化工进展 ›› 2023, Vol. 42 ›› Issue (4): 2091-2100.DOI: 10.16085/j.issn.1000-6613.2022-1175
朱紫旋1(), 陈俊江1, 张星星1, 李祥1, 刘文如1,2,3, 吴鹏1,2,3()
收稿日期:
2022-06-23
修回日期:
2022-08-24
出版日期:
2023-04-25
发布日期:
2023-05-08
通讯作者:
吴鹏
作者简介:
朱紫旋(1998—),女,硕士研究生,研究方向为污水处理与回用技术。E-mail:2878224250@qq.com。
基金资助:
ZHU Zixuan1(), CHEN Junjiang1, ZHANG Xingxing1, LI Xiang1, LIU Wenru1,2,3, WU Peng1,2,3()
Received:
2022-06-23
Revised:
2022-08-24
Online:
2023-04-25
Published:
2023-05-08
Contact:
WU Peng
摘要:
短程反硝化厌氧氨氧化(PD/A)工艺凭借其无需曝气、废物质产量低、有机碳源需求少等优点,被视为近年来最具有主流工程应用前景的新型生物脱氮工艺。本文首先阐述了PD/A工艺的原理及特点;随后从pH、碳源、盐度以及重金属等方面总结了影响PD/A工艺的关键因素,同时提出了实现PD/A工艺核心功能菌群快速富集以及良好协同的调控策略;而后概括了由PD/A工艺发展而来的多种衍生工艺,并从工艺稳定性、经济性和可调控性等方面,分析了这些衍生工艺的研究前景;最后展望了PD/A工艺未来的研究重点,认为借助宏基因组学技术探明不利生境胁迫下PD/A工艺的抗性形成机制,有利于未来主流厌氧氨氧化(Anammox)工艺的实际工程应用;同时认为于双碳背景下与现有成熟的生物脱氮工艺相耦合,实现各类废水的经济、高效和达标处理,将会是PD/A工艺未来的一个重点研究方向。
中图分类号:
朱紫旋, 陈俊江, 张星星, 李祥, 刘文如, 吴鹏. 基于短程反硝化厌氧氨氧化新型污水生物脱氮工艺的研究进展[J]. 化工进展, 2023, 42(4): 2091-2100.
ZHU Zixuan, CHEN Junjiang, ZHANG Xingxing, LI Xiang, LIU Wenru, WU Peng. Research advances on novel wastewater biological nitrogen removal technology by partial denitrification coupled with Anammox[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2091-2100.
衍生工艺 | 反应器 | 废水类型 | 运行条件 | TN去除率/% | 参考文献 | ||
---|---|---|---|---|---|---|---|
C/N | DO/mg·L-1 | 温度/℃ | |||||
DPR+PDA | ABR-CSTR | 模拟生活污水+ | 0.7 | — | 33±0.5 | 97.57 | [ |
DPR+EPDA | SBR | 实际生活污水+ | 3.0 | — | 15~24 | 95 | [ |
SPDAF | UASB | 实际生活污水+ | 3.2 | — | 26±2 | 93.1 | [ |
SPNDA | SBR | 合成废水 | 3.0 | 0.15 | 30±1 | 97.6±0.5 | [ |
PNA+PDA | SBR | 合成废水 | 0.28 | 0.25±0.1 | 30±2 | 94.6 | [ |
INPDA | SBBR | 实际生活污水 | 2.5 | 1.0 | 30±1 | 94.1 | [ |
AnHA-PDA | ABR-CSTR | 模拟生活污水+ | 2.36 | — | 32±1 | 94.78 | [ |
IFNPDA | ABR-CSTR | 实际生活污水 | 3.9 | 1.8 | 30±1 | 94.1 | [ |
表1 PD/A衍生工艺的研究与应用
衍生工艺 | 反应器 | 废水类型 | 运行条件 | TN去除率/% | 参考文献 | ||
---|---|---|---|---|---|---|---|
C/N | DO/mg·L-1 | 温度/℃ | |||||
DPR+PDA | ABR-CSTR | 模拟生活污水+ | 0.7 | — | 33±0.5 | 97.57 | [ |
DPR+EPDA | SBR | 实际生活污水+ | 3.0 | — | 15~24 | 95 | [ |
SPDAF | UASB | 实际生活污水+ | 3.2 | — | 26±2 | 93.1 | [ |
SPNDA | SBR | 合成废水 | 3.0 | 0.15 | 30±1 | 97.6±0.5 | [ |
PNA+PDA | SBR | 合成废水 | 0.28 | 0.25±0.1 | 30±2 | 94.6 | [ |
INPDA | SBBR | 实际生活污水 | 2.5 | 1.0 | 30±1 | 94.1 | [ |
AnHA-PDA | ABR-CSTR | 模拟生活污水+ | 2.36 | — | 32±1 | 94.78 | [ |
IFNPDA | ABR-CSTR | 实际生活污水 | 3.9 | 1.8 | 30±1 | 94.1 | [ |
1 | VAN DE GRAAF A A, MULDER A, DE BRUIJN P, et al. Anaerobic oxidation of ammonium is a biologically mediated process[J]. Applied and Environmental Microbiology, 1995, 61(4): 1246-1251. |
2 | WU P, CHEN J J, GARLAPATI V K, et al. Novel insights into Anammox-based processes: A critical review[J]. Chemical Engineering Journal, 2022, 444: 136534. |
3 | LI Jianwei, LI Jialin, GAO Ruitao, et al. A critical review of one-stage anammox processes for treating industrial wastewater: Optimization strategies based on key functional microorganisms[J]. Bioresource Technology, 2018, 265: 498-505. |
4 | LI Jialin, LI Jianwei, PENG Yongzhen, et al. Insight into the impacts of organics on Anammox and their potential linking to system performance of sewage partial nitrification-anammox (PN/A): A critical review[J]. Bioresource Technology, 2020, 300: 122655. |
5 | 杜睿, 彭永臻. 城市污水生物脱氮技术变革: 厌氧氨氧化的研究与实践新进展[J]. 中国科学: 技术科学, 2022, 52(3): 389-402. |
DU Rui, PENG Yongzhen. Technical revolution of biological nitrogen removal from municipal wastewater: recent advances in Anammox research and application[J]. Scientia Sinica (Technologica), 2022, 52(3): 389-402. | |
6 | 王超超, 吴翼伶, 陈嘉巧, 等. 新型厌氧水解酸化-短程反硝化厌氧氨氧化工艺同步处理生活污水和含硝酸盐模拟废水[J]. 化工进展, 2022, 41(7): 3890-3899. |
WANG Chaochao, WU Yiling, CHEN Jiaqiao, et al. A novel anaerobic hydrolysis acidification-partial denitrification anaerobic ammonia oxidation process for advanced nitrogen removal from simulated domestic and nitrate-containing wastewater[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3890-3899. | |
7 | 张星星, 张钰, 王超超, 等. 短程反硝化耦合厌氧氨氧化工艺及其应用前景研究进展[J]. 化工进展, 2020, 39(5): 1981-1991. |
ZHANG Xingxing, ZHANG Yu, WANG Chaochao, et al. Research advances in application prospect of partial denitrification coupled with anammox: A review[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1981-1991. | |
8 | CHEN H, TU Z, WU S, et al. Recent advances in partial denitrification-anaerobic ammonium oxidation process for mainstream municipal wastewater treatment[J]. Chemosphere, 2021, 278: 130436. |
9 | CAO Shenbin, WANG Shuying, PENG Yongzhen, et al. Achieving partial denitrification with sludge fermentation liquid as carbon source: The effect of seeding sludge[J]. Bioresource Technology, 2013, 149: 570-574. |
10 | CAO Shenbin, DU Rui, LI Baikun, et al. Nitrite production from partial-denitrification process fed with low carbon/nitrogen (C/N) domestic wastewater: Performance, kinetics and microbial community[J]. Chemical Engineering Journal, 2017, 326: 1186-1196. |
11 | BAHTIAR F, ZHANG Xingxing, WANG Yuguang, et al. New insight into partial denitrification (PD)-based Anammox process and potential engineering application: a review[J]. Journal of Health and Environmental Research, 2020, 6(3): 79. |
12 | XIAO R, NI B J, LIU S, et al. Impacts of organics on the microbial ecology of wastewater Anammox processes: recent advances and meta-analysis[J]. Water Research, 2021, 191: 116817. |
13 | 吕振, 李燕. pH和C∶N对厌氧氨氧化耦合短程反硝化脱氮性能的影响[J]. 环境污染与防治, 2018, 40(10): 1106-1111. |
Zhen LYU, LI Yan. Effects of pH and C∶N on nitrogen removal by coupling Anammox with partial denitratation[J]. Environmental Pollution & Control, 2018, 40(10): 1106-1111. | |
14 | 马瑞婕, 刘永红, 梁继东, 等. 基于颗粒污泥的短程反硝化USB反应器启动和运行研究[J]. 中国环境科学, 2022, 42(5): 2129-2135. |
MA Ruijie, LIU Yonghong, LIANG Jidong, et al. Study on start-up and operation of USB reactor for partial denitrification based on granular sludge[J]. China Environmental Science, 2022, 42(5): 2129-2135. | |
15 | QIAN Wenting, MA Bin, LI Xiyao, et al. Long-term effect of pH on denitrification: High pH benefits achieving partial-denitrification[J]. Bioresource Technology, 2019, 278: 444-449. |
16 | DU Rui, CAO Shenbin, LI Baikun, et al. Step-feeding organic carbon enhances high-strength nitrate and ammonia removal via DEAMOX process[J]. Chemical Engineering Journal, 2019, 360: 501-510. |
17 | DU Rui, CAO Shenbin, LI Baikun, et al. Performance and microbial community analysis of a novel Deamox based on partial-denitrification and Anammox treating ammonia and nitrate wastewaters[J]. Water Research, 2017, 108: 46-56. |
18 | LE Tri, PENG Bo, SU Chunyang, et al. Impact of carbon source and COD/N on the concurrent operation of partial denitrification and Anammox[J]. Water Environment Research, 2019, 91(3): 185-197. |
19 | LEAL C D, PEREIRA A D, NUNES F T, et al. Anammox for nitrogen removal from anaerobically pre-treated municipal wastewater: Effect of COD/N ratios on process performance and bacterial community structure[J]. Bioresource Technology, 2016, 211: 257-266. |
20 | NI Shouqing, NI Jianyuan, HU Deliang, et al. Effect of organic matter on the performance of granular anammox process[J]. Bioresource Technology, 2012, 110: 701-705. |
21 | CUI Ying, ZHAO Bowei, XIE Fei, et al. Study on the preparation and feasibility of a novel adding-type biological slow-release carbon source[J]. Journal of Environmental Management, 2022, 316: 115236. |
22 | FU Guiping, HUANGSHEN L, GUO Zhipeng, et al. Effect of plant-based carbon sources on denitrifying microorganisms in a vertical flow constructed wetland[J]. Bioresource Technology, 2017, 224: 214-221. |
23 | FU Xinrong, HOU Rongrong, YANG Peng, et al. Application of external carbon source in heterotrophic denitrification of domestic sewage: A review[J]. Science of the Total Environment, 2022, 817: 153061. |
24 | LI Jin, QI Panqing, QIANG Zhimin, et al. Is anammox a promising treatment process for nitrogen removal from nitrogen-rich saline wastewater? [J]. Bioresource Technology, 2018, 270: 722-731. |
25 | ZHANG Jingwen, PENG Yongzhen, LI Xiangchen, et al. Feasibility of partial-denitrification/anammox for pharmaceutical wastewater treatment in a hybrid biofilm reactor[J]. Water Research, 2022, 208: 117856. |
26 | LI Yilin, ZHANG Wenjia, DAI Yun, et al. Effective partial denitrification of biological effluent of landfill leachate for Anammox process: Start-up, influencing factors and stable operation[J]. The Science of the Total Environment, 2022, 807(3): 150975. |
27 | PARK Myeonghwa, KIM Jeongmi, LEE Teaho, et al. Correlation of microbial community with salinity and nitrogen removal in an Anammox-based denitrification system[J]. Chemosphere, 2021, 263: 128340. |
28 | BI Chunxue, YU Deshuang, WANG Xiaoxia, et al. Performance and microbial structure of partial denitrification in response to salt stress: Achieving stable nitrite accumulation with municipal wastewater[J]. Bioresource Technology, 2020, 311: 123559. |
29 | DENG Weifeng, WANG Litao, CHENG Lang, et al. Nitrogen removal from mature landfill leachate via Anammox based processes: A review[J]. Sustainability, 2022, 14(2): 995. |
30 | XU Ao, YU Deshuang, QIU Yanling, et al. A novel process of salt tolerance partial denitrification and Anammox (ST-PDA) for treating saline wastewater[J]. Bioresource Technology, 2022, 345: 126472. |
31 | DENG Fei, ZHANG Dongwei, YANG Liting, et al. Effects of antibiotics and heavy metals on denitrification in shallow eutrophic lakes[J]. Chemosphere, 2022, 291(2): 132948. |
32 | ZHANG Xiaojing, CHEN Zhao, MA Yongpeng, et al. Acute and persistent toxicity of Cd(Ⅱ) to the microbial community of Anammox process[J]. Bioresource Technology, 2018, 261: 453-457. |
33 | 李鸿, 张立秋, 张绍青, 等. Cd2+胁迫对短程反硝化的影响与微生物群落变化[J]. 中国给水排水, 2021, 37(5): 10-16. |
LI Hong, ZHANG Liqiu, ZHANG Shaoqing, et al. Effects of Cd2+ stress on partial denitrification and change of microbial community[J]. China Water & Wastewater, 2021, 37(5): 10-16. | |
34 | MA Wenjie, CHENG Yafei, JIN Rencun. Comprehensive evaluation of the long-term effect of Cu2+ on denitrifying granular sludge and feasibility of in situ recovery by phosphate[J]. Journal of Hazardous Materials, 2022, 422: 126901. |
35 | DEL RÍO Á VAL, SILVA T, MARTINS T H, et al. Partial nitritation-Anammox granules: short-term inhibitory effects of seven metals on Anammox activity[J]. Water, Air, & Soil Pollution, 2017, 228(11): 1-9. |
36 | YU Cheng, SONG Yuxia, CHAI Liyuan, et al. Comparative evaluation of short-term stress of Cd(Ⅱ), Hg(Ⅱ), Pb(Ⅱ), As(Ⅲ) and Cr(Ⅵ) on Anammox granules by batch test[J]. Journal of Bioscience and Bioengineering, 2016, 122(6): 722-729. |
37 | DOU Quanhao, ZHANG Li, LAN Shuang, et al. Metagenomics illuminated the mechanism of enhanced nitrogen removal and vivianite recovery induced by zero-valent iron in partial-denitrification/Anammox process[J]. Bioresource Technology, 2022, 356: 127317. |
38 | 刘文如, 李天皓, 陈洁, 等. NaHCO3投加量对废铁屑耦合厌氧氨氧化系统脱氮效能的影响[J]. 中国环境科学, 2022, 42(9): 4190-4198. |
LIU Wenru, LI Tianhao, CHEN Hao, et al. Influence of NaHCO3 dosage on nitrogen removal performance of the waste iron scraps-assisted Anammox systems[J]. China Environmental Science, 2022, 42(9): 4190-4198. | |
39 | ZHANG Xiaojing, CHEN Zhao, ZHOU Yue, et al. Impacts of the heavy metals Cu(Ⅱ), Zn(Ⅱ) and Fe(Ⅱ) on an Anammox system treating synthetic wastewater in low ammonia nitrogen and low temperature: Fe(Ⅱ) makes a difference[J]. Science of the Total Environment, 2019, 648: 798-804. |
40 | WERALUPITIYA C, WANIGATUNGE R, JOSEPH S, et al. Anammox bacteria in treating ammonium rich wastewater: Recent perspective and appraisal[J]. Bioresource Technology, 2021, 334: 125240. |
41 | DU Rui, PENG Yongzhen, JI Jiantao, et al. Partial denitrification providing nitrite: Opportunities of extending application for Anammox[J]. Environment International, 2019, 131: 105001. |
42 | FAN Zhiwei, ZENG Wei, LIU Hong, et al. A novel partial denitrification, Anammox-biological phosphorus removal, fermentation and partial nitrification (PDA-PFPN) process for real domestic wastewater and waste activated sludge treatment[J]. Water Research, 2022, 217: 118376. |
43 | WU Peng, ZHANG Xingxing, WANG Yuguang, et al. Development of a novel denitrifying phosphorus removal and partial denitrification anammox (DPR + PDA) process for advanced nitrogen and phosphorus removal from domestic and nitrate wastewaters[J]. Bioresource Technology, 2021, 327: 124795. |
44 | ZHANG Xiaoyang, HAN Haonan, ZHENG Xiong, et al. Tetracycline-induced effects on the nitrogen transformations in sediments: roles of adsorption behavior and bacterial activity[J]. The Science of the Total Environment, 2019, 695: 133811. |
45 | HU Ziye, VAN ALEN T, JETTEN M S M, et al. Lysozyme and penicillin inhibit the growth of anaerobic ammonium-oxidizing planctomycetes[J]. Applied and Environmental Microbiology, 2013, 79(24): 7763-7769. |
46 | WANG Shuailing, LI Jun, WANG Changwen, et al. Reaction of the Anammox granules to various antibiotics and operating the anammox coupled denitrifying reactor for oxytetracycline wastetwater treatment[J]. Bioresource Technology, 2022, 348: 126756. |
47 | ZHANG Xiaojing, CHEN Zhao, MA Yongpeng, et al. Response of Anammox biofilm to antibiotics in trace concentration: Microbial activity, diversity and antibiotic resistance genes[J]. Journal of Hazardous Materials, 2019, 367: 182-187. |
48 | ZHANG Xiaojing, CHEN Zhao, MA Yongpeng, et al. Impacts of erythromycin antibiotic on Anammox process: Performance and microbial community structure[J]. Biochemical Engineering Journal, 2019, 143: 1-8. |
49 | WANG Xiaotong, YANG Hong, ZHOU Yakun, et al. Performance and mechanism analysis of gel immobilized Anammox bacteria in treating different proportions of domestic wastewater: A valid alternative to granular sludge[J]. Bioresource Technology, 2022, 347: 126623. |
50 | KOSGEY K, CHANDRAN K, GOKAL J, et al. Critical analysis of biomass retention strategies in mainstream and sidestream Anammox-mediated nitrogen removal systems[J]. Environmental Science & Technology, 2021, 55(1): 9-24. |
51 | WANG J, FAN Y C, CHEN Y P. Nitrogen removal performance and characteristics of gel beads immobilized anammox bacteria under different PVA: SA ratios[J]. Water Environment Research, 2021, 93(9): 1627-1639. |
52 | JIANG Hao, WANG Zhong, REN Shang, et al. Enrichment and retention of key functional bacteria of partial denitrification-Anammox (PD/A) process via cell immobilization: A novel strategy for fast PD/A application[J]. Bioresource Technology, 2021, 326: 124744. |
53 | GAO Ruitao, PENG Yongzhen, LI Jianwei, et al. Nitrogen removal from low COD/TIN real municipal sewage by coupling partial denitrification with Anammox in mainstream[J]. Chemical Engineering Journal, 2021, 410: 128221. |
54 | DU Rui, PENG Yongzhen, CAO Shenbin, et al. Advanced nitrogen removal from wastewater by combining Anammox with partial denitrification[J]. Bioresource Technology, 2015, 179: 497-504. |
55 | ZHANG Xingxing, ZHANG Xiaonong, WU Peng, et al. Hydroxylamine metabolism in mainstream denitrifying ammonium oxidation (Deamox) process: Achieving fast start-up and robust operation with bio-augmentation assistance under ambient temperature[J]. Journal of Hazardous Materials, 2022, 421: 126736. |
56 | 赖杨岚, 周少奇. 厌氧氨氧化与反硝化的协同作用特性研究[J]. 中国给水排水, 2010, 26(13): 6-10. |
LAI Yanglan, ZHOU Shaoqi. Study on synergism characteristics of Anammox and denitrification[J]. China Water & Wastewater, 2010, 26(13): 6-10. | |
57 | 汪宇光, 张星星, 王超超, 等. 反硝化除磷+短程反硝化厌氧氨氧化工艺的深度脱氮除磷效能[J]. 化工进展, 2022, 41(4): 2191-2201. |
WANG Yuguang, ZHANG Xingxing, WANG Chaochao, et al. Achieving advanced nitrogen and phosphorus removal based on denitrifying phosphorus removal and partial denitrification Anammox process[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2191-2201. | |
58 | WANG Xiaoxia, ZHAO Ji, YU Deshuang, et al. Evaluating the potential for sustaining mainstream Anammox by endogenous partial denitrification and phosphorus removal for energy-efficient wastewater treatment[J]. Bioresource Technology, 2019, 284: 302-314. |
59 | 彭永臻, 王锦程, 李翔晨, 等. 氮负荷对短程反硝化耦合厌氧氨氧化生物膜系统脱氮性能的影响[J]. 北京工业大学学报, 2021,47(12):1367-1376. |
PENG Yongzhen, WANG Jincheng, LI Xiangchen, et al. Effect of nitrogen loading rates on nitrogen removal performance of partial-denitrification coupling with Anammox biofilm system[J].Journal of Beijing University of Technology, 2021,47(12):1367-1376. | |
60 | LIU Xiping, LI Xiyao, PENG Yongzhen, et al. Synergistic partial denitrification, Anammox and in situ fermentation (SPDAF) process for treating domestic and nitrate wastewater: Response of nitrogen removal performance to decreasing temperature[J]. Bioresource Technology, 2021, 342: 125865. |
61 | JI Jiantao, PENG Yongzhen, WANG Bo, et al. Synergistic partial-denitrification, Anammox, and in situ fermentation (SPDAF) process for advanced nitrogen removal from domestic and nitrate-containing wastewater[J]. Environmental Science & Technology, 2020, 54(6): 3702-3713. |
62 | SHI Liangliang, DU Rui, PENG Yongzhen. Achieving partial denitrification using carbon sources in domestic wastewater with waste-activated sludge as inoculum[J]. Bioresource Technology, 2019, 283: 18-27. |
63 | YUAN Yue, WANG Shuying, LIU Ye, et al. Long-term effect of pH on short-chain fatty acids accumulation and microbial community in sludge fermentation systems[J]. Bioresource Technology, 2015, 197: 56-63. |
64 | ZHANG Xingxing, WU Peng, MA Liping, et al. A novel simultaneous partial nitrification and denitratation (SPND) process in single micro-aerobic sequencing batch reactor for stable nitrite accumulation under ambient temperature[J]. Chemical Engineering Journal, 2021, 425: 130646. |
65 | ZHANG Liyuan, ZHANG Qiong, DAI Jiatong, et al. Rapidly achieving and optimizing simultaneous partial nitrification denitrification and Anammox integrated process by hydroxylamine addition for advanced nitrogen removal from domestic wastewater[J]. Bioresource Technology, 2021, 342: 125987. |
66 | ZHANG Xingxing, WU Peng, XU Lezhong, et al. A novel simultaneous partial nitritation, denitratation and anammox (SPNDA) process in sequencing batch reactor for advanced nitrogen removal from ammonium and nitrate wastewater[J]. Bioresource Technology, 2022, 343: 126105. |
67 | 张亮, 李朝阳, 彭永臻. 城市污水PN/A工艺中NOB的控制策略研究进展[J]. 北京工业大学学报, 2022, 48(4): 421-429. |
ZHANG Liang, LI Zhaoyang, PENG Yongzhen. Recent progress of NOB control strategies in sewage PN/A process[J]. Journal of Beijing University of Technology, 2022, 48(4): 421-429. | |
68 | SOLER-JOFRA A, PÉREZ J, VAN LOOSDRECHT M C M. Hydroxylamine and the nitrogen cycle: A review[J]. Water Research, 2021, 190: 116723. |
69 | ZHANG Xingxing, XIA Yunkang, WANG Chaochao, et al. Enhancement of nitrite production via addition of hydroxylamine to partial denitrification (PD) biomass: Functional genes dynamics and enzymatic activities[J]. Bioresource Technology, 2020, 318: 124274. |
70 | LI Jialin, PENG Yongzhen, ZHANG Liang, et al. Improving efficiency and stability of Anammox through sequentially coupling nitritation and denitritation in a single-stage bioreactor[J]. Environmental Science & Technology, 2020, 54(17): 10859-10867. |
71 | ZHANG Meng, WANG Siyu, JI Bin, et al. Towards mainstream deammonification of municipal wastewater: Partial nitrification-anammox versus partial denitrification-anammox[J]. The Science of the Total Environment, 2019, 692: 393-401. |
72 | LI Wenyu, LI Jianwei, LIU Ying, et al. Mainstream double-anammox driven by nitritation and denitratation using a one-stage step-feed bioreactor with real municipal wastewater[J]. Bioresource Technology, 2022, 343: 126132. |
73 | JIANG Hao, YANG Pei, WANG Zhong, et al. Efficient and advanced nitrogen removal from mature landfill leachate via combining nitritation and denitritation with Anammox in a single sequencing batch biofilm reactor[J]. Bioresource Technology, 2021, 333: 125138. |
74 | ZHOU Xin, SONG Jingjing, WANG Gonglei, et al. Unravelling nitrogen removal and nitrous oxide emission from mainstream integrated nitrification-partial denitrification-Anammox for low carbon/nitrogen domestic wastewater[J]. Journal of Environmental Management, 2020, 270: 110872. |
75 | SHI Liangliang, DU Rui, PENG Yongzhen, et al. Successful establishment of partial denitrification by introducing hydrolytic acidification of slowly biodegradable organic matter[J]. Bioresource Technology, 2020, 315: 123887. |
76 | WU Yiling, ZHANG Xingxing, CHEN Junjiang, et al. Effective utilization of refractory dissolved organic matters in domestic sewage allows to enhanced nitrogen removal by integrated fermentation, nitrification, denitratation and Anammox process[J]. Bioresource Technology, 2022, 354: 127227. |
77 | LI Wei, ZHUANG Jinlong, ZHOU Yuanyuan, et al. Metagenomics reveals microbial community differences lead to differential nitrate production in Anammox reactors with differing nitrogen loading rates[J]. Water Research, 2020, 169: 115279. |
78 | 宋新新, 刘杰, 林甲, 等. 碳中和时代下我国能量自给型污水处理厂发展方向及工程实践[J]. 环境科学学报, 2022, 42(4): 53-63. |
SONG Xinxin, LIU Jie, LIN Jia, et al. The development direction and practice of energy self-sufficiency sewage treatment plants in China under Carbon Neutral Era[J]. Acta Scientiae Circumstantiae, 2022, 42(4): 53-63. |
[1] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[2] | 李白雪, 信欣, 朱羽蒙, 刘琴, 刘鑫. SASD-A体系构建及进水不同S/N对脱氮工艺的影响机制[J]. 化工进展, 2023, 42(6): 3261-3271. |
[3] | 李华华, 李逸航, 金北辰, 李隆昕, 成少安. 厌氧氨氧化-生物电化学耦合废水处理系统的研究进展[J]. 化工进展, 2023, 42(5): 2678-2690. |
[4] | 赵星程, 贾方旭, 蒋伟彧, 陈佳熠, 刘晨雨, 姚宏. 氧化还原介体介导厌氧氨氧化生物脱氮的研究进展[J]. 化工进展, 2023, 42(3): 1606-1617. |
[5] | 张涵, 张肖静, 马冰冰, 佴灿, 刘烁烁, 马永鹏, 宋亚丽. 以城市废弃污泥为种泥启动厌氧氨氧化工艺的可行性[J]. 化工进展, 2023, 42(2): 1080-1088. |
[6] | 池伟利, 杨宏. 厌氧氨氧化包埋填料处理稀土尾矿废水的中试脱氮和优化[J]. 化工进展, 2023, 42(1): 506-516. |
[7] | 陈加波, 周鑫, 李旭. 以活性污泥为接种污泥厌氧氨氧化工艺的快速启动及脱氮效能[J]. 化工进展, 2022, 41(7): 3900-3907. |
[8] | 王超超, 吴翼伶, 陈嘉巧, 蔡天宁, 刘文如, 李祥, 吴鹏. 新型厌氧水解酸化-短程反硝化厌氧氨氧化工艺同步处理生活污水和含硝酸盐模拟废水[J]. 化工进展, 2022, 41(7): 3890-3899. |
[9] | 汪宇光, 张星星, 王超超, 夏云康, 王垚, 周澄, 吴翼伶, 吴鹏, 徐乐中. 反硝化除磷+短程反硝化厌氧氨氧化工艺的深度脱氮除磷效能[J]. 化工进展, 2022, 41(4): 2191-2201. |
[10] | 刘锋, 张雪智, 王苏琴, 冯震, 葛丹丹, 杨洋. 硫代硫酸盐驱动自养反硝化耦合厌氧氨氧化强化总氮去除[J]. 化工进展, 2022, 41(2): 990-997. |
[11] | 肖灿灿, 杨亚飞, 张耀斌. 针铁矿促进剩余污泥厌氧消化中的脱氮除碳[J]. 化工进展, 2022, 41(12): 6689-6697. |
[12] | 雷欣, 闫荣, 慕玉洁, 章院灿, 付志敏. 铁元素对厌氧氨氧化菌脱氮效能的影响[J]. 化工进展, 2021, 40(5): 2730-2738. |
[13] | 张星星, 张钰, 王超超, 达方华, 徐乐中, 吴鹏. 短程反硝化耦合厌氧氨氧化工艺及其应用前景研究进展[J]. 化工进展, 2020, 39(5): 1981-1991. |
[14] | 谢军祥, 姜滢, 常尧枫, 谢嘉玮, 郭萌蕾, 陈重军. 城镇生活污水厌氧氨氧化处理的研究进展[J]. 化工进展, 2020, 39(10): 4175-4184. |
[15] | 丁爽. 厌氧氨氧化烟气脱硝工艺的探讨[J]. 化工进展, 2017, 36(11): 4250-4256. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |