化工进展 ›› 2024, Vol. 43 ›› Issue (S1): 295-304.DOI: 10.16085/j.issn.1000-6613.2024-0937
熊磊1,2(), 丁飞燕2, 李聪2, 王群乐3, 吕起3, 翟晓娜1, 刘峰1()
收稿日期:
2024-06-01
修回日期:
2024-07-25
出版日期:
2024-11-20
发布日期:
2024-12-06
通讯作者:
刘峰
作者简介:
熊磊(1985—),男,博士研究生,副教授,研究方向为工业催化及高分子材料。E-mail:xionglei@ncmc.edu.cn。
基金资助:
XIONG Lei1,2(), DING Feiyan2, LI Cong2, WANG Qunle3, LYU Qi3, ZHAI Xiaona1, LIU Feng1()
Received:
2024-06-01
Revised:
2024-07-25
Online:
2024-11-20
Published:
2024-12-06
Contact:
LIU Feng
摘要:
传统均相Pt催化剂因难以分离和回收等缺点,严重限制了其工业应用。通过浸渍、共沉淀、离子交换等手段将Pt负载于载体上制成非均相催化剂,不仅实现了催化剂的高效回收,降低了应用成本,还能根据不同载体改变配位环境,进而有效提高催化剂的选择性。文章从无机材料(沸石分子筛、碳纳米材料、二氧化硅、金属氧化物)和有机高分子材料等载体出发,回顾了近年来Pt负载型非均相催化剂的研制及其在催化氧化、催化加氢、硅氢加成等反应中的应用现状,并分析了不同催化剂载体的优缺点。结果表明,调整载体的制作工艺、尺寸规格、空间结构,或将其制成复合载体、引入多活性中心等方法,是提高Pt负载型非均相催化剂活性、选择性与稳定性的主要发展趋势。
中图分类号:
熊磊, 丁飞燕, 李聪, 王群乐, 吕起, 翟晓娜, 刘峰. 金属Pt负载型非均相催化剂研究进展[J]. 化工进展, 2024, 43(S1): 295-304.
XIONG Lei, DING Feiyan, LI Cong, WANG Qunle, LYU Qi, ZHAI Xiaona, LIU Feng. Recent advances in metal Pt supported heterogeneous catalysts[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 295-304.
催化剂 | Pt负载量(质量分数)/% | T50%①/℃ | T90%②/℃ |
---|---|---|---|
Pt/NaZSM-5 | 1 | 122 | 128 |
Pt/Al2O3 | 5 | 210 | 255 |
Pt/Al-PILC | 2 | 310 | 325 |
表1 Pt/NaZSM-5与Pt/Al系载体催化活性比较[27]
催化剂 | Pt负载量(质量分数)/% | T50%①/℃ | T90%②/℃ |
---|---|---|---|
Pt/NaZSM-5 | 1 | 122 | 128 |
Pt/Al2O3 | 5 | 210 | 255 |
Pt/Al-PILC | 2 | 310 | 325 |
催化剂类型 | 应用领域 | 特点 |
---|---|---|
MCH脱氢 | ||
甲醇氧化 | PANI中的N易与Pt配位,有效阻止Pt聚集,提高了催化剂的稳定性[ | |
Pt/LaNiO3/SiO2 | CO氧化 | LaNi1–x Pt x O3/SiO2为前体,Pt分散性高,且分布均匀、抗烧结[ |
炔烃半氢化 | ZIF-8薄膜增加了Pt的电子密度,提高了炔烃半氢化的选择性[ | |
Pt/CS/SiO2 | 烯烃硅氢化 |
表2 SiO2负载Pt催化剂特点
催化剂类型 | 应用领域 | 特点 |
---|---|---|
MCH脱氢 | ||
甲醇氧化 | PANI中的N易与Pt配位,有效阻止Pt聚集,提高了催化剂的稳定性[ | |
Pt/LaNiO3/SiO2 | CO氧化 | LaNi1–x Pt x O3/SiO2为前体,Pt分散性高,且分布均匀、抗烧结[ |
炔烃半氢化 | ZIF-8薄膜增加了Pt的电子密度,提高了炔烃半氢化的选择性[ | |
Pt/CS/SiO2 | 烯烃硅氢化 |
催化剂类型 | 应用领域 | 特点 |
---|---|---|
Pt/Al2O3 | 废水脱氟处理 | 与传统氧化脱氟工艺相比,无有毒副产物产生[ |
Pt/CePr/Al2O3 | CH4/CO2重整 | Ce、Pr的引入提高了催化剂的抗烧结性,延长了催化剂的使用寿命[ |
Pt/CZA-T | 汽车尾气污染物处理 | 表面高密度缺陷促进了Pt的分散,形成了较强的Pt-O-Ce相互作用,使Pt/CZA-T具有较高的氧化活性[ |
表3 Al2O3负载Pt催化剂特点
催化剂类型 | 应用领域 | 特点 |
---|---|---|
Pt/Al2O3 | 废水脱氟处理 | 与传统氧化脱氟工艺相比,无有毒副产物产生[ |
Pt/CePr/Al2O3 | CH4/CO2重整 | Ce、Pr的引入提高了催化剂的抗烧结性,延长了催化剂的使用寿命[ |
Pt/CZA-T | 汽车尾气污染物处理 | 表面高密度缺陷促进了Pt的分散,形成了较强的Pt-O-Ce相互作用,使Pt/CZA-T具有较高的氧化活性[ |
硝基芳香烃 | 产物 | 反应时间 /min | 产率/% | 选择性 /% |
---|---|---|---|---|
对硝基苯乙酮 | 对氨基苯乙酮 | 120 | 96.2 | >99 |
对硝基苯甲酸乙酯 | 对氨基苯甲酸乙酯 | 70 | 99.9 | >99 |
邻氯硝基苯 | 邻氯苯氨 | 180 | 95.3 | 96.8 |
邻硝基苯甲醛 | 邻氨基苯甲醛 | 130 | 96.2 | >99 |
间硝基苯乙酮 | 间氨基苯乙酮 | 220 | 98.5 | >99 |
表4 0.2% Pt/Fe2O3催化还原硝基芳烃的活性与选择性比较[59]
硝基芳香烃 | 产物 | 反应时间 /min | 产率/% | 选择性 /% |
---|---|---|---|---|
对硝基苯乙酮 | 对氨基苯乙酮 | 120 | 96.2 | >99 |
对硝基苯甲酸乙酯 | 对氨基苯甲酸乙酯 | 70 | 99.9 | >99 |
邻氯硝基苯 | 邻氯苯氨 | 180 | 95.3 | 96.8 |
邻硝基苯甲醛 | 邻氨基苯甲醛 | 130 | 96.2 | >99 |
间硝基苯乙酮 | 间氨基苯乙酮 | 220 | 98.5 | >99 |
催化剂 | 酸位点数量/mmol·g-1 | 比表面积/m2·g-1 | N2选择性/% | Pt负载量/% | T50%①/℃ |
---|---|---|---|---|---|
Nb2O5 | 0.33 | 210 | — | — | — |
Nb2O5-NaOH | 0.14 | 207 | — | — | — |
Pt/Nb2O5 | 0.33 | 209 | 98 | 0.90 | 188 |
Pt/Nb2O5-NaOH | 0.16 | 205 | 74 | 0.86 | 213 |
表5 铌系催化剂的催化活性比较[64]
催化剂 | 酸位点数量/mmol·g-1 | 比表面积/m2·g-1 | N2选择性/% | Pt负载量/% | T50%①/℃ |
---|---|---|---|---|---|
Nb2O5 | 0.33 | 210 | — | — | — |
Nb2O5-NaOH | 0.14 | 207 | — | — | — |
Pt/Nb2O5 | 0.33 | 209 | 98 | 0.90 | 188 |
Pt/Nb2O5-NaOH | 0.16 | 205 | 74 | 0.86 | 213 |
改性电极 | 甲酸浓度 /mol·L-1 | 电化学质量活性 /A·g-1 | 电化学活性 表面积/m2·g-1 |
---|---|---|---|
Pt-Pd/PFCA/GC | 0.5 | 1225 | 53.3 |
PtPd/HPC500 | 0.5 | 126 | 49.6 |
Pt/C | 0.5 | 8.3 | 2.4 |
Pt/Pd/PDAN/GC | 0.5 | 1825 | 90.43 |
表6 Pt/Pd/PDAN/GC催化甲酸活性比较[70]
改性电极 | 甲酸浓度 /mol·L-1 | 电化学质量活性 /A·g-1 | 电化学活性 表面积/m2·g-1 |
---|---|---|---|
Pt-Pd/PFCA/GC | 0.5 | 1225 | 53.3 |
PtPd/HPC500 | 0.5 | 126 | 49.6 |
Pt/C | 0.5 | 8.3 | 2.4 |
Pt/Pd/PDAN/GC | 0.5 | 1825 | 90.43 |
电极 | CO氧化的 库仑电荷/mC | 电化学活性 表面积/m2·g-1 | 正向峰值 电流密度/A·g-1 |
---|---|---|---|
Pt/GC | 0.323 | 27.2 | 160.9 |
Pt/PAIn/GC | 0.291 | 24.5 | 56.9 |
Pt/PAIn/GE/GC | 0.481 | 40.6 | 329.3 |
表7 Pt/PAIn/GE/GC催化剂活性比较[71]
电极 | CO氧化的 库仑电荷/mC | 电化学活性 表面积/m2·g-1 | 正向峰值 电流密度/A·g-1 |
---|---|---|---|
Pt/GC | 0.323 | 27.2 | 160.9 |
Pt/PAIn/GC | 0.291 | 24.5 | 56.9 |
Pt/PAIn/GE/GC | 0.481 | 40.6 | 329.3 |
1 | LEE Sol A, LEE Mi Gyoung, JANG Ho Won. Catalysts for electrochemical ammonia oxidation: Trend, challenge, and promise[J]. Science China Materials, 2022, 65(12): 3334-3352. |
2 | YANG Zhirong, SHI Yao, LIN Yan, et al. Hierarchical pore construction of alumina microrod supports for Pt catalysts toward the enhanced performance of n-heptane reforming[J]. Chemical Engineering Science, 2022, 252: 117286. |
3 | Iyad S ALI, CHEN Linxiao, REZVANI Fereshteh, et al. Tuning coordinated supported catalysts: Carboxylic acid-based ligands to improve ceria-supported Pt catalysts for hydrosilylation[J]. Applied Catalysis A: General, 2022, 639: 118634. |
4 | WANG Haifeng, LIN Mingyue, MURAYAMA Toru, et al. Selective catalytic oxidation of ammonia to nitrogen over zeolite-supported Pt-Au catalysts: Effects of alloy formation and acid sites[J]. Journal of Catalysis, 2021, 402: 101-113. |
5 | WANG Rong, LIANG Shuhuai, ZHU Jinhua, et al. Hydrosilylation of alkenes with tertiary silanes under mild conditions by Pt(Ⅱ)-vinyl complex supported on modified rice straw biochar[J]. Molecular Catalysis, 2023, 542: 113141. |
6 | SPEIER John L, WEBSTER James A, BARNES Garrett H. The addition of silicon hydrides to olefinic double bonds. part Ⅱ. the use of group Ⅷ metal catalysts[J]. Journal of the American Chemical Society, 1957, 79(4): 974-979. |
7 | KARSTEDT B. Platinum complexes of unsaturated siloxanes and platinum containing organopolysiloxanes: US3775452DA[P]. 1973-11-27. |
8 | CHEN Haohua, LI Yuanyuan, LIU Song, et al. On the mechanism of homogeneous Pt-catalysis: A theoretical view[J]. Coordination Chemistry Reviews, 2021, 437: 213863. |
9 | ROCHA Willian R. Hydrogen activation and aldehyde elimination promoted by homogeneous Pt-Sn catalyst: A theoretical study[J]. Journal of Molecular Structure: THEOCHEM, 2004, 677(1/2/3): 133-143. |
10 | DIOUMAEV Vladimir K, Morris BULLOCK R. A recyclable catalyst that precipitates at the end of the reaction[J]. Nature, 2003, 424(6948): 530-532. |
11 | WAGNER George H. Reaction of silanes with aliphatic unsaturated compounds: US2637738[P]. 1953-05-05. |
12 | SU Zerui, ZHANG Jian, LU Shiyao, et al. Pt nanoparticles supported on Nb-modified TiO2 as an efficient heterogeneous catalyst for the conversion of cellulose to light bioalcohols[J]. Chemical Communications, 2022, 58(88): 12349-12352. |
13 | YAO Jihui, XU Zhikang, CHENG Shuo, et al. Pt/Al2O3 as efficient catalyst for the dehydrogenation of Dodecahydro-N-ethylcarbazole[J]. Chemical Engineering Journal, 2024, 491: 152100. |
14 | KIM Yongseon, Dong Gun OH, CHO Sung June, et al. Catalytic behavior of Pt single-atoms supported on CeO2 [J]. Catalysis Today, 2024, 425: 114298. |
15 | ADAM Mohamed Shaker S, KHALIL Ahmed, TAHA Amel, et al. Facile synthetic route of TiO2-ZnO heteronanostructure coated by oxovanadium (Ⅳ) bis-Schiff base complex as a potential effective homogeneous/heterogeneous catalysts for alcohols redox systems[J]. Surfaces and Interfaces, 2023, 39: 102914. |
16 | BARTECZKO Natalia, GRYMEL Mirosława, CHROBOK Anna. Heterogeneous catalysts for olefin metathesis[J]. Catalysis Communications, 2023, 177: 106662. |
17 | CAI Xin, LIU Xin, HAO Zhixian, et al. Improved Pt dispersion and catalytic performance by modified carbon support with low surface oxygen content and more mesopores[J]. Journal of Power Sources, 2024, 604: 234478. |
18 | WANG Jingyi, HE Guangzhi, WANG Chunying, et al. HCHO oxidation on Pt-Na/SiO2 catalyst with ultralow Pt loading: New insight into the effect of Si support and Na promoter[J]. Applied Catalysis B: Environment and Energy, 2024, 347: 123787. |
19 | NA RUNGSI Artita, LUENGNARUEMITCHAI Apanee, CHOLLACOOP Nuwong, et al. Performance and sulfur poisoning of SiO2, γ-Al2O3, and SiO2-Al2O3-supported bimetallic Pd-Pt catalysts in selective hydrogenation of soybean oil-derived fatty acid methyl esters[J]. Fuel, 2023, 331: 125919. |
20 | WANG Zhendong, LIU Guozhu, ZHANG Xiangwen. Efficient and stable Pt/CaO-TiO2-Al2O3 for the catalytic dehydrogenation of cycloalkanes as an endothermic hydrocarbon fuel[J]. Fuel, 2023, 331: 125732. |
21 | SHI Yijun, WAN Jie, KONG Fanzhe, et al. Influence of Pt dispersibility and chemical states on catalytic performance of Pt/CeO2-TiO2 catalysts for VOCs low-temperature removal[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652: 129932. |
22 | LI Shuangju, LIN Yin, WANG Da, et al. Polyhedral cobalt oxide supported Pt nanoparticles with enhanced performance for toluene catalytic oxidation[J]. Chemosphere, 2021, 263: 127870. |
23 | FOTIE Jean, ENECHOJO AGBO Mercy, QU Fengrui, et al. Dichloro(ethylenediamine)platinum(Ⅱ), a water-soluble analog of the antitumor cisplatin, as a heterogeneous catalyst for a stereoselective hydrosilylation of alkynes under neat conditions[J]. Tetrahedron Letters, 2020, 61(36): 152300. |
24 | WANG Wei, HE Lei, LUO Qunxing, et al. Synthesis and application of core-shell, hollow, yolk-shell multifunctional structure zeolites[J]. Microporous and Mesoporous Materials, 2023, 362: 112766. |
25 | DAI Xiaojun, CHENG Yan, LIU Tingting, et al. Tailored synthesis of plate-like SAPO-11 molecular sieve and its application in non-noble metal-supported catalyst for efficient hydroisomerization of long-chain n-alkanes[J]. Chemical Engineering Journal, 2024, 480: 148358. |
26 | María PÉREZ-PAGE, YU Erick, LI Jun, et al. Template-based syntheses for shape controlled nanostructures[J]. Advances in Colloid and Interface Science, 2016, 234: 51-79. |
27 | JIANG Yiwen, ZHANG Ling, XIE Yiquan, et al. Enhanced catalytic activity in propene oxidation over NaZSM-5 zeolite-supported Pt nanoparticles by increasing the zeolite Si/Al ratio[J]. Catalysis Today, 2020, 355: 476-481. |
28 | WANG Yu, CHEN Yi, ZHANG Long, et al. Total catalytic oxidation of chlorinated aromatics over bimetallic Pt-Ru supported on hierarchical HZSM-5 zeolite[J]. Microporous and Mesoporous Materials, 2020, 308: 110538. |
29 | KHAWAJA Rebecca EL, SONAR Shilpa, BARAKAT Tarek, et al. VOCs catalytic removal over hierarchical porous zeolite NaY supporting Pt or Pd nanoparticles[J]. Catalysis Today, 2022, 405: 212-220. |
30 | PARK Hongjun, PARK Hanyoung, KIM Jeong-Chul, et al. Sodium-free synthesis of mesoporous zeolite to support Pt-Y alloy nanoparticles exhibiting high catalytic performance in propane dehydrogenation[J]. Journal of Catalysis, 2021, 404: 760-770. |
31 | LIU Da, CHANG Qinghuan, GAO Yan, et al. High performance of microbial fuel cell afforded by metallic tungsten carbide decorated carbon cloth anode[J]. Electrochimica Acta, 2020, 330: 135243. |
32 | XU Yihu, ZHU Kaili, YANG Xiao, et al. Efficient application of new porous carbon nanoparticle composite polyaniline material in microbial fuel cells[J]. Industrial Crops and Products, 2023, 192: 116130. |
33 | XU Pan, ZHANG Jing, JIANG Gaopeng, et al. Embellished hollow spherical catalyst boosting activity and durability for oxygen reduction reaction[J]. Nano Energy, 2018, 51: 745-753. |
34 | GHAREHDAGHI Zahra, RAHIMI Rahmatollah, NAGHIB Seyed Morteza, et al. Cu(Ⅱ)-porphyrin metal-organic framework/graphene oxide: Synthesis, characterization, and application as a pH-responsive drug carrier for breast cancer treatment[J]. JBIC Journal of Biological Inorganic Chemistry, 2021, 26(6): 689-704. |
35 | SAQUIC Boanerges Elias Bamaca, IRMAK Sibel, WILKINS Mark. Enhancement of catalytic performance of graphene supported Pt catalysts by Ni and W for hydrogen gas production by hydrothermal gasification of biomass-derived compounds[J]. Fuel, 2022, 308: 122079. |
36 | GUO Yaodong, DI Zhaoying, GUO Xiaonan, et al. N/Ce doped graphene supported Pt nanoparticles for the catalytic oxidation of formaldehyde at room temperature[J]. Journal of Environmental Sciences, 2023, 125: 135-147. |
37 | LI Minghui, SUN Yuhan, TANG Yuqiong, et al. Efficient removal and recovery of copper by liquid phase catalytic hydrogenation using highly active and stable carbon-coated Pt catalyst supported on carbon nanotube[J]. Journal of Hazardous Materials, 2020, 388: 121745. |
38 | JANG Munjeong, CHOI Subin, KIM Yoondo, et al. Effect of CeO2 redox properties on the catalytic activity of Pt-CeO x over irreducible SiO2 support for methylcyclohexane (MCH) dehydrogenation[J]. Applied Surface Science, 2023, 627: 157134. |
39 | LASHKENARI Mohammad Soleimani, GHORBANI Mohsen, SILAKHORI Nadia, et al. Enhanced electrochemical performance and stability of Pt/Ni electrocatalyst supported on SiO2-PANI nanocomposite: A combined experimental and theoretical study[J]. Materials Chemistry and Physics, 2021, 262: 124290. |
40 | ZHANG Siran, AN Kang, FANG Chunyu, et al. SiO2 supported highly dispersed Pt atoms on LaNiO3 by reducing a perovskite-type oxide as the precursor and used for CO oxidation[J]. Catalysis Today, 2020, 355: 222-230. |
41 | LUO Gen, ZHANG Bin, YANG Xinchun, et al. Synthesis of ZIF-8-coated Pt/SiO2 by vapor deposition for alkyne semi-hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1316-1325. |
42 | XIE Huilin, YUE Hangbo, ZHANG Weixin, et al. A chitosan modified Pt/SiO2 catalyst for the synthesis of 3-poly(ethylene glycol) propyl ether-heptamethyltrisiloxane applied as agricultural synergistic agent[J]. Catalysis Communications, 2018, 104: 118-122. |
43 | ANIL S, INDRAJA S, SINGH R, et al. A review on ethanol steam reforming for hydrogen production over Ni/Al2O3 and Ni/CeO2 based catalyst powders[J]. International Journal of Hydrogen Energy, 2022, 47(13): 8177-8213. |
44 | PARK Jaehyeong, AN Seonyoung, Eun Hea JHO, et al. Exploring reductive degradation of fluorinated pharmaceuticals using Al2O3-supported Pt-group metallic catalysts: Catalytic reactivity, reaction pathways, and toxicity assessment[J]. Water Research, 2020, 185: 116242. |
45 | FONSECA R O DA, RABELO-NETO R C, SIMÕES R C C, et al. Pt supported on doped CeO2/Al2O3 as catalyst for dry reforming of methane[J]. International Journal of Hydrogen Energy, 2020, 45(8): 5182-5191. |
46 | TAN Wei, XIE Shaohua, WANG Xin, et al. Highly efficient Pt catalyst on newly designed CeO2-ZrO2-Al2O3 support for catalytic removal of pollutants from vehicle exhaust[J]. Chemical Engineering Journal, 2021, 426: 131855. |
47 | Wojciech GAC, ZAWADZKI Witold, Marcin KUŚMIERZ, et al. Neodymium promoted ceria and alumina supported nickel catalysts for CO2 methanation reaction[J]. Applied Surface Science, 2023, 631: 157542. |
48 | SONG Wenjia, DENG Yanbo, LV Zhiwen, et al. Effect of cobalt on CeO2 nanorod supported Pt catalyst: Structure, performance, kinetics and reaction mechanism in CO oxidation[J]. Chemical Engineering Science, 2024, 296: 120212. |
49 | LEI Lijun, FAN Wei, HOU Fengxiao, et al. Ti doped CeO2 nanosheets supported Pd catalyst for alcohol oxidation: Catalysis of interfacial sites[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 1007-1017. |
50 | WEN Meng, DONG Fang, YAO Jianfei, et al. Pt nanoparticles confined in the ordered mesoporous CeO2 as a highly efficient catalyst for the elimination of VOCs[J]. Journal of Catalysis, 2022, 412: 42-58. |
51 | TANG Mingyu, LIU Suting, FU Wanlin, et al. Surface oxygen vacancies promoted Pt nanoparticles on celery-like CeO2 nanofibers for enhanced sintering resistance and catalytic performance[J]. Materials Today Nano, 2022, 20: 100249. |
52 | LIU Yufeng, ZHOU Ying, KE Quanli, et al. Enhanced catalytic oxidation of diluted ethylene oxide on Pt/CeO2 catalyst under low temperature[J]. Applied Catalysis A: General, 2022, 639: 118642. |
53 | QI Fuyuan, YANG Weiping, YU Haochen, et al. Manipulating interfacial atomic structure of Pt/Ce1- x YxO2- δ to improve charge transfer capacity and catalytic activity in aerobic oxidation of HMF[J]. Applied Surface Science, 2022, 598: 153769. |
54 | MENG Hao, YANG Yusen, SHEN Tianyao, et al. A strong bimetal-support interaction in ethanol steam reforming[J]. Nature Communications, 2023, 14(1): 3189. |
55 | FU Jile, ZHANG Xiang, LI Huan, et al. Enhancing electronic metal support interaction (EMSI) over Pt/TiO2 for efficient catalytic wet air oxidation of phenol in wastewater[J]. Journal of Hazardous Materials, 2022, 426: 128088. |
56 | ALONSO Francisco, BUITRAGO Robison, MOGLIE Yanina, et al. Hydrosilylation of alkynes catalysed by platinum on titania[J]. Journal of Organometallic Chemistry, 2011, 696(1): 368-372. |
57 | LAN Lan, DALY Helen, JIAO Yilai, et al. Comparative study of the effect of TiO2 support composition and Pt loading on the performance of Pt/TiO2 photocatalysts for catalytic photoreforming of cellulose[J]. International Journal of Hydrogen Energy, 2021, 46(60): 31054-31066. |
58 | YAN Zhaoxiong, XU Zhihua, YANG Zhihua, et al. Graphene oxide/Fe2O3 nanoplates supported Pt for enhanced room-temperature oxidation of formaldehyde[J]. Applied Surface Science, 2019, 467: 277-285. |
59 | JING Pei, GAN Tao, QI Hui, et al. Synergism of Pt nanoparticles and iron oxide support for chemoselective hydrogenation of nitroarenes under mild conditions[J]. Chinese Journal of Catalysis, 2019, 40(2): 214-222. |
60 | LI Laiming, LI Youxin, YAN Jincong, et al. A magnetically recyclable superparamagnetic silica supported Pt nanocatalyst through a multi-carboxyl linker: Synthesis, characterization, and applications in alkene hydrosilylation[J]. RSC Advances, 2019, 9(22): 12696-12709. |
61 | HUO Yingpeng, HU Jiwen, TU Yuanyuan, et al. Efficient magnetically separable heterogeneous platinum catalyst bearing imidazolyl schiff base ligands for hydrosilylation[J]. Journal of Organometallic Chemistry, 2021, 936: 121714. |
62 | ZHOU Chunmei, SHI Wenrui, WAN Xiaoyue, et al. Oxidation of 5-hydroxymethylfurfural over a magnetic iron oxide decorated rGO supporting Pt nanocatalyst[J]. Catalysis Today, 2019, 330: 92-100. |
63 | SHEN Fei, SUN Zhongti, HE Qinggang, et al. Niobium pentoxide based materials for high rate rechargeable electrochemical energy storage[J]. Materials Horizons, 2021, 8(4): 1130-1152. |
64 | LIN Mingyue, AN Baoxiang, TAKEI Takashi, et al. Features of Nb2O5 as a metal oxide support of Pt and Pd catalysts for selective catalytic oxidation of NH3 with high N2 selectivity[J]. Journal of Catalysis, 2020, 389: 366-374. |
65 | TRAN Si Bui Trung, CHOI Hanseul, Sunyoung OH, et al. Defective Nb2O5-supported Pt catalysts for CO oxidation: Promoting catalytic activity via oxygen vacancy engineering[J]. Journal of Catalysis, 2019, 375: 124-134. |
66 | Jin-Woo JUN, Young-Woong SUH, Dong Jin SUH, et al. Strong metal-support interaction effect of Pt/Nb2O5 catalysts on aqueous phase hydrodeoxygenation of 1, 6-hexanediol[J]. Catalysis Today, 2018, 302: 108-114. |
67 | SU Kaiyi, WANG Yehong, ZHANG Chaofeng, et al. Tuning the Pt species on Nb2O5 by support-induced modification in the photocatalytic transfer hydrogenation of phenylacetylene[J]. Applied Catalysis B: Environmental, 2021, 298: 120554. |
68 | SAHOO Rupam, AHMED Raka, MANNA Arun K, et al. Natural product synthesis by a nanoporous In-MOF Catalyst: Crystallographic insight by incorporating substrate inside its nanopores[J]. Journal of Catalysis, 2024, 437: 115641. |
69 | WALCZAK Marcin, STEFANOWSKA Kinga, FRANCZYK Adrian, et al. Hydrosilylation of alkenes and alkynes with silsesquioxane (HSiMe2O)(i-Bu)7Si8O12 catalyzed by Pt supported on a styrene-divinylbenzene copolymer[J]. Journal of Catalysis, 2018, 367: 1-6. |
70 | SHATLA A S, HASSAN K M, ABD-EL-LATIF A A, et al. Poly 1,5 diaminonaphthalene supported Pt, Pd, Pt/Pd and Pd/Pt nanoparticles for direct formic acid oxidation[J]. Journal of Electroanalytical Chemistry, 2019, 833: 231-241. |
71 | YUE Ruirui, ZHANG Qiang, WANG Caiqin, et al. Graphene-poly(5-aminoindole) composite film as Pt catalyst support for methanol electrooxidation in alkaline medium[J]. Electrochimica Acta, 2013, 107: 292-300. |
72 | KHALIFEH-SOLTANI Maryam Sadat, SHAMS Esmaeil, SHARIFI Ensiyeh. Pt-Ru nanoparticles anchored on poly(brilliant cresyl blue) as a new polymeric support: Application as an efficient electrocatalyst in methanol oxidation reaction[J]. International Journal of Hydrogen Energy, 2020, 45(1): 849-860. |
[1] | 高聪志, 张雅萱, 林璐, 邓晓婷, 殷霞, 丁一刚, 肖艳华, 杜治平. 新戊二醇的合成工艺[J]. 化工进展, 2024, 43(S1): 469-478. |
[2] | 陈高祥, 王荣昌, 蒋佳承. 微生物电合成系统阴极电子传递机制和氢介导强化措施[J]. 化工进展, 2024, 43(S1): 504-516. |
[3] | 熊小鹤, 张一楠, 张京晶, 杨富鑫, 谭厚章. 基于沉降炉的锅炉耦合掺烧退役风电有机固废实验[J]. 化工进展, 2024, 43(S1): 555-563. |
[4] | 朱昊, 刘汉飞, 高源, 黄益平, 费孝诚, 韩卫清. 盐分对电催化降解性能与机理的影响[J]. 化工进展, 2024, 43(S1): 571-580. |
[5] | 王博葳, 郑明朕, 王乐萌, 付东, 王珊, 朱生俊, 赵昆, 张盼. Na2SO4电解制备NaOH捕集CO2[J]. 化工进展, 2024, 43(S1): 604-614. |
[6] | 李琳, 黄国勇, 徐盛明, 郁丰善, 翁雅青, 曹才放, 温嘉玮, 王春霞, 王俊莲, 顾斌涛, 张袁华, 刘斌, 王才平, 潘剑明, 徐泽良, 王翀, 王珂. 铝基废催化剂载体的回收与再生制备[J]. 化工进展, 2024, 43(S1): 640-649. |
[7] | 李新月, 李振京, 韩沂杭, 郭永强, 闫瑜, 哈力米热·卡热木拉提, 赵会吉, 柴永明, 刘东, 殷长龙. 油脂加氢脱氧生产绿色柴油催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 351-364. |
[8] | 邹鹏翔, 张明阳, 朱文杰, 郭耀骏, 程婕, 赵妍舒, 袁迎春. 基于CFD的脂肪酸甲酯环氧化用液-液撞击流旋流反应器入口结构优化[J]. 化工进展, 2024, 43(S1): 166-173. |
[9] | 林梅洁, 米烁东, 包成. 金属-掺杂氧化铈体系H2/CO电化学反应机理研究进展[J]. 化工进展, 2024, 43(S1): 209-224. |
[10] | 李帅哲, 聂懿宸, PHIDSAVARD Keomeesay, 顾雯, 张伟, 刘娜, 徐高翔, 刘莹, 李兴勇, 陈玉保. 非贵金属催化生物质加氢脱氧制备烃基生物燃料的研究进展[J]. 化工进展, 2024, 43(S1): 225-242. |
[11] | 宋财城, 陈晓贞, 刘丽, 杨成敏, 郑步梅, 尹晓莹, 孙进, 姚运海, 段为宇. 碳基载体负载加氢脱硫催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 305-314. |
[12] | 韩洪晶, 车宇, 田宇轩, 王海英, 张亚男, 陈彦广. 木质素催化氢解催化剂及溶剂的研究进展[J]. 化工进展, 2024, 43(S1): 315-324. |
[13] | 胡兴, 刘易, 杜泽学. 3-氯丙烯直接合成环氧氯丙烷催化剂研究进展[J]. 化工进展, 2024, 43(S1): 325-334. |
[14] | 于梦洁, 吴语童, 罗发祥, 豆义波. 低浓度二氧化碳还原光催化剂结构设计的研究进展[J]. 化工进展, 2024, 43(S1): 335-350. |
[15] | 张日东, 吕建华, 刘继东, 郭豹, 李文松. Ru-K-NaY催化草酸二甲酯脱羰基制备碳酸二甲酯[J]. 化工进展, 2024, 43(S1): 382-390. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |