化工进展 ›› 2025, Vol. 44 ›› Issue (1): 329-340.DOI: 10.16085/j.issn.1000-6613.2023-2260
杨润农1,2(), 白帆飞1, 林梓荣1, 孙永明2, 尹祥3
收稿日期:
2023-12-25
修回日期:
2024-02-04
出版日期:
2025-01-15
发布日期:
2025-02-13
通讯作者:
杨润农
作者简介:
杨润农(1989—),女,博士,研究方向为多相催化。E-mail:Yangrn0814@163.com。
基金资助:
YANG Runnong1,2(), BAI Fanfei1, LIN Zirong1, SUN Yongming2, YIN Xiang3
Received:
2023-12-25
Revised:
2024-02-04
Online:
2025-01-15
Published:
2025-02-13
Contact:
YANG Runnong
摘要:
由于工业原料中硫化物的毒性与腐蚀性会对工业生产和生态健康带来不利影响,采用最优的脱硫技术实现硫化物的深度脱除意义重大。本文以吸附脱除复杂有机硫为调研范围,首先概述了吸附脱硫的优势与涉及的物理、化学吸附过程;随后以具有丰富孔结构和大比表面积的分子筛为调研对象,按照其孔道尺寸的不同,综述了微孔(FAU、MFI、β)、介孔(MCM-41、SBA-15、KIT-6、MCM-48)和多级孔分子筛在吸附脱除有机硫中的应用现状;进一步分析了分子筛脱硫性能的影响因素,包括活性组分种类、含量与分散度的影响,分子筛微观形貌与孔结构的影响,分子筛酸性位的影响等。分析可知,最后指出了分子筛脱硫剂的脱硫性能与分子筛载体自身的微观结构和表面性质密切相关,通过精确设计与可控制备脱硫剂使其具备硫容大、脱硫精度高、选择性高、孔结构稳定、寿命长、可再生利用等优良特质将是今后研究的重要方向。
中图分类号:
杨润农, 白帆飞, 林梓荣, 孙永明, 尹祥. 分子筛吸附脱除有机硫的研究进展[J]. 化工进展, 2025, 44(1): 329-340.
YANG Runnong, BAI Fanfei, LIN Zirong, SUN Yongming, YIN Xiang. Research progress on adsorptive removal of organic sulfides by zeolite[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 329-340.
样品名称 | 吸附硫化物 | 穿透硫容/mmol S·g-1 | 平衡吸附硫容/mmol S·g-1 | 参考文献 |
---|---|---|---|---|
Y | TH | 0.20(<1×10-6) | — | [ |
ZSM-5 | DMS | 0.132(<2×10-5) | — | [ |
ZSM-5 | TH | — | 0.04 | [ |
β | TH+BT | 0.156(<1×10-6) | — | [ |
MCM-41 | BT | 0.02(<1×10-6) | — | [ |
MCM-41 | TH | — | 0.16 | [ |
SBA-15 | BT | 0.03(<1×10-6) | — | [ |
KIT-6 | BT | 0.04(<1×10-6) | — | |
KIT-6 | TH | 0.0336 | — | [ |
Cu/Y | TH | 0.95(<1×10-6) | — | [ |
酸修饰的Y | TH | 0.85(<1×10-7) | — | [ |
Ce-ZSM-5 | TH | — | 0.16 | [ |
Cu-ZSM-5 | TH | — | 0.08 | [ |
Fe-ZSM-5 | TH | — | 0.06 | [ |
Ni-ZSM-5 | TH | — | 0.15 | [ |
Cu/β | TH+BT | 0.239(<1×10-6) | — | [ |
Ag/β | TH+BT | 0.237(<1×10-6) | — | [ |
Al-MCM-41 | 未知 | 0.25(<1×10-4) | — | [ |
Fe-MCM-41 | TH | — | 0.165 | [ |
Co-MCM-41 | TH | — | 0.162 | [ |
Zn-MCM-41 | TH | — | 0.165 | [ |
Cu/SBA-15 | TH | — | 0.155 | [ |
La2O3/SBA-15 | TH+BT+DBT | 0.11 | — | [ |
Cu-KIT-6 | TH | — | 0.398 | [ |
CeO2/KIT-6 | TH | 0.14 | — | [ |
La2O3/KIT-6 | TH | 0.2 | — | [ |
Ni/KIT-6 | TH | 0.195 | — | [ |
Cu-MCM-48 | TH | — | 0.87 | [ |
微-介孔氧化硅 | BT | 0.122(<1×10-6) | — | [ |
微-介孔ZSM-5 | TH | — | 0.13 | [ |
微-介孔ZSM-5 | TH | — | 0.057 | [ |
Ni/微-介孔ZSM-5 | TH | — | 0.168 | [ |
Cu/微-介孔ZSM-5 | TH | — | 0.44 | [ |
表1 不同分子筛脱硫剂的穿透硫容和平衡吸附硫容比较
样品名称 | 吸附硫化物 | 穿透硫容/mmol S·g-1 | 平衡吸附硫容/mmol S·g-1 | 参考文献 |
---|---|---|---|---|
Y | TH | 0.20(<1×10-6) | — | [ |
ZSM-5 | DMS | 0.132(<2×10-5) | — | [ |
ZSM-5 | TH | — | 0.04 | [ |
β | TH+BT | 0.156(<1×10-6) | — | [ |
MCM-41 | BT | 0.02(<1×10-6) | — | [ |
MCM-41 | TH | — | 0.16 | [ |
SBA-15 | BT | 0.03(<1×10-6) | — | [ |
KIT-6 | BT | 0.04(<1×10-6) | — | |
KIT-6 | TH | 0.0336 | — | [ |
Cu/Y | TH | 0.95(<1×10-6) | — | [ |
酸修饰的Y | TH | 0.85(<1×10-7) | — | [ |
Ce-ZSM-5 | TH | — | 0.16 | [ |
Cu-ZSM-5 | TH | — | 0.08 | [ |
Fe-ZSM-5 | TH | — | 0.06 | [ |
Ni-ZSM-5 | TH | — | 0.15 | [ |
Cu/β | TH+BT | 0.239(<1×10-6) | — | [ |
Ag/β | TH+BT | 0.237(<1×10-6) | — | [ |
Al-MCM-41 | 未知 | 0.25(<1×10-4) | — | [ |
Fe-MCM-41 | TH | — | 0.165 | [ |
Co-MCM-41 | TH | — | 0.162 | [ |
Zn-MCM-41 | TH | — | 0.165 | [ |
Cu/SBA-15 | TH | — | 0.155 | [ |
La2O3/SBA-15 | TH+BT+DBT | 0.11 | — | [ |
Cu-KIT-6 | TH | — | 0.398 | [ |
CeO2/KIT-6 | TH | 0.14 | — | [ |
La2O3/KIT-6 | TH | 0.2 | — | [ |
Ni/KIT-6 | TH | 0.195 | — | [ |
Cu-MCM-48 | TH | — | 0.87 | [ |
微-介孔氧化硅 | BT | 0.122(<1×10-6) | — | [ |
微-介孔ZSM-5 | TH | — | 0.13 | [ |
微-介孔ZSM-5 | TH | — | 0.057 | [ |
Ni/微-介孔ZSM-5 | TH | — | 0.168 | [ |
Cu/微-介孔ZSM-5 | TH | — | 0.44 | [ |
1 | YANG Ralph T, HERNÁNDEZ-MALDONADO Arturo J, YANG Frances H. Desulfurization of transportation fuels with zeolites under ambient conditions[J]. Science, 2003, 301(5629): 79-81. |
2 | 张杰. 基于层状纳米材料酸碱作用对脱硫性能的影响[D]. 淮南: 安徽理工大学, 2021. |
ZHANG Jie. Effect of acid-base interaction on desulfurization performance of layered nanomaterials[D]. Huainan: Anhui University of Science & Technology, 2021. | |
3 | 卫藩婧. 超深度脱除焦炉煤气中噻吩吸附剂的制备及其脱硫机理研究[D]. 太原: 太原理工大学, 2022. |
WEI Fanjing. Preparation of sorbent for ultra-deep removal of thiophene in coke oven gas and the desulfurization mechanism[D]. Taiyuan: Taiyuan University of Technology, 2022. | |
4 | 刘畅, 闫志义, 李巧灵, 等. 选择吸附脱硫研究进展[J]. 化工进展, 2019, 38(11): 5114-5126. |
LIU Chang, YAN Zhiyi, LI Qiaoling, et al. Research progress of selective adsorption desulfurization[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5114-5126. | |
5 | 张鹏. 基于Cu(Ⅰ)多孔吸附剂材料的制备及深度脱硫性能研究[D]. 扬州: 扬州大学, 2021. |
ZHANG Peng. Study on preparation and deep desulfurization performance of porous adsorbent material based on Cu(Ⅰ) [D]. Yangzhou: Yangzhou University, 2021. | |
6 | SAHA Biswajit, VEDACHALAM Sundaramurthy, DALAI Ajay K. Review on recent advances in adsorptive desulfurization[J]. Fuel Processing Technology, 2021, 214: 106685. |
7 | MA Xiaoliang, SUN Lu, SONG Chunshan. A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications[J]. Catalysis Today, 2002, 77(1/2): 107-116. |
8 | 周金波, 高雄厚, 李长明, 等. 一种裂化汽油吸附脱硫的工艺: CN104277877A[P]. 2015-01-14. |
ZHOU Jinbo, GAO Xionghou, LI Changming, et al. A process for adsorptive desulphurisation of cracked gasoline: CN104277877A[P]. 2015-01-14. | |
9 | 刘思彤, 石薇薇, 曹祖宾, 等. FCC汽油重馏分氧化-吸附脱硫的研究[J]. 现代化工, 2018, 38(4): 148-151, 153. |
LIU Sitong, SHI Weiwei, CAO Zubin, et al. Study on oxidation-adsorption desulfurization of FCC heavy gasoline fractions[J]. Modern Chemical Industry, 2018, 38(4): 148-151, 153. | |
10 | 王永杰. 多级孔分子筛的制备、改性及吸附天然气中有机硫性能研究[D]. 青岛: 中国石油大学(华东), 2019. |
WANG Yongjie. Preparation and modified of hierarchical zeolites and adsorption performance of organic sulfur in natural gas[D]. Qingdao: China University of Petroleum (East China), 2019. | |
11 | HERNÁNDEZ-MALDONADO Arturo J, YANG Ralph T. Desulfurization of commercial liquid fuels by selective adsorption via π-complexation with Cu(Ⅰ)-Y zeolite[J]. Industrial & Engineering Chemistry Research, 2003, 42(13): 3103-3110. |
12 | HERNÁNDEZ-MALDONADO Arturo J, YANG Ralph T. Desulfurization of diesel fuels by adsorption via π-complexation with vapor-phase exchanged Cu(Ⅰ)-Y zeolites[J]. Journal of the American Chemical Society, 2004, 126(4): 992-993. |
13 | DUAN Linhai, GAO Xionghou, MENG Xiuhong, et al. Adsorption, co-adsorption, and reactions of sulfur compounds, aromatics, olefins over Ce-exchanged Y zeolite[J]. The Journal of Physical Chemistry C, 2012, 116(49): 25748-25756. |
14 | SUN Yao, LI Lan, JU Feng, et al. Evolution of nickel species in reactive adsorption desulfurization of benzothiophene[J]. Separation and Purification Technology, 2022, 283: 120204. |
15 | ZHANG Yuliang, YANG Yongxing, LIN Feng, et al. Improvement of adsorptive desulfurization performance of Ni/ZnO adsorbent by doping with Mn additive[J]. Chinese Journal of Catalysis, 2013, 34(1): 140-145. |
16 | WANG Guangyong, XU Shaoping, WANG Chao, et al. Desulfurization and tar reforming of biogenous syngas over Ni/olivine in a decoupled dual loop gasifier[J]. International Journal of Hydrogen Energy, 2017, 42(23): 15471-15478. |
17 | PRAJAPATI Yogendra Nath, VERMA Nishith. Fixed bed adsorptive desulfurization of thiophene over Cu/Ni-dispersed carbon nanofiber[J]. Fuel, 2018, 216: 381-389. |
18 | 龙彩梅, 武帅山, 王建成, 等. 基于分子筛结构特性的高温煤气脱硫剂应用现状[J]. 化工进展, 2023, 42(11): 5943-5955. |
LONG Caimei, WU Shuaishan, WANG Jiancheng, et al. Status of high temperature gas desulfurizer with structural characteristics of molecular sieves[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5943-5955. | |
19 | LEE Doohwan, Eun-Yong KO, LEE Hyun Chul, et al. Adsorptive removal of tetrahydrothiophene (THT) and tert-butylmercaptan (TBM) using Na-Y and AgNa-Y zeolites for fuel cell applications[J]. Applied Catalysis A: General, 2008, 334(1/2): 129-136. |
20 | ZU Yun, GUO Zhongsen, ZHENG Jian, et al. Investigation of Cu(Ⅰ)-Y zeolites with different Cu/Al ratios towards the ultra-deep adsorption desulfurization: Discrimination and role of the specific adsorption active sites[J]. Chemical Engineering Journal, 2020, 380: 122319. |
21 | 黄朝晖, 刘乃旺. 废FCC催化剂在LPG吸附脱硫中的资源化利用[J]. 化工进展, 2022, 41(1): 453-460. |
HUANG Chaohui, LIU Naiwang. Resource utilization of spent FCC catalysts in LPG adsorption desulfurization[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 453-460. | |
22 | RATNASAMY Chandra, WAGNER Jon P, SPIVEY Steve, et al. Removal of sulfur compounds from natural gas for fuel cell applications using a sequential bed system[J]. Catalysis Today, 2012, 198(1): 233-238. |
23 | 刘棋, 赵启龙, 祁亚玲, 等. 13X分子筛在有机硫脱除中的应用研究[J]. 天然气与石油, 2021, 39(6): 39-44. |
LIU Qi, ZHAO Qilong, QI Yaling, et al. Application of 13X molecular sieve in organic sulfur removal[J]. Natural Gas and Oil, 2021, 39(6): 39-44. | |
24 | CHEN Guolong, ZHANG Chao, JIA Ke, et al. The relationship between the preparation conditions and the crystallinity of ZSM-5 and the adsorption performance of sulfide in nature gas[J]. Energy Sources A: Recovery, Utilization, and Environmental Effects, 2021: 1-12. |
25 | 韩树春. 改性HZSM-5分子筛吸附CH3SH研究[D]. 昆明: 昆明理工大学, 2022. |
HAN Shuchun. Modified HZSM-5 molecular sieve adsorption CH3SH Research[D]. Kunming: Kunming University of Science and Technology, 2022. | |
26 | 赵晓慧, 陈海军. 晶种辅助合成高硅BEA分子筛[C]//中国化学会催化委员会. 第十一届全国环境催化与环境材料学术会议论文集. Shenyang, 2018. |
ZHAO Xiaohui, CHEN Haijun. Crystal seed-assisted synthesis of high-silica BEA molecular sieves[C]//The Catalysis Society of China. Proceedings of the 11th National Conference on Environmental Catalysis and Environmental Materials. Shenyang, 2018. | |
27 | 周盼. 多级孔β分子筛的制备及其烷基化性能研究[D]. 西安: 西北大学, 2022. |
ZHOU Pan. Preparation of hierarchical β zeolites for alkylation reaction[D]. Xi'an: Northwest University, 2022. | |
28 | 王倩. β分子筛的孔结构和酸性对FCC汽油硫转移反应性能的影响[D]. 西安: 西安石油大学, 2019. |
WANG Qian. Effect of pore structure and acidity of β molecular sieve on sulfur transfer reaction performance of FCC gasoline[D]. Xi’an: Xi’an Shiyou University, 2019. | |
29 | GONG Yanjun, DOU Tao, KANG Shanjiao, et al. Deep desulfurization of gasoline using ion-exchange zeolites: Cu(Ⅰ) - and Ag(Ⅰ)-beta[J]. Fuel Processing Technology, 2009, 90(1): 122-129. |
30 | 莫周胜. 沸石分子筛B酸位微环境对噻吩硫化物吸附和反应影响研究[D]. 青岛: 中国石油大学(华东), 2020. |
MO Zhousheng. Effect of microenvironment of Brønsted acid sites in zeolites on adsorption and reaction of thiophenic sulfur compounds[D]. Qingdao: China University of Petroleum (East China), 2020. | |
31 | KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359: 710-712. |
32 | ALVARADO-PEREA L, COLÍN-LUNA J A, LÓPEZ-GAONA A, et al. Simultaneous adsorption of quinoline and dibenzothiophene over Ni-based mesoporous materials at different Si/Al ratio[J]. Catalysis Today, 2020, 353: 26-38. |
33 | GUO Yuhua, PAN Guoxiang, XU Minhong, et al. Synthesis and adsorption desulfurization performance of modified mesoporous silica materials M-MCM-41 (M = Fe, Co, Zn)[J]. Clays and Clay Minerals, 2019, 67(4): 325-333. |
34 | MÉNDEZ Franklin J, FRANCO-LÓPEZ Oscar E, Gabriela DÍAZ, et al. On the role of niobium in nanostructured Mo/Nb-MCM-41 and NiMo/Nb-MCM-41 catalysts for hydrodesulfurization of dibenzothiophene[J]. Fuel, 2020, 280: 118550. |
35 | SUBHAN Fazle, ASLAM Sobia, YAN Zifeng, et al. Highly dispersive lanthanum oxide fabricated in confined space of SBA-15 for adsorptive desulfurization[J]. Chemical Engineering Journal, 2020, 384: 123271. |
36 | 周文高, 谢华. 一种液化石油气吸附脱硫工艺: CN115651725A[P]. 2023-01-31. |
ZHOU Wengao, XIE Hua. A liquefied petroleum gas adsorption desulphurisation process: CN115651725A[P]. 2023-01-31. | |
37 | SUBHAN Fazle, ASLAM Sobia, YAN Zifeng, et al. Size regulation and dispersion of ceria using confined spaces for adsorptive desulfurization[J]. Chemical Engineering Journal, 2018, 348: 319-326. |
38 | SUBHAN Fazle, ASLAM Sobia, YAN Zifeng, et al. Facile fabrication of La3+ sites in confined spaces for adsorptive desulfurization[J]. Fuel Processing Technology, 2022, 236: 107423. |
39 | ASLAM Sobia, SUBHAN Fazle, YAN Zifeng, et al. Facile fabrication of Ni-based KIT-6 for adsorptive desulfurization[J]. Chemical Engineering Journal, 2016, 302: 239-248. |
40 | SHAN Jiahui, CHEN Le, SUN Linbing, et al. Adsorptive removal of thiophene by Cu-modified mesoporous silica MCM-48 derived from direct synthesis[J]. Energy & Fuels, 2011, 25(7): 3093-3099. |
41 | Cigdem SENTORUN-SHALABY, SAHA Shyamal Kumar, MA Xiaoliang, et al. Mesoporous-molecular-sieve-supported nickel sorbents for adsorptive desulfurization of commercial ultra-low-sulfur diesel fuel[J]. Applied Catalysis B: Environmental, 2011, 101(3/4): 718-726. |
42 | ZHAO You, ZHAO Wenkai, XIAO Yonghou, et al. Construction of novel super microporous silica adsorbents using pluronic triblock copolymer as template towards desulfurization from fuel[J]. Fuel, 2023, 334: 126657. |
43 | SUBHAN Fazle, ASLAM Sobia, YAN Zifeng, et al. Confinement of mesopores within ZSM-5 and functionalization with Ni NPs for deep desulfurization[J]. Chemical Engineering Journal, 2018, 354: 706-715. |
44 | 袁世阳. 金属掺杂ZSM-5分子筛制备及脱硫性能研究[D]. 开封: 河南大学, 2018. |
YUAN Shiyang. Study on preparation and desulfurization properties of metal doping ZSM-5 zeolite[D]. Kaifeng: Henan University, 2018. | |
45 | WEI Fanjing, GUO Xiaoqin, LIAO Junjie, et al. Ultra-deep removal of thiophene in coke oven gas over Y zeolite: Effect of acid modification on adsorption desulfurization[J]. Fuel Processing Technology, 2021, 213: 106632. |
46 | LIU B S, XU D F, CHU J X, et al. Deep desulfurization by the adsorption process of fluidized catalytic cracking (FCC) diesel over mesoporous Al-MCM-41 materials[J]. Energy & Fuels, 2007, 21(1): 250-255. |
47 | SUBHAN Fazle, ASLAM Sobia, YAN Zifeng, et al. Ammonia assisted functionalization of cuprous oxide within confined spaces of SBA-15 for adsorptive desulfurization[J]. Chemical Engineering Journal, 2018, 339: 557-565. |
48 | SUBHAN Fazle, ASLAM Sobia, YAN Zifeng, et al. Enhanced desulfurization characteristics of Cu-KIT-6 for thiophene[J]. Microporous and Mesoporous Materials, 2014, 199: 108-116. |
49 | SUBHAN Fazle, ASLAM Sobia, YAN Zifeng, et al. Highly dispersive Cu species constructed in mesoporous silica derived from ZSM-5 for batch and continuous adsorptive desulfurization of thiophene[J]. Fuel Processing Technology, 2022, 235: 107351. |
50 | 吕梦颖, 李芹, 王晓胜, 等. 改性ZSM-5分子筛吸附脱除甲基叔丁基醚中的二甲基二硫醚[J]. 天然气化工, 2018, 43(3): 15-19, 32. |
Mengying LYU, LI Qin, WANG Xiaosheng, et al. Adsorption removal of dimethyl disulfide in methyl tert-butyl ether by modified ZSM-5[J]. Natural Gas Chemical Industry, 2018, 43(3): 15-19, 32. | |
51 | 张旭阳, 武蒙蒙, 李俏春, 等. 载体形貌对ZnO/SBA-15煤气脱硫剂结构及性能的影响[J]. 天然气化工, 2022, 47(3): 33-40. |
ZHANG Xuyang, WU Mengmeng, LI Qiaochun, et al. Effect of carrier morphology on structure and properties of ZnO/SBA-15 coal gas desulfurizer[J]. Natural Gas Chemical Industry, 2022, 47(3): 33-40. | |
52 | 赵国星, 朱雯钊, 杨威. 分子筛脱除天然气中硫醇技术研究[J]. 石油与天然气化工, 2020, 49(4): 1-7. |
ZHAO Guoxing, ZHU Wenzhao, YANG Wei. Removal of mercaptan from natural gas by molecular sieve[J]. Chemical Engineering of Oil & Gas, 2020, 49(4): 1-7. | |
53 | SUBHAN Fazle, LIU B S. Acidic sites and deep desulfurization performance of nickel supported mesoporous AlMCM-41 sorbents[J]. Chemical Engineering Journal, 2011, 178: 69-77. |
[1] | 张浩, 刘世钰, 沈卫华, 方云进. Ca-ZSM-5催化尿素脱水制备单氰胺[J]. 化工进展, 2024, 43(S1): 365-373. |
[2] | 何世坤, 张荣花, 李昊阳, 潘晖, 冯君锋. 脱铝分子筛固体酸催化葡萄糖制备5-羟甲基糠醛[J]. 化工进展, 2024, 43(S1): 374-381. |
[3] | 石磊, 王倩, 赵晓胜, 刘宏臣, 车远军, 段玉, 李庆. 油页岩灰基分子筛的制备及对亚甲基蓝的吸附[J]. 化工进展, 2024, 43(S1): 650-661. |
[4] | 马红周, 党煜博, 王耀宁, 曾劲阳, 赵小军, 史建伟. 废锌基脱硫剂与铜锌基催化剂协同真空碳热提取锌[J]. 化工进展, 2024, 43(9): 5275-5281. |
[5] | 张叶素, 权燕红, 丁欣欣, 任军. 链状MFI型分子筛的合成与应用[J]. 化工进展, 2024, 43(8): 4382-4392. |
[6] | 周皞, 王旭瑞, 赵辉爽, 温妮妮, 苏亚欣. CuCe-SAPO-34选择性催化丙烯还原柴油车尾气氮氧化物[J]. 化工进展, 2024, 43(6): 3093-3099. |
[7] | 张国卿, 宋舒波, 王兴瑞, 巩苗苗, 王旭, 许宇鸿, 冯继越, 张福扬, 陈汇勇. 煤固废基分子筛的制备及其应用进展[J]. 化工进展, 2024, 43(5): 2311-2323. |
[8] | 汪孟宇, 范鸿霞, 梁长海, 李文英. 分子筛中限制效应对其酸性表征及催化性能的影响[J]. 化工进展, 2024, 43(5): 2600-2610. |
[9] | 谢小金, 张晓雪, 刘晓玲, 崇明本, 程党国, 陈丰秋. 单晶多级孔ZSM-5分子筛酸性质对正庚烷催化裂解反应传质性能的影响[J]. 化工进展, 2024, 43(5): 2661-2672. |
[10] | 曾浩桀, 周媚, 邹镇远, 熊峰, 曾星星, 刘宝玉. 表面钝化型二维ZSM-5分子筛的制备及甲苯与甲醇烷基化性能[J]. 化工进展, 2024, 43(5): 2696-2704. |
[11] | 梁燕燕, 张军亮, 郭云鸦, 张燕挺. 晶种在分子筛合成中的作用研究进展[J]. 化工进展, 2024, 43(3): 1275-1292. |
[12] | 陈风, 王宣德, 黄伟, 王晓东, 王琰. HZSM-22的粒径调控及Pt/HZSM-22的正十二烷加氢异构催化性能[J]. 化工进展, 2024, 43(3): 1309-1317. |
[13] | 钱俊明, 郭猛, 任秀秀, 余亮, 钟璟, 徐荣. 芳烃官能化有机硅膜的制备及丙烯/丙烷分离性能[J]. 化工进展, 2024, 43(3): 1428-1435. |
[14] | 张然, 杨梦滋, 武蒙蒙, 米杰, 王建成. Ni/Fe/Co助剂对ZnO/MCM-41高温煤气脱硫过程中放硫的抑制作用及改性脱硫剂再生行为[J]. 化工进展, 2024, 43(11): 6173-6183. |
[15] | 洪学思, 吴省, 宋磊, 缪长喜, 杨为民. 分子筛限域丙烷脱氢催化剂的研究进展[J]. 化工进展, 2024, 43(10): 5517-5526. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 37
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 94
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |