. ACS Sustainable Chemistry and Engineering, 2018, 6(10): 13066-13077. |
56 | ZHANG Shuo, CHANG Jiali, LIU Wei, et al. A novel bioaugmentation strategy to accelerate methanogenesis via adding Geobacter sulfurreducens PCA in anaerobic digestion system[J]. Science of the Total Environment, 2018, 642: 322-326. |
57 | LEI Yuqing, SUN Dezhi, DANG Yan, et al. Metagenomic analysis reveals that activated carbon aids anaerobic digestion of raw incineration leachate by promoting direct interspecies electron transfer[J]. Water Research, 2019, 161: 570-580. |
58 | ZHANG Yingdi, GUO Bing, ZHANG Lei, et al. Key syntrophic partnerships identified in a granular activated carbon amended UASB treating municipal sewage under low temperature conditions[J]. Bioresource Technology, 2020, 312: 123556. |
59 | ZHANG Yingdi, ZHANG Lei, GUO Bing, et al. Granular activated carbon stimulated microbial physiological changes for enhanced anaerobic digestion of municipal sewage[J]. Chemical Engineering Journal, 2020, 400: 125838. |
[1] | 陈翔宇, 卞春林, 肖本益. 温度分级厌氧消化工艺的研究进展[J]. 化工进展, 2023, 42(9): 4872-4881. |
[2] | 王雪婷, 顾霞, 徐先宝, 赵磊, 薛罡, 李响. 水热预处理对餐厨垃圾厌氧发酵产戊酸的影响[J]. 化工进展, 2023, 42(9): 4994-5002. |
[3] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[4] | 奚永兰, 王成成, 叶小梅, 刘洋, 贾昭炎, 曹春晖, 韩挺, 张应鹏, 田雨. 微纳米气泡在厌氧消化中的应用研究进展[J]. 化工进展, 2023, 42(8): 4414-4423. |
[5] | 刘洋, 叶小梅, 苗晓, 王成成, 贾昭炎, 曹春晖, 奚永兰. 农村有机生活垃圾干发酵氨胁迫下中试工艺[J]. 化工进展, 2023, 42(7): 3847-3854. |
[6] | 李白雪, 信欣, 朱羽蒙, 刘琴, 刘鑫. SASD-A体系构建及进水不同S/N对脱氮工艺的影响机制[J]. 化工进展, 2023, 42(6): 3261-3271. |
[7] | 庄捷, 薛锦辉, 赵斌成, 张文艺. 猪粪厌氧消化进程中重金属与腐殖质的有机结合机制[J]. 化工进展, 2023, 42(6): 3281-3291. |
[8] | 黄越, 赵立欣, 姚宗路, 于佳动, 李再兴, 申瑞霞, 安柯萌, 黄亚丽. 木质纤维类废弃物定向生物转化乳酸、乙酸研究进展[J]. 化工进展, 2023, 42(5): 2691-2701. |
[9] | 李华华, 李逸航, 金北辰, 李隆昕, 成少安. 厌氧氨氧化-生物电化学耦合废水处理系统的研究进展[J]. 化工进展, 2023, 42(5): 2678-2690. |
[10] | 朱紫旋, 陈俊江, 张星星, 李祥, 刘文如, 吴鹏. 基于短程反硝化厌氧氨氧化新型污水生物脱氮工艺的研究进展[J]. 化工进展, 2023, 42(4): 2091-2100. |
[11] | 王玉, 余广炜, 江汝清, 黎长江, 林佳佳, 邢贞娇. 餐厨厌氧沼渣生物炭吸附盐酸环丙沙星[J]. 化工进展, 2023, 42(4): 2160-2170. |
[12] | 范思涵, 于国熙, 来超超, 何欢, 黄斌, 潘学军. 非生物改性对厌氧微生物产物光化学活性影响[J]. 化工进展, 2023, 42(4): 2180-2189. |
[13] | 孟晓山, 汤子健, 陈琳, 呼和涛力, 周政忠. 厌氧消化系统酸化预警及调控技术研究进展[J]. 化工进展, 2023, 42(3): 1595-1605. |
[14] | 赵星程, 贾方旭, 蒋伟彧, 陈佳熠, 刘晨雨, 姚宏. 氧化还原介体介导厌氧氨氧化生物脱氮的研究进展[J]. 化工进展, 2023, 42(3): 1606-1617. |
[15] | 王玉, 余广炜, 林佳佳, 黎长江, 江汝清, 邢贞娇, 余铖. 沼渣、飞灰和污泥生物炭制备建筑陶粒[J]. 化工进展, 2023, 42(2): 1039-1050. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |