1 |
WU Gang, WANG Ke, LIU Shasha, et al. Improved production of methyl levulinate from catalytic conversion of cellulose over cobalt sulfide by nickel doping[J]. Renewable Energy, 2024, 224: 120178.
|
2 |
何世坤, 张文豪, 冯君锋, 等. 负载金属型固体酸催化木质纤维生物质定向转化为乙酰丙酸甲酯[J]. 化工进展, 2024,43(6):3042-3050.
|
|
HE Shikun, ZHANG Wenhao, FENG Junfeng, et al. Directional conversion of lignocellulosic biomass to methyl levulinate over supported metal solid acid[J]. Chemical Industry and Engineering Progress, 2024,46(6):3042-3050.
|
3 |
LI Mingfu, ZHANG Qingtong, LUO Bin, et al. Lignin-based carbon solid acid catalyst prepared for selectively converting fructose to 5-hydroxymethylfurfural[J]. Industrial Crops and Products, 2020, 145: 111920.
|
4 |
XING Xinyi, SHI Xian, RUAN Mengya, et al. Sulfonic acid functionalized β zeolite as efficient bifunctional solid acid catalysts for the synthesis of 5-hydroxymethylfurfural from cellulose[J]. International Journal of Biological Macromolecules, 2023, 242: 125037.
|
5 |
蔡炽柳, 王海永, 李丹, 等. 双相体系果糖催化转化为5-羟甲基糠醛研究[J]. 太阳能学报, 2022, 43: 49-54.
|
|
CAI Chiliu, WANG Haiyong, LI Dan, et al. Study on catalytic conversion of fructose to 5-hydroxymethylfurfural in two-phase system[J]. Acta Energiae Solaris Sinica, 2022, 43(2): 49-54.
|
6 |
ZHANG Xingyilong, LU Houfang, WU Kejing, et al. Hierarchical porous carbon-based solid acid as a high-performance catalyst for conversion of fructose to 5-hydroxymethylfurfural[J]. Fuel, 2024, 363: 130835.
|
7 |
YU Mengjiao, ZHANG XiongFei, BAI Yunhua, et al. Sn-modified SBA-15 with tailored acid properties for efficient 5-hydroxymethylfurfural production from glucose[J]. Biomass and Bioenergy, 2024, 184: 107202.
|
8 |
WANG Zhongxu, LU Peng, LI Shuo, et al. A surface modification strategy to prepare hierarchical Beta molecular sieves for glucose dehydration[J]. Dalton Transactions, 2023, 52(38): 13507-13516.
|
9 |
SHAO Qi, DONG Hao, ZhANG Jian, et al. Manganese supported on controlled dealumination Y-zeolite for ozone catalytic oxidation of low concentration toluene at low temperature[J]. Chemosphere, 2021, 271: 129604.
|
10 |
JOSHI Hrishikesh, Cristina OCHOA-HERNANDEZ, Edward NÜRENBERG, et al. Insights into the mechanochemical synthesis of Sn-β: Solid-state metal incorporation in beta zeolite[J]. Microporous and Mesoporous Materials, 2020, 309: 110566.
|
11 |
OOZEERALLY Ryan, PILLIER John, KILIC Emre, et al. Gallium and tin exchanged Y zeolites for glucose isomerisation and 5-hydroxymethyl furfural production[J]. Applied Catalysis A: General, 2020, 605: 117798.
|
12 |
VALADARES Deborah S, CLEMENTE Maria Clara H, DE FREITAS Elon F, et al. Niobium on BEA dealuminated zeolite for high selectivity dehydration reactions of ethanol and xylose into diethyl ether and furfural[J]. Nanomaterials, 2020, 10(7): 1269.
|
13 |
WANG Ye, DAI Yanan, WANG Tianhao, et al. Efficient conversion of xylose to furfural over modified zeolite in the recyclable water/n-butanol system[J]. Fuel Processing Technology, 2022, 237: 107472.
|
14 |
TEMPELMAN Christiaan, JACOBS Urjan, Tjerry HUT, et al. Sn exchanged acidic ion exchange resin for the stable and continuous production of 5-HMF from glucose at low temperature[J]. Applied Catalysis A: General, 2019, 588: 117267.
|
15 |
YANG Hong, GUO Qianqian, YANG Panpan, et al. Synthesis of hierarchical Sn-Beta zeolite and its catalytic performance in glucose conversion[J]. Catalysis Today, 2021, 367: 117-123.
|
16 |
ZHU Zhiguo, XU Hao, JIANG Jingang, et al. Sn-Beta zeolite hydrothermally synthesized via interzeolite transformation as efficient Lewis acid catalyst[J]. Journal of Catalysis, 2017, 352: 1-12.
|
17 |
WOLF Patrick, VALLA Maxence, ROSSINI Aaron J, et al. NMR signatures of the active sites in Sn-β zeolite[J]. Angewandte Chemie (International Ed), 2014, 53(38): 10179-10183.
|
18 |
ZHANG Rongxin, XU Shaojun, RAJA Duaa, et al. On the effect of mesoporosity of FAU Y zeolites in the liquid-phase catalysis[J]. Microporous and Mesoporous Materials, 2019, 278: 297-306.
|
19 |
HASSAN H, HAMEED B H. Oxidative decolorization of Acid Red 1 solutions by Fe–zeolite Y type catalyst[J]. Desalination, 2011, 276(1/2/3): 45-52.
|
20 |
RAMLI Nur Aainaa Syahirah, AMIN Nor Aishah Saidina. Fe/HY zeolite as an effective catalyst for levulinic acid production from glucose: Characterization and catalytic performance[J]. Applied Catalysis B: Environmental, 2015, 163: 487-498.
|
21 |
YUE Yuanyuan, FU Jing, WANG Chuanming, et al. Propane dehydrogenation catalyzed by single Lewis acid site in Sn-Beta zeolite[J]. Journal of Catalysis, 2021, 395: 155-167.
|
22 |
ZHANG Guanqun, FENG Pei, ZHANG Weiping, et al. Single isomerization selectivity of glucose in methanol over Sn-BEC zeolite of homogenous Sn distribution[J]. Microporous and Mesoporous Materials, 2017, 247: 158-165.
|
23 |
WANG Shuai, ZHANG Mengxiang, GUO Dayi, et al. Construction of Lewis-Brønsted bifunctional carbonaceous acidic catalyst for efficient transformation of glucose into 5-HMF[J]. Fuel, 2024, 363: 130991.
|
24 |
NIKAN Mahsa, Majid MASTERL-FARAHANI, SEIDI Farzad. Catalytic fructose dehydration to 5-hydroxymethylfurfural on the surface of sulfonic acid modified ordered mesoporous SBA-16[J]. Fuel, 2023, 337: 127242.
|
25 |
REZAYAN Armin, NIE Renfeng, WANG Jianshe, et al. Efficient one-pot synthesis of 5-hydroxymethylfurfural from functionalized microcrystalline cellulose: An alternative approach to strong acidic/basic catalysis[J]. Chemical Engineering Journal, 2023, 462: 142219.
|
26 |
SONG Xiangbo, YUE Jun, ZHU Yuting, et al. Efficient conversion of glucose to 5-hydroxymethylfurfural over a Sn-modified SAPO-34 zeolite catalyst[J]. Industrial & Engineering Chemistry Research, 2021, 60(16): 5838-5851.
|