化工进展 ›› 2024, Vol. 43 ›› Issue (5): 2311-2323.DOI: 10.16085/j.issn.1000-6613.2023-2107
• 化石能源的清洁高效转化利用 • 上一篇
张国卿(), 宋舒波, 王兴瑞, 巩苗苗, 王旭, 许宇鸿, 冯继越, 张福扬, 陈汇勇()
收稿日期:
2023-11-30
修回日期:
2024-02-22
出版日期:
2024-05-15
发布日期:
2024-06-15
通讯作者:
陈汇勇
作者简介:
张国卿(1999—),男,硕士研究生,研究方向为煤基固废高值转化。E-mail:202133018@nwu.edu.cn。
基金资助:
ZHANG Guoqing(), SONG Shubo, WANG Xingrui, GONG Miaomiao, WANG Xu, XU Yuhong, FENG Jiyue, ZHANG Fuyang, CHEN Huiyong()
Received:
2023-11-30
Revised:
2024-02-22
Online:
2024-05-15
Published:
2024-06-15
Contact:
CHEN Huiyong
摘要:
从煤基固废高值化利用以及分子筛材料低成本制备两方面的迫切需求出发,本文以煤矸石、粉煤灰、煤气化渣和煤液化渣四种最主要的煤基固废为研究对象,从形成机制、化学组成、矿物性质以及结构与形貌特征等多方面阐述以其为原料制备分子筛的优势及可行性;系统总结了煤基固废活化预处理及晶化转化为分子筛的主要方法;以典型案例的形式,介绍并分析了煤固废基分子筛在气/液相吸附、多相催化等领域的应用优势。基于对煤固废基分子筛的制备、改性以及应用研究进展的综述与总结,提出了低能耗活化与晶化、骨架类型的拓展以及多领域应用探索三方面的研究趋势。
中图分类号:
张国卿, 宋舒波, 王兴瑞, 巩苗苗, 王旭, 许宇鸿, 冯继越, 张福扬, 陈汇勇. 煤固废基分子筛的制备及其应用进展[J]. 化工进展, 2024, 43(5): 2311-2323.
ZHANG Guoqing, SONG Shubo, WANG Xingrui, GONG Miaomiao, WANG Xu, XU Yuhong, FENG Jiyue, ZHANG Fuyang, CHEN Huiyong. Recent advances in the synthesis and application of zeolites from coal-based solid wastes[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2311-2323.
处理利用方式 | 特点 |
---|---|
摊铺、堆填 | 大批量处理;就地处理;无附加值 |
制备建筑材料 | 大批量处理;建筑材料质量较差;低附加值 |
提取有价元素 | 充分利用各类元素;工艺复杂;分离困难 |
制备土壤添加剂 | 大批量处理;需控制重金属污染 |
制备分子筛 | 处理量有限;元素利用合理;高附加值 |
表1 煤基固废处理利用方式与特点
处理利用方式 | 特点 |
---|---|
摊铺、堆填 | 大批量处理;就地处理;无附加值 |
制备建筑材料 | 大批量处理;建筑材料质量较差;低附加值 |
提取有价元素 | 充分利用各类元素;工艺复杂;分离困难 |
制备土壤添加剂 | 大批量处理;需控制重金属污染 |
制备分子筛 | 处理量有限;元素利用合理;高附加值 |
主要类别 | 所属行业 | 特点 | 元素组成(质量分数)/% | 矿物组成 |
---|---|---|---|---|
煤矸石 | 采煤、洗选 | 块体;伴生矿物;元素组成复杂; 含碳量高 | SiO2(30~65)、Al2O3(15~40)、Fe2O3(1~10)、CaO(1~3)、TiO2(0.5~3.0) | 石英、高岭石、蒙脱石、白云石 |
粉煤灰 | 热电 | 粉体;热加工产物;氧化物形态; | SiO2(33~60)、Al2O3(17~35)、Fe2O3(1.5~15)、CaO(1~5)、MgO(0.5~2.2) | 莫来石、石英 |
煤气化渣 | 煤化工 | 颗粒;硬度高;玻璃态;高温热 处理产物 | SiO2(30~60)、Al2O3(15~30)、Fe2O3(2~15)、CaO(1~13)、NaO(0.5~3.0) | 石英、方解石、莫来石 |
煤液化渣 | 煤化工 | 颗粒;掺混残余催化剂;组成复杂 | SiO2(5~50)、Al2O3(5~20)、Fe2O3(10~65)、CaO(5~20)、TiO2(1~3) | 钙长石、石英 |
表2 煤基固废的主要类别、所属行业、特点及组成
主要类别 | 所属行业 | 特点 | 元素组成(质量分数)/% | 矿物组成 |
---|---|---|---|---|
煤矸石 | 采煤、洗选 | 块体;伴生矿物;元素组成复杂; 含碳量高 | SiO2(30~65)、Al2O3(15~40)、Fe2O3(1~10)、CaO(1~3)、TiO2(0.5~3.0) | 石英、高岭石、蒙脱石、白云石 |
粉煤灰 | 热电 | 粉体;热加工产物;氧化物形态; | SiO2(33~60)、Al2O3(17~35)、Fe2O3(1.5~15)、CaO(1~5)、MgO(0.5~2.2) | 莫来石、石英 |
煤气化渣 | 煤化工 | 颗粒;硬度高;玻璃态;高温热 处理产物 | SiO2(30~60)、Al2O3(15~30)、Fe2O3(2~15)、CaO(1~13)、NaO(0.5~3.0) | 石英、方解石、莫来石 |
煤液化渣 | 煤化工 | 颗粒;掺混残余催化剂;组成复杂 | SiO2(5~50)、Al2O3(5~20)、Fe2O3(10~65)、CaO(5~20)、TiO2(1~3) | 钙长石、石英 |
分子筛名称 | 骨架类型 | 固废原料种类 | 活化方法 | 合成方法 | 参考文献 |
---|---|---|---|---|---|
4A | LTA | 粉煤灰 | — | 水热合成 | [ |
NaA | LTA | 煤矸石 | 热活化 | 水热合成 | [ |
4A | LTA | 煤气化渣 | 碱熔活化 | 水热合成 | [ |
Zeolite A | LTA | 粉煤灰 | — | 微波辅助合成 | [ |
SCD-Y | FAU | 煤矸石 | 热活化 | 水热合成 | [ |
NaY | FAU | 煤矸石 | 碱熔活化 | 水热合成 | [ |
Zeolite X | FAU | 粉煤灰 | 碱熔活化 | 水热合成 | [ |
FAU | FAU | 粉煤灰 | 碱熔活化 | 无溶剂合成 | [ |
NaX | FAU | 粉煤灰 | 碱熔活化 | 超声辅助合成 | [ |
NaP1 | GIS | 粉煤灰 | — | 水热合成 | [ |
NaP | GIS | 煤气化渣 | — | 水热合成 | [ |
P-zeolite | GIS | 煤气化渣 | 碱熔活化 | 水热合成 | [ |
Zeolite P1 | GIS | 粉煤灰 | 热活化 | 无溶剂合成 | [ |
Analcime | ANA | 煤矸石 | — | 水热合成 | [ |
SSZ-13 | CHA | 煤矸石 | — | 水热合成 | [ |
SSZ-13 | CHA | 煤矸石 | — | 超声辅助合成 | [ |
ZSM-5 | MFI | 煤矸石 | 碱熔活化 | 无溶剂合成 | [ |
ZSM-5 | MFI | 粉煤灰 | 碱熔活化 | 无溶剂合成 | [ |
ZSM-5 | MFI | 煤气化渣 | — | 无溶剂合成 | [ |
ZSM-5 | MFI | 粉煤灰 | 热活化 | 超声辅助合成 | [ |
Cancrinite-type zeolite | CAN | 粉煤灰 | — | 无溶剂合成 | [ |
表3 煤固废基分子筛的主要活化方法与合成方法
分子筛名称 | 骨架类型 | 固废原料种类 | 活化方法 | 合成方法 | 参考文献 |
---|---|---|---|---|---|
4A | LTA | 粉煤灰 | — | 水热合成 | [ |
NaA | LTA | 煤矸石 | 热活化 | 水热合成 | [ |
4A | LTA | 煤气化渣 | 碱熔活化 | 水热合成 | [ |
Zeolite A | LTA | 粉煤灰 | — | 微波辅助合成 | [ |
SCD-Y | FAU | 煤矸石 | 热活化 | 水热合成 | [ |
NaY | FAU | 煤矸石 | 碱熔活化 | 水热合成 | [ |
Zeolite X | FAU | 粉煤灰 | 碱熔活化 | 水热合成 | [ |
FAU | FAU | 粉煤灰 | 碱熔活化 | 无溶剂合成 | [ |
NaX | FAU | 粉煤灰 | 碱熔活化 | 超声辅助合成 | [ |
NaP1 | GIS | 粉煤灰 | — | 水热合成 | [ |
NaP | GIS | 煤气化渣 | — | 水热合成 | [ |
P-zeolite | GIS | 煤气化渣 | 碱熔活化 | 水热合成 | [ |
Zeolite P1 | GIS | 粉煤灰 | 热活化 | 无溶剂合成 | [ |
Analcime | ANA | 煤矸石 | — | 水热合成 | [ |
SSZ-13 | CHA | 煤矸石 | — | 水热合成 | [ |
SSZ-13 | CHA | 煤矸石 | — | 超声辅助合成 | [ |
ZSM-5 | MFI | 煤矸石 | 碱熔活化 | 无溶剂合成 | [ |
ZSM-5 | MFI | 粉煤灰 | 碱熔活化 | 无溶剂合成 | [ |
ZSM-5 | MFI | 煤气化渣 | — | 无溶剂合成 | [ |
ZSM-5 | MFI | 粉煤灰 | 热活化 | 超声辅助合成 | [ |
Cancrinite-type zeolite | CAN | 粉煤灰 | — | 无溶剂合成 | [ |
1 | 张玥, 丁会敏, 杨光, 等. 煤基固体废弃物制备分子筛的研究进展[J]. 化学与粘合, 2023, 45(2): 174-177. |
ZHANG Yue, DING Huimin, YANG Guang, et al. Research progress in preparation of molecular sieves from coal-based solid waste[J]. Chemistry and Adhesion, 2023, 45(2): 174-177. | |
2 | 张玥, 丁会敏, 唐诗洋, 等. 煤基固废合成A型和X类型分子筛的调控研究[J]. 化学与粘合, 2023, 45(4): 326-329, 342. |
ZHANG Yue, DING Huimin, TANG Shiyang, et al. Study on the regulation of synthesis of type A and type X zeolites from coal-based solid waste [J]. Chemistry and Adhesion, 2023, 45(4): 326-329, 342. | |
3 | 李启辉. 煤矸石的性质及综合利用研究进展[J]. 应用化工, 2023, 52(5): 1576-1581. |
LI Qihui. Research progress on properties and comprehensive utilization of coal gangue[J]. Applied Chemical Industry, 2023, 52(5): 1576-1581. | |
4 | 康超, 乔金鹏, 杨胜超, 等. 煤矸石中有价关键金属活化提取研究进展[J]. 化工学报, 2023, 47(7): 2783-2799. |
KANG Chao, QIAO Jinpeng, YANG Shengchao, et al. Research progress on activation extraction of valuable metals in coal gangue[J]. CIESC Journal, 2023, 47(7): 2783-2799. | |
5 | YANG Zili, CHANG Guohui, XIA Yangchao, et al. Utilization of waste cooking oil for highly efficient recovery of unburned carbon from coal fly ash[J]. Journal of Cleaner Production, 2021, 282: 124547. |
6 | 张祥成, 孟永彪. 浅析中国粉煤灰的综合利用现状[J]. 无机盐工业, 2020, 52(2): 1-5. |
ZHANG Xiangcheng, MENG Yongbiao. Brief analysis on present situation of comprehensive utilization of fly ash in China[J]. Inorganic Chemicals Industry, 2020, 52(2): 1-5. | |
7 | 刘艳丽, 李强, 陈占飞, 等. 煤气化渣特性分析及综合利用研究进展[J]. 煤炭科学技术, 2022,50(11):251-257. |
LIU Yanli, LI Qiang, CHEN Zhanfei, et al. Research progress characteristics analysis and comprehensive utilization of coal gasification slag[J]. Coal Science and Technology, 2022, 50(11):251-257. | |
8 | 李强, 高丽丽, 艾锋, 等. 碳达峰碳中和约束下北方能源型城市低碳发展路径[J]. 能源与节能, 2023(5): 6-10, 19. |
LI Qiang, GAO Lili, AI Feng, et al. Low-carbon development path of energy-oriented cities in Northern China under constraint of carbon peaking and carbon neutrality[J]. Energy and Energy Conservation, 2023(5): 6-10, 19. | |
9 | 李朋辉, 任辉. 煤矸石精细化利用的研究[J]. 广州化工, 2021, 49(10): 27-29. |
LI Penghui, REN Hui. Study on fine utilization of coal gangue[J]. Guangzhou Chemical Industry, 2021, 49(10): 27-29. | |
10 | STRACHER Glenn B, TAYLOR Tammy P. Coal fires burning out of control around the world: Thermodynamic recipe for environmental catastrophe[J]. International Journal of Coal Geology, 2004, 59(1/2): 7-17. |
11 | OZDENIZ A H, CORUMLUOGLU O, KALAYCI I. The relationship between the natural compaction and the spontaneous combustion of industrial-scale coal stockpiles[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2010, 33(2): 121-129. |
12 | 实华. 十部门联合印发《关于“十四五”大宗固体废弃物综合利用的指导意见》[J]. 中国石油和化工, 2021(04): 77. |
SHI Hua. Ten departments jointly issued the “guiding opinions on the comprehensive utilization of bulk solid wastes in the 14th Five-Year Plan”[J]. China Petroleum and Chemical Industry, 2021(04): 77. | |
13 | 崔悦, 徐鹤, 吴婧. 大宗工业固体废物综合利用产业发展模式更迭与创新研析[J]. 环境保护, 2022, 50(20): 31-36. |
CUI Yue, XU He, WU Jing. Study on the change and innovation of development models of bulky industrial solid waste comprehensive utilization industry[J]. Environmental Protection, 2022, 50(20): 31-36. | |
14 | LU Xuhang, LIU Bo, ZHANG Qian, et al. Recycling of coal fly ash in building materials: A review[J]. Minerals, 2022, 13(1): 25. |
15 | ZHANG Tong, WEN Qianxin, GAO Shan, et al. Comparative study on mechanical and environmental properties of coal gangue sand concrete[J]. Construction and Building Materials, 2023, 400: 132646. |
16 | JU Tongyao, HAN Siyu, MENG Yuan, et al. High-end reclamation of coal fly ash focusing on elemental extraction and synthesis of porous materials[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(20): 6894-6911. |
17 | ZHAO Gaowen, WU Tao, REN Guanzhou, et al. Reusing waste coal gangue to improve the dispersivity and mechanical properties of dispersive soil[J]. Journal of Cleaner Production, 2023, 404: 136993. |
18 | LI Jiayan, WANG Jinman. Comprehensive utilization and environmental risks of coal gangue: A review[J]. Journal of Cleaner Production, 2019, 239: 117946. |
19 | YANG Chenguang, YIN Jianqiang, WU Liqin, et al. Research on the identification mechanism of coal gangue based on the differences of mineral components[J]. ACS Omega, 2022, 8(1): 48-55. |
20 | LI Qi, Liang LYU, ZHAO Xudong, et al. Cost-effective microwave-assisted hydrothermal rapid synthesis of analcime-activated carbon composite from coal gangue used for Pb2+ adsorption[J]. Environmental Science and Pollution Research, 2022, 29(51): 77788-77799. |
21 | BELVISO Claudia. State-of-the-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues[J]. Progress in Energy and Combustion Science, 2018, 65: 109-135. |
22 | MURUKUTTI Mahima Kumar, JENA Hrudananda. Synthesis of nano-crystalline zeolite-A and zeolite-X from Indian coal fly ash, its characterization and performance evaluation for the removal of Cs+ and Sr2+ from simulated nuclear waste[J]. Journal of Hazardous Materials, 2022, 423(Pt A): 127085. |
23 | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
ZHANG Lihong, JIN Yaoru, CHENG Fangqin. Resource utilization of coal gasification slag[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4447-4457. | |
24 | 崔倩, 王岸楠, 陈再明, 等. 液化残渣基CO2吸附剂的制备与性能优化[J]. 化工进展, 2023, 42(12): 6620-6630. |
CUI Qian, WANG Annan, CHEN Zaiming, et al. Preparation and performance optimization of liquefied residue-based CO2 adsorbents[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6620-6630. | |
25 | YAN Shiying, XUAN Weiwei, CAO Chunyan, et al. A review of sustainable utilization and prospect of coal gasification slag[J]. Environmental Research, 2023, 238(Pt 2): 117186. |
26 | QIAN Tingting, LI Jinhong. Synthesis of Na-A zeolite from coal gangue with the in situ crystallization technique[J]. Advanced Powder Technology, 2015, 26(1): 98-104. |
27 | GE Qilong, TIAN Qi, WANG Sufang, et al. Synergistic effects of phosphoric acid modified hydrochar and coal gangue-based zeolite on bioavailability and accumulation of cadmium and lead in contaminated soil[J]. Chinese Journal of Chemical Engineering, 2022, 46: 150-160. |
28 | ZHANG Miaosen, WANG Xiaoli. Preparation of a gangue-based X-type zeolite molecular sieve as a multiphase Fenton catalyst and its catalytic performance[J]. ACS Omega, 2021, 6(28): 18414-18425. |
29 | CHANDRASEKHAR S. Influence of metakaolinization temperature on the formation of zeolite 4A from Kaolin[J]. Clay Minerals, 1996, 31(2): 253-261. |
30 | LI Haipeng, CHENG Rongqing, LIU Zhiliang, et al. Waste control by waste: Fenton-like oxidation of phenol over Cu modified ZSM-5 from coal gangue[J]. Science of The Total Environment, 2019, 683: 638-647. |
31 | LIU Yi, YAN Chunjie, ZHAO Junjie, et al. Synthesis of zeolite P1 from fly ash under solvent-free conditions for ammonium removal from water[J]. Journal of Cleaner Production, 2018, 202: 11-22. |
32 | LI Hui, ZHENG Feng, WANG Jing, et al. Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption performance[J]. Chemical Engineering Journal, 2020, 390: 124513. |
33 | 郑涛, 刘海燕, 张睿, 等. 基于分子筛绿色合成的天然硅铝矿物介尺度活化研究进展[J]. 化工学报, 2022, 73(6): 2334-2351. |
ZHENG Tao, LIU Haiyan, ZHANG Rui, et al. Research progress on mesoscale activation of natural aluminosilicate minerals based on green synthesis of molecular sieve[J]. CIESC Journal, 2022, 73(6): 2334-2351. | |
34 | BU Naijing, LIU Xiaomeng, SONG Shaolei, et al. Synthesis of NaY zeolite from coal gangue and its characterization for lead removal from aqueous solution[J]. Advanced Powder Technology, 2020, 31(7): 2699-2710. |
35 | YANG Liyun, QIAN Xiaoming, YUAN Peng, et al. Green synthesis of zeolite 4A using fly ash fused with synergism of NaOH and Na2CO3 [J]. Journal of Cleaner Production, 2019, 212: 250-260. |
36 | GE Qilong, MOEEN Muhammad, TIAN Qi, et al. Highly effective removal of Pb2+ in aqueous solution by Na-X zeolite derived from coal gangue[J]. Environmental Science and Pollution Research, 2020, 27(7): 7398-7408. |
37 | SHU Rui, BAI Jiaming, GUO Feiqiang, et al. Synthesis of carbon/P-zeolite composites from coal gasification fine slag and studies on adsorption characteristics for methylene blue[J]. Korean Journal of Chemical Engineering, 2023, 40(7): 1639-1649. |
38 | 赵鹏德, 吉文欣, 张世越, 等. 宁东煤气化细渣固相碱熔制备单一相A型沸石[J]. 石油学报(石油加工), 2020, 36(5): 1031-1038. |
ZHAO Pengde, JI Wenxin, ZHANG Shiyue, et al. Preparation of single phase zeolite A by solid phase alkali fusion synthesis of fine slag from ningdong coal gasification[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(5): 1031-1038. | |
39 | JIN Yuxuan, LIU Ze, HAN Le, et al. Synthesis of coal-analcime composite from coal gangue and its adsorption performance on heavy metal ions[J]. Journal of Hazardous Materials, 2022, 423(Pt A): 127027. |
40 | HAN Jinfeng, JIN Xiaotong, SONG Chunfeng, et al. Rapid synthesis and NH3-SCR activity of SSZ-13 zeolite via coal gangue[J]. Green Chemistry, 2020, 22(1): 219-229. |
41 | TAUANOV Zhandos, SHAH Dhawal, INGLEZAKIS Vassilis, et al. Hydrothermal synthesis of zeolite production from coal fly ash: A heuristic approach and its optimization for system identification of conversion[J]. Journal of Cleaner Production, 2018, 182: 616-623. |
42 | IQBAL Asifa, SATTAR Hamed, HAIDER Rizwan, et al. Synthesis and characterization of pure phase zeolite 4A from coal fly ash[J]. Journal of Cleaner Production, 2019, 219: 258-267. |
43 | JI Wenxin, ZHANG Shiyue, ZHAO Pengde, et al. Green synthesis method and application of NaP zeolite prepared by coal gasification coarse slag from ningdong, China[J]. Applied Sciences, 2020, 10(8): 2694. |
44 | JIN Yuxuan, LI Li, LIU Ze, et al. Synthesis and characterization of low-cost zeolite NaA from coal gangue by hydrothermal method[J]. Advanced Powder Technology, 2021, 32(3): 791-801. |
45 | WANG Ruoyu, SONG Ye, YANG Xue, et al. Self-combustion-depolymerization approach to activate solid-waste coal gangue minerals for fluid catalytic cracking catalyst synthesis[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(34): 11376-11386. |
46 | ZHENG Yunsheng, ZHOU Junxia, MA Zhijun, et al. Preparation of a high-silicon ZSM-5 molecular sieve using only coal gangue as the silicon and aluminum sources[J]. Materials, 2023, 16(12): 4338. |
47 | 徐啟斌, 牛香力, 陈婷婷, 等. 煤气化渣合成4A分子筛及其吸附性能研究[J]. 硅酸盐通报, 2023, 42(6): 2251-2261. |
XU Qibin, NIU Xiangli, CHEN Tingting, et al. Preparation of 4A molecular sieve from coal gasification slag and its adsorption performance[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(6): 2251-2261. | |
48 | HAN Lina, REN Weiguo, WANG Bing, et al. Extraction of SiO2 and Al2O3 from coal gangue activated by supercritical water[J]. Fuel, 2019, 253: 1184-1192. |
49 | ZHOU Jianmin, ZHENG Feng, LI Hui, et al. Optimization of post-treatment variables to produce hierarchical porous zeolites from coal gangue to enhance adsorption performance[J]. Chemical Engineering Journal, 2020, 381: 122698. |
50 | WANG Lixiang, LIU Xuelu, ZHANG Rui, et al. Synthesis of zeolite-based Cu/Fe-X from coal gangue for fenton-like catalytic degradation of rhodamine B[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2024, 34: 722-734. |
51 | DE GREGORI DA ROCHA Juliana, DE ANDRADE Cristiano José, RIELLA Humberto Gracher, et al. Hierarchical zeolite from coal fly ash using the biosurfactant manosyleritritol lipids-B as a novel green mesoporogen agent[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109753. |
52 | LI Hui, LI Mingjun, ZHENG Feng, et al. Efficient removal of water pollutants by hierarchical porous zeolite-activated carbon prepared from coal gangue and bamboo[J]. Journal of Cleaner Production, 2021, 325: 129322. |
53 | YAN Kezhou, ZHANG Jiyuan, LIU Dandan, et al. Feasible synthesis of magnetic zeolite from red mud and coal gangue: Preparation, transformation and application[J]. Powder Technology, 2023, 423: 118495. |
54 | CHAI Zhen, Peng LYU, BAI Yonghui, et al. Low-cost Y-type zeolite/carbon porous composite from coal gasification fine slag and its application in the phenol removal from wastewater: Fabrication, characterization, equilibrium, and kinetic studies[J]. RSC Advances, 2022, 12(11): 6715-6724. |
55 | SHU Rui, QIAO Qixia, GUO Feiqiang, et al. Controlled design of Na-P1 zeolite/porous carbon composites from coal gasification fine slag for high-performance adsorbent[J]. Environmental Research, 2023, 217: 114912. |
56 | WU Yuhua, MA Yulong, SUN Yonggang, et al. Graded synthesis of highly ordered MCM-41 and carbon/zeolite composite from coal gasification fine residue for crystal violet removal[J]. Journal of Cleaner Production, 2020, 277: 123186. |
57 | MA Xianyao, LI Yingxue, XU Defu, et al. Simultaneous adsorption of ammonia and phosphate using ferric sulfate modified carbon/zeolite composite from coal gasification slag[J]. Journal of Environmental Management, 2022, 305: 114404. |
58 | MENG Xiangju, XIAO Fengshou. Green routes for synthesis of zeolites[J]. Chemical Reviews, 2014, 114(2): 1521-1543. |
59 | GAO Jida, LIN Qianji, YANG Tingzhi, et al. Preparation and characterization of ZSM-5 molecular sieve using coal gangue as a raw material via solvent-free method: Adsorption performance tests for heavy metal ions and methylene blue[J]. Chemosphere, 2023, 341: 139741. |
60 | 陈汇勇, 张国卿, 王旭, 等. 一种煤矸石温和、绿色制备分子筛的方法:CN116947067A[P]. 2023-10-27. |
CHEN Huiyong, ZHANG Guoqing, WANG Xu, et al. A mild and green method for preparing zeolite from coal gangue:CN116947067A[P]. 2023-10-27. | |
61 | TENG Liumei, JIN Xi, BU Yifan, et al. Facile and fast synthesis of cancrinite-type zeolite from coal fly ash by a novel hot stuffy route[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108369. |
62 | LIU Pei, WU Qinming, YAN Keping, et al. Solvent-free synthesis of FAU zeolite from coal fly ash[J]. Dalton Transactions, 2023, 52(1): 24-28. |
63 | WU Yifan, LIANG Guangbing, ZHAO Xinna, et al. Flexible textural design of ZSM-5 zeolite adsorbent from coal fly ash via solvent-free method for toluene elimination[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109589. |
64 | LIU Lijuan, JI Wenxin, LI Kangning, et al. Solid phase ZSM-5 synthesis from coal gasification coarse slag[J]. Silicon, 2022, 14(14): 8855-8868. |
65 | HAN Jinfeng, Ying HA, GUO Mingyu, et al. Synthesis of zeolite SSZ-13 from coal gangue via ultrasonic pretreatment combined with hydrothermal growth method[J]. Ultrasonics Sonochemistry, 2019, 59: 104703. |
66 | MAKGABUTLANE Boitumelo, NTHUNYA Lebea N, NXUMALO Edward N, et al. Microwave irradiation-assisted synthesis of zeolites from coal fly ash: An optimization study for a sustainable and efficient production process[J]. ACS Omega, 2020, 5(39): 25000-25008. |
67 | HOSSINI ASL Seyed Mostafa, MASOMI Mojtaba, TAJBAKHSH Mahmood. Hybrid adaptive neuro-fuzzy inference systems for forecasting benzene, toluene & m-xylene removal from aqueous solutions by HZSM-5 nano-zeolite synthesized from coal fly ash[J]. Journal of Cleaner Production, 2020, 258: 120688. |
68 | BOYCHEVA Silviya, ZGUREVA Denitza, LAZAROVA Hristina, et al. Comparative studies of carbon capture onto coal fly ash zeolites Na-X and Na-Ca-X[J]. Chemosphere, 2021, 271: 129505. |
69 | SHU Qingxiang, SUN Zhenhua, ZHU Ganyu, et al. Highly efficient synthesis of ZSM-5 zeolite by one-step microwave using desilication solution of coal gasification coarse slag and its application to VOCs adsorption[J]. Process Safety and Environmental Protection, 2022, 167: 173-183. |
70 | LIU Yixuan, ZHOU Tengteng, CHEN Xingxing, et al. Synthesis of a coal fly ash-based NaP zeolite using the microwave-ultrasonic assisted method: Preparation, growth mechanism, and kinetics[J]. ChemistrySelect, 2023, 8(1): e202204353. |
71 | JOSEPH Ifeoma V, TOSHEVA Lubomira, DOYLE Aidan M. Simultaneous removal of Cd(Ⅱ), Co(Ⅱ), Cu(Ⅱ), Pb(Ⅱ), and Zn(Ⅱ) ions from aqueous solutions via adsorption on FAU-type zeolites prepared from coal fly ash[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103895. |
72 | FENG Wei, WAN Zhijian, DANIELS Jacqueline, et al. Synthesis of high quality zeolites from coal fly ash: Mobility of hazardous elements and environmental applications[J]. Journal of Cleaner Production, 2018, 202: 390-400. |
73 | SIVALINGAM Sivamani, KELLA Tatinaidu, MAHARANA Manisha, et al. Efficient sono-sorptive elimination of methylene blue by fly ash-derived nano-zeolite X: Process optimization, isotherm and kinetic studies[J]. Journal of Cleaner Production, 2018, 208(C): 1241-1254. |
74 | Bo LYU, DONG Bobing, ZHANG Chuanxiang, et al. Effective adsorption of methylene blue from aqueous solution by coal gangue-based zeolite granules in a fluidized bed: Fluidization characteristics and continuous adsorption[J]. Powder Technology, 2022, 408: 117764. |
75 | YUAN Ning, TAN Kaiqi, ZHANG Xinling, et al. Synthesis and adsorption performance of ultra-low silica-to-alumina ratio and hierarchical porous ZSM-5 zeolites prepared from coal gasification fine slag[J]. Chemosphere, 2022, 303(Pt 1): 134839. |
76 | QIAO Qixia, ZHOU Huiming, GUO Feiqiang, et al. Facile and scalable synthesis of mesoporous composite materials from coal gasification fine slag for enhanced adsorption of malachite green[J]. Journal of Cleaner Production, 2022, 379: 134739. |
77 | CHEN Jiabin, YANG Renjie, ZHANG Zhiyong, et al. Removal of fluoride from water using aluminum hydroxide-loaded zeolite synthesized from coal fly ash[J]. Journal of Hazardous Materials, 2022, 421: 126817. |
78 | QUAN Cui, CHU Hua, ZHOU Yingying, et al. Amine-modified silica zeolite from coal gangue for CO2 capture[J]. Fuel, 2022, 322: 124184. |
79 | VERRECCHIA Gabriele, CAFIERO Lorenzo, DE CAPRARIIS Benedetta, et al. Study of the parameters of zeolites synthesis from coal fly ash in order to optimize their CO2 adsorption[J]. Fuel, 2020, 276: 118041. |
80 | LI Haipeng, WANG Le, LIU Zhiliang, et al. Cu, Ag-containing systems based on coal gangue as catalysts for highly efficient antibiotics removal via persulfate activation under visible light irradiation[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 105016. |
81 | BOYCHEVA Silviya, ZGUREVA Denitza, Miroslava VÁCLAVÍKOVÁ, et al. Studies on non-modified and copper-modified coal ash zeolites as heterogeneous catalysts for VOCs oxidation[J]. Journal of Hazardous Materials, 2019, 361: 374-382. |
82 | COCCHI Marco, CAFIERO Lorenzo, DE ANGELIS Doina, et al. Conversion of marine plastic litter into chemicals and fuels through catalytic pyrolysis using commercial and coal fly ash-synthesized zeolites[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(9): 3644-3656. |
83 | XU Liya, DONG Kaiming, GUO Feiqiang, et al. Synthesis of zeolite-based porous catalysts from coal gasification fine slag for steam reforming of toluene[J]. Energy, 2023, 274: 127294. |
84 | WU Ruofei, Peng LYU, WANG Jiaofei, et al. Catalytic upgrading of cow manure pyrolysis vapors over zeolite/carbon composites prepared from coal gasification fine slag: High quality bio-oil obtaining and mechanism investigation[J]. Fuel, 2023, 339: 126941. |
85 | GE Qilong, TIAN Qi, HOU Rui, et al. Combing phosphorus-modified hydrochar and zeolite prepared from coal gangue for highly effective immobilization of heavy metals in coal-mining contaminated soil[J]. Chemosphere, 2022, 291(Pt 2): 132835. |
86 | FAN Yifei, HUANG Renhe, LIU Qingyun, et al. Synthesis of zeolite A from fly ash and its application in the slow release of urea[J]. Waste Management, 2023, 158: 47-55. |
[1] | 陈风, 王宣德, 黄伟, 王晓东, 王琰. HZSM-22的粒径调控及Pt/HZSM-22的正十二烷加氢异构催化性能[J]. 化工进展, 2024, 43(3): 1309-1317. |
[2] | 梁燕燕, 张军亮, 郭云鸦, 张燕挺. 晶种在分子筛合成中的作用研究进展[J]. 化工进展, 2024, 43(3): 1275-1292. |
[3] | 钱俊明, 郭猛, 任秀秀, 余亮, 钟璟, 徐荣. 芳烃官能化有机硅膜的制备及丙烯/丙烷分离性能[J]. 化工进展, 2024, 43(3): 1428-1435. |
[4] | 王达锐, 孙洪敏, 王一棪, 唐智谋, 李芮, 范雪研, 杨为民. 分子筛催化反应过程高效化的技术进展[J]. 化工进展, 2024, 43(1): 1-18. |
[5] | 王一棪, 王达锐, 沈震浩, 何俊琳, 孙洪敏, 杨为民. 全结晶MCM-22分子筛催化剂的制备及其催化性能[J]. 化工进展, 2024, 43(1): 285-291. |
[6] | 张海鹏, 王树振, 马梦茜, 张巍, 向江南, 王玉婷, 王琰, 范彬彬, 郑家军, 李瑞丰. ZSM-22分子筛合成及其正十二烷烃临氢异构化性能:模板剂和动态晶化的影响[J]. 化工进展, 2024, 43(1): 414-421. |
[7] | 周媚, 曾浩桀, 卢俊宁, 蒲婷, 刘宝玉. 等级孔分子筛构筑及扩散过程强化研究进展[J]. 化工进展, 2024, 43(1): 76-86. |
[8] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[9] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[10] | 王晓晗, 周亚松, 于志庆, 魏强, 孙劲晓, 姜鹏. 不同晶粒尺寸Y分子筛的合成及其加氢裂化反应性能[J]. 化工进展, 2023, 42(8): 4283-4295. |
[11] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[12] | 王达锐, 孙洪敏, 薛明伟, 王一棪, 刘威, 杨为民. 微波法高效合成全结晶ZSM-5分子筛催化剂及其催化性能[J]. 化工进展, 2023, 42(7): 3582-3588. |
[13] | 王帅旗, 王从新, 王学林, 田志坚. 无溶剂快速合成ZSM-12分子筛[J]. 化工进展, 2023, 42(7): 3561-3571. |
[14] | 韩恒文, 韩伟, 李明丰. 烯烃水合反应工艺与催化剂研究进展[J]. 化工进展, 2023, 42(7): 3489-3500. |
[15] | 王子健, 柯明, 宋昭峥, 李佳涵, 童燕兵, 孙巾茹. 分子筛催化汽油烷基化降苯技术研究进展[J]. 化工进展, 2023, 42(5): 2371-2389. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |