化工进展 ›› 2024, Vol. 43 ›› Issue (5): 2661-2672.DOI: 10.16085/j.issn.1000-6613.2023-2088
• 催化与材料技术 • 上一篇
谢小金1(), 张晓雪1, 刘晓玲2, 崇明本2, 程党国1,2(), 陈丰秋1,2
收稿日期:
2023-11-28
修回日期:
2024-04-13
出版日期:
2024-05-15
发布日期:
2024-06-15
通讯作者:
程党国
作者简介:
谢小金(1999—),男,硕士研究生,研究方向为催化反应工程。E-mail:xiexiaojin@zju.edu.cn。
基金资助:
XIE Xiaojin1(), ZHANG Xiaoxue1, LIU Xiaoling2, CHONG Mingben2, CHENG Dangguo1,2(), CHEN Fengqiu1,2
Received:
2023-11-28
Revised:
2024-04-13
Online:
2024-05-15
Published:
2024-06-15
Contact:
CHENG Dangguo
摘要:
采用L-赖氨酸作为介孔模板剂,通过调控铝源(偏铝酸钠)添加量改变分子筛硅铝比,在单晶分子筛内部引入晶内介孔,成功地合成了一系列具有不同硅铝比的单晶多级孔ZSM-5分子筛,研究了其酸性质对正庚烷催化裂解反应传质性能的影响。利用X射线衍射(XRD)、N2物理吸附、氨气程序升温脱附(NH3-TPD)、吡啶红外(Py-IR)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等表征了单晶多级孔ZSM-5分子筛的物理结构、酸性质和微观形貌。同时,利用零长柱(ZLC)装置测试获取了正庚烷在单晶多级孔ZSM-5分子筛中的表观扩散系数,用于反映其传质性能。研究结果表明,随着硅铝比的提高,单晶多级孔ZSM-5分子筛的物理结构基本保持一致;传质性能随酸量的减少而提升,催化裂解性能随酸量的增加而提高。当单晶多级孔ZSM-5分子筛的Si/Al从80提高至140,正庚烷的表观扩散系数提升了87%以上;当单晶多级孔ZSM-5分子筛的Si/Al=80时,正庚烷的转化率最高可达97.5%,乙烯和丙烯的选择性分别为24.3%和35.1%。
中图分类号:
谢小金, 张晓雪, 刘晓玲, 崇明本, 程党国, 陈丰秋. 单晶多级孔ZSM-5分子筛酸性质对正庚烷催化裂解反应传质性能的影响[J]. 化工进展, 2024, 43(5): 2661-2672.
XIE Xiaojin, ZHANG Xiaoxue, LIU Xiaoling, CHONG Mingben, CHENG Dangguo, CHEN Fengqiu. Effect of acidic properties of single-crystalline hierarchical ZSM-5 zeolite on its activity and mass transfer in n-heptane catalytic cracking[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2661-2672.
样品名称 | SiO2 | TPAOH | Al2O3 | Na2O | L-赖氨酸 | H2O | 温度和时间 |
---|---|---|---|---|---|---|---|
Z5-Si/Al-80 | 1 | 0.450 | 0.00625 | 0.015 | 0.4 | 9 | 90℃ (2天)+170℃ (2天) |
Z5-Si/Al-100 | 1 | 0.450 | 0.005 | 0.015 | 0.4 | 9 | 90℃ (2天)+170℃ (2天) |
Z5-Si/Al-140 | 1 | 0.450 | 0.0035 | 0.015 | 0.4 | 9 | 90℃ (2天)+170℃ (2天) |
表1 单晶多级孔ZSM-5分子筛样品初始凝胶配比及合成条件
样品名称 | SiO2 | TPAOH | Al2O3 | Na2O | L-赖氨酸 | H2O | 温度和时间 |
---|---|---|---|---|---|---|---|
Z5-Si/Al-80 | 1 | 0.450 | 0.00625 | 0.015 | 0.4 | 9 | 90℃ (2天)+170℃ (2天) |
Z5-Si/Al-100 | 1 | 0.450 | 0.005 | 0.015 | 0.4 | 9 | 90℃ (2天)+170℃ (2天) |
Z5-Si/Al-140 | 1 | 0.450 | 0.0035 | 0.015 | 0.4 | 9 | 90℃ (2天)+170℃ (2天) |
样品名称 | 比表面积 /m2·g-1 | 总孔体积 /cm3·g-1 | 微孔体积 /cm3·g-1 | 介孔体积 /cm3·g-1 |
---|---|---|---|---|
Z5-Si/Al-80 | 394 | 0.41 | 0.14 | 0.27 |
Z5-Si/Al-100 | 389 | 0.40 | 0.12 | 0.28 |
Z5-Si/Al-140 | 406 | 0.50 | 0.12 | 0.37 |
表2 分子筛样品的孔结构参数
样品名称 | 比表面积 /m2·g-1 | 总孔体积 /cm3·g-1 | 微孔体积 /cm3·g-1 | 介孔体积 /cm3·g-1 |
---|---|---|---|---|
Z5-Si/Al-80 | 394 | 0.41 | 0.14 | 0.27 |
Z5-Si/Al-100 | 389 | 0.40 | 0.12 | 0.28 |
Z5-Si/Al-140 | 406 | 0.50 | 0.12 | 0.37 |
参数 | 单位 | Z5-Si/Al-80 | Z5-Si/Al-100 | Z5-Si/Al-140 |
---|---|---|---|---|
NH3-W | ℃ | 167 | 162 | 159 |
mmol/g | 0.174 | 0.136 | 0.071 | |
NH3-S | ℃ | 348 | 343 | 335 |
mmol/g | 0.215 | 0.162 | 0.114 | |
总酸量 | mmol/g | 0.389 | 0.298 | 0.185 |
B-200℃ | mmol/g | 0.085 | 0.072 | 0.038 |
B-350℃ | mmol/g | 0.060 | 0.049 | 0.028 |
外表面酸量 | mmol/g | 0.013 | 0.008 | 0.007 |
微孔内部酸量 | mmol/g | 0.072 | 0.064 | 0.031 |
Si/Al | 86.7 | 98.7 | 136.6 |
表3 分子筛样品的酸性质及硅铝比
参数 | 单位 | Z5-Si/Al-80 | Z5-Si/Al-100 | Z5-Si/Al-140 |
---|---|---|---|---|
NH3-W | ℃ | 167 | 162 | 159 |
mmol/g | 0.174 | 0.136 | 0.071 | |
NH3-S | ℃ | 348 | 343 | 335 |
mmol/g | 0.215 | 0.162 | 0.114 | |
总酸量 | mmol/g | 0.389 | 0.298 | 0.185 |
B-200℃ | mmol/g | 0.085 | 0.072 | 0.038 |
B-350℃ | mmol/g | 0.060 | 0.049 | 0.028 |
外表面酸量 | mmol/g | 0.013 | 0.008 | 0.007 |
微孔内部酸量 | mmol/g | 0.072 | 0.064 | 0.031 |
Si/Al | 86.7 | 98.7 | 136.6 |
温度/℃ | 表观扩散系数Deff/10-18m2·s-1 | ||
---|---|---|---|
Z5-Si/Al-80 | Z5-Si/Al-100 | Z5-Si/Al-140 | |
100 | 4.28 | 5.68 | 8.01 |
110 | 23.13 | 42.87 | 44.83 |
120 | 36.78 | 59.26 | 99.25 |
130 | 48.06 | 76.49 | 363.47 |
140 | 48.84 | 144.57 | 2635.33 |
表4 不同温度下正庚烷分子在分子筛样品中的表观扩散系数Deff
温度/℃ | 表观扩散系数Deff/10-18m2·s-1 | ||
---|---|---|---|
Z5-Si/Al-80 | Z5-Si/Al-100 | Z5-Si/Al-140 | |
100 | 4.28 | 5.68 | 8.01 |
110 | 23.13 | 42.87 | 44.83 |
120 | 36.78 | 59.26 | 99.25 |
130 | 48.06 | 76.49 | 363.47 |
140 | 48.84 | 144.57 | 2635.33 |
1 | 白宇恩, 张彬瑞, 刘东阳, 等. ZSM-5分子筛酸性能和孔结构的协同作用对C5烯烃催化裂解性能的影响[J]. 化工学报, 2023, 74(1): 438-448. |
BAI Yu’en, ZHANG Binrui, LIU Dongyang, et al. Influence of synergistic effect of acid properties and pore structure of ZSM-5 zeolite on the catalytic cracking performance of pentene[J]. CIESC Journal, 2023, 74(1): 438-448. | |
2 | AKAH Aaron, WILLIAMS Jesse, GHRAMI Musaed. An overview of light olefins production via steam enhanced catalytic cracking[J]. Catalysis Surveys from Asia, 2019, 23(4): 265-276. |
3 | SHA Yuchen, HAN Lei, WANG Ruoyu, et al. Tailoring ZSM-5 zeolite through metal incorporation: Toward enhanced light olefins production via catalytic cracking: A minireview[J]. Journal of Industrial and Engineering Chemistry, 2023, 126: 36-49. |
4 | BLAY Vincent, LOUIS Benoît, MIRAVALLES Rubén, et al. Engineering zeolites for catalytic cracking to light olefins[J]. ACS Catalysis, 2017, 7(10): 6542-6566. |
5 | 李正宇, 张忠东, 王刚, 等. 用于催化裂解多产低碳烯烃的ZSM-5分子筛改性[J]. 石化技术与应用, 2021, 39(6): 462-468. |
LI Zhengyu, ZHANG Zhongdong, WANG Gang, et al. Modified of ZSM-5 zeolites for maximizing light olefins by catalytic pyrolysis[J]. Petrochemical Technology & Application, 2021, 39(6): 462-468. | |
6 | 潘小燕, 侯珂珂, 郑一帆, 等. 多级孔道ZSM-5分子筛催化正庚烷裂解制烯烃性能[J]. 化学反应工程与工艺, 2022, 38(1): 23-31, 40. |
PAN Xiaoyan, HOU Keke, ZHENG Yifan, et al. Catalytic performance of n-heptane catalytic cracking of to light olefins over hierarchical ZSM-5 zeolites[J]. Chemical Reaction Engineering and Technology, 2022, 38(1): 23-31, 40. | |
7 | RAHIMI Nazi, KARIMZADEH Ramin. Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review[J]. Applied Catalysis A: General, 2011, 398(1/2): 1-17. |
8 | SADRAMELI SM. Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins: A state-of-the-art review Ⅱ: Catalytic cracking review[J]. Fuel, 2016, 173: 285-297. |
9 | DEGNAN T F, CHITNIS G K, SCHIPPER P H. History of ZSM-5 fluid catalytic cracking additive development at Mobil[J]. Microporous and Mesoporous Materials, 2000, 35/36: 245-252. |
10 | ALIPOUR Shayan Miar. Recent advances in naphtha catalytic cracking by nano ZSM-5: A review[J]. Chinese Journal of Catalysis, 2016, 37(5): 671-680. |
11 | SCHMIDT Franz, HOFFMANN Claudia, GIORDANINO Filippo, et al. Coke location in microporous and hierarchical ZSM-5 and the impact on the MTH reaction[J]. Journal of Catalysis, 2013, 307: 238-245. |
12 | MEUNIER Frederic C, VERBOEKEND Danny, GILSON Jean-Pierre, et al. Influence of crystal size and probe molecule on diffusion in hierarchical ZSM-5 zeolites prepared by desilication[J]. Microporous and Mesoporous Materials, 2012, 148(1): 115-121. |
13 | COPPENS Marc-Olivier, WEISSENBERGER Tobias, ZHANG Qunfeng, et al. Hierarchically structured zeolites: Nature-inspired, computer-assisted optimization of hierarchically structured zeolites[J]. Advanced Materials Interfaces, 2021, 8(4): 2170018. |
14 | LI Kundao, VALLA Julia, Javier GARCIA-MARTINEZ. Realizing the commercial potential of hierarchical zeolites: New opportunities in catalytic cracking[J]. ChemCatChem, 2014, 6(1): 46-66. |
15 | Sònia ABELLÓ, BONILLA Adriana, Javier PÉREZ-RAMÍREZ. Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching[J]. Applied Catalysis A: General, 2009, 364(1/2): 191-198. |
16 | BAN S, VAN LAAK A N C, LANDERS J, et al. Insight into the effect of dealumination on mordenite using experimentally validated simulations[J]. Journal of Physical Chemistry C, 2010, 114(5): 2056-2065. |
17 | RIMAZ Sajjad, HALLADJ Rouein, ASKARI Sima. Synthesis of hierarchal SAPO-34 nano catalyst with dry gel conversion method in the presence of carbon nanotubes as a hard template[J]. Journal of Colloid and Interface Science, 2016, 464: 137-146. |
18 | SERRANO David P, AGUADO José, ESCOLA José M, et al. Hierarchical zeolites with enhanced textural and catalytic properties synthesized from organofunctionalized seeds[J]. Chemistry of Materials, 2006, 18(10): 2462-2464. |
19 | VASENKOV Sergey, Jörg KÄRGER. Evidence for the existence of intracrystalline transport barriers in MFI-type zeolites: A model consistency check using MC simulations[J]. Microporous and Mesoporous Materials, 2002, 55(2): 139-145. |
20 | VASENKOV Sergey, Winfried BÖHLMANN, GALVOSAS Petrik, et al. PFG NMR study of diffusion in MFI-type zeolites: Evidence of the existence of intracrystalline transport barriers[J]. The Journal of Physical Chemistry B, 2001, 105(25): 5922-5927. |
21 | NEWSOME David A, SHOLL David S. Molecular dynamics simulations of mass transfer resistance in grain boundaries of twinned zeolite membranes[J]. The Journal of Physical Chemistry B, 2006, 110(45): 22681-22689. |
22 | GUO Zhongyuan, LI Xin, HU Shen, et al. Understanding the role of internal diffusion barriers in Pt/beta zeolite catalyzed isomerization of n-heptane[J]. Angewandte Chemie International Edition, 2020, 59(4): 1548-1551. |
23 | ROEFFAERS Maarten B J, AMELOOT Rob, BARUAH Mukulesh, et al. Morphology of large ZSM-5 crystals unraveled by fluorescence microscopy[J]. Journal of the American Chemical Society, 2008, 130(17): 5763-5772. |
24 | CAO Kaipeng, FAN Dong, GAO Mingbin, et al. Recognizing the important role of surface barriers in MOR zeolite catalyzed DME carbonylation reaction[J]. ACS Catalysis, 2022, 12(1): 1-7. |
25 | TEIXEIRA Andrew R, CHANG Chun-Chih, COOGAN Timothy, et al. Dominance of surface barriers in molecular transport through silicalite-1[J]. The Journal of Physical Chemistry C, 2013, 117(48): 25545-25555. |
26 | KNIO Omar, FANG Hanjun, BOULFELFEL Salah Eddine, et al. Molecular dynamics investigation of surface resistances in zeolite nanosheets[J]. The Journal of Physical Chemistry C, 2020, 124(28): 15241-15252. |
27 | XU Shuman, ZHENG Ke, BORUNTEA Cristian-Renato, et al. Surface barriers to mass transfer in nanoporous materials for catalysis and separations[J]. Chemical Society Reviews, 2023, 52(12): 3991-4005. |
28 | ZHU Haibo, LIU Zhicheng, WANG Yangdong, et al. Nanosized CaCO3 as hard template for creation of intracrystal pores within silicalite-1 crystal[J]. Chemistry of Materials, 2008, 20(3): 1134-1139. |
29 | DONG A, WANG Y, TANG Y, et al. Zeolitic tissue through wood cell templating[J]. Advanced Materials, 2002,14(12): 926-929. |
30 | HOLLAND Brian T, BLANFORD Christopher F, Thang DO, et al. Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites[J]. Chemistry of Materials, 1999, 11(3): 795-805. |
31 | ZHANG Rongxin, ZOU Run, LI Wei, et al. On understanding the sequential post-synthetic microwave-assisted dealumination and alkaline treatment of Y zeolite[J]. Microporous and Mesoporous Materials, 2022, 333: 11736. |
32 | GROEN Johan C, JANSEN Jacobus C, MOULIJN Jacob A, et al. Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication[J]. The Journal of Physical Chemistry, 2004, 108(35): 13062-13065. |
33 | ZHANG Minhua, QIN Yunan, JIANG Haoxi, et al. Protective desilication of β zeolite: A mechanism study and its application in ethanol-acetaldehyde to 1,3-butadiene[J]. Microporous and Mesoporous Materials, 2021, 326: 111359. |
34 | KARWACKI Lukasz, Marianne H F KOX, MATTHIJS DE WINTER D A, et al. Morphology-dependent zeolite intergrowth structures leading to distinct internal and outer-surface molecular diffusion barriers[J]. Nature Materials, 2009, 8(12): 959-965. |
35 | GOBIN O C, REITMEIER S J, JENTYS A, et al. Comparison of the transport of aromatic compounds in small and large MFI particles[J]. The Journal of Physical Chemistry C, 2009, 113(47): 20435-20444. |
36 | YE Guanghua, GUO Zhongyuan, SUN Yuanyuan, et al. Probing the nature of surface barriers on ZSM-5 by surface modification[J]. Chemie Ingenieur Technik, 2017, 89(10): 1333-1342. |
37 | ZHANG Xiaoxiao, CHENG Dangguo, CHEN Fengqiu, et al. The role of external acidity of hierarchical ZSM-5 zeolites in n-heptane catalytic cracking[J]. ChemCatChem, 2018, 10(12): 2655-2663. |
38 | XU Shuman, ZHANG Xiaoxiao, CHENG Dangguo, et al. Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking[J]. Frontiers of Chemical Science and Engineering, 2018, 12(4): 780-789. |
39 | 郝靓, 于越洋, 崇明本, 等. 多级孔ZSM-5分子筛酸中心类型对裂解反应性能的影响[J]. 化学反应工程与工艺, 2021, 37(3): 226-234, 252. |
HAO Jing, YU Yueyang, CHONG Mingben, et al. Effect of acid type of hierarchical ZSM-5 zeolite on catalytic reaction performance[J]. Chemical Reaction Engineering and Technology, 2021, 37(3): 226-234, 252. | |
40 | ZHANG Xiaoxue, XU Shuman, HAO Jing, et al. Effect of particle size of single-crystalline hierarchical ZSM-5 on its surface mass transfer in n-heptane catalytic cracking[J]. Chinese Journal of Chemical Engineering, 2023, 63: 148-157. |
41 | HAAG W O, DESSAU R M, LAGO R M. Kinetics and mechanism of paraffin cracking with zeolite catalysts[M]//Studies in Surface Science and Catalysis. Amsterdam: Elsevier, 1991: 255-265. |
42 | ZHANG Qiang, MAYORAL Alvaro, TERASAKI Osamu, et al. Amino acid-assisted construction of single-crystalline hierarchical nanozeolites via oriented-aggregation and intraparticle ripening[J]. Journal of the American Chemical Society, 2019, 141(9): 3772-3776. |
43 | HU Shen, LIU Junru, CHEN Jiaxuan, et al. Reducing external surface diffusion barriers by chemical vapor deposition for improved zeolite catalysis[J]. Industrial & Engineering Chemistry Research, 2022, 61(17): 5747-5756. |
44 | HUANG Xin, WANG Chuanfu, ZHU Yufei, et al. Facile synthesis of ZSM-5 nanosheet arrays by preferential growth over MFI zeolite [100] face for methanol conversion[J]. Microporous and Mesoporous Materials, 2019, 288: 109573. |
45 | CHEN Fengqiu, HAO Jing, YU Yueyang, et al. The influence of external acid strength of hierarchical ZSM-5 zeolites on n-heptane catalytic cracking[J]. Microporous and Mesoporous Materials, 2022, 330: 111575. |
46 | THOMMES Matthias, KANEKO Katsumi, NEIMARK Alexander V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069. |
47 | CORMA Avelino, MENGUAL Jesús, MIGUEL Pablo J. Catalytic cracking of n-alkane naphtha: The impact of olefin addition and active sites differentiation[J]. Journal of Catalysis, 2015, 330: 520-532. |
[1] | 姚乃瑜, 曹景沛, 庞新博, 赵小燕, 蔡士杰, 徐敏, 赵静平, 冯晓博, 伊凤娇. 低阶煤热解挥发分热催化重整研究进展[J]. 化工进展, 2024, 43(5): 2279-2293. |
[2] | 吴达, 蒋淑娇, 魏强, 袁胜华, 杨刚, 张成. 能源转型中渣油高效利用技术的研究进展[J]. 化工进展, 2024, 43(5): 2343-2353. |
[3] | 桂鑫, 陈汇勇, 白柏杨, 贾永梁, 马晓迅. Mo掺杂改性NiC/Al-MCM-41的芘催化加氢性能[J]. 化工进展, 2024, 43(5): 2386-2395. |
[4] | 黄淄博, 周文静, 魏进家. 基于ReaxFF MD模拟的低阶煤热解产物演化规律及反应机理[J]. 化工进展, 2024, 43(5): 2409-2419. |
[5] | 丁思佳, 蒋淑娇, 杨占林, 彭绍忠, 蒋乾民. 基于氮化物结构与加氢行为关系设计重油加氢脱氮催化剂[J]. 化工进展, 2024, 43(5): 2436-2448. |
[6] | 刘苗, 焦莹莹, 丁玲, 李城城, 何颖, 孙亮亮, 郝青青, 陈汇勇, 罗群兴. 酸催化己糖脱水合成5-羟甲基糠醛:反应、分离和过程耦合[J]. 化工进展, 2024, 43(5): 2526-2543. |
[7] | 王欣宇, 王超, 张梦娟, 刘方正, 李晗旸, 王正林, 贾鑫, 宋兴飞, 许光文, 韩振南. 松木颗粒流态化两段气化制备清洁燃气的工艺稳定性验证[J]. 化工进展, 2024, 43(5): 2576-2586. |
[8] | 段翔, 田野, 董文威, 宋松, 李新刚. 苯酐合成的反应网络及催化反应机制研究现状与展望[J]. 化工进展, 2024, 43(5): 2587-2599. |
[9] | 汪孟宇, 范鸿霞, 梁长海, 李文英. 分子筛中限制效应对其酸性表征及催化性能的影响[J]. 化工进展, 2024, 43(5): 2600-2610. |
[10] | 方峣, 刘雷, 高志华, 黄伟, 左志军. 光辅助直接甲醇燃料电池阳极催化剂的研究进展[J]. 化工进展, 2024, 43(5): 2611-2628. |
[11] | 张金鹏, 屈婷, 荆洁颖, 李文英. 吸附强化水气变换制氢复合催化剂研究进展[J]. 化工进展, 2024, 43(5): 2629-2644. |
[12] | 王冰, 王磊, 黄欣茹, 袁红鹏, 赖小娟, 李朋. 一种耐酸耐碱高强树脂的合成及性能[J]. 化工进展, 2024, 43(4): 1992-2000. |
[13] | 孙贤, 柳军, 王晓辉, 孙长宇, 陈光进. 含下伏气的第一类天然气水合物藏开发实验与模拟研究进展[J]. 化工进展, 2024, 43(4): 2091-2103. |
[14] | 孙伟吉, 刘浪, 方治余, 朱梦博, 解耿, 何伟, 高宇恒. 改性镁渣的湿法碳酸化工艺[J]. 化工进展, 2024, 43(4): 2161-2173. |
[15] | 海岩, 周鑫, 李艳. 单级固定床生物膜反应器主流厌氧氨氧化快速启动性能[J]. 化工进展, 2024, 43(4): 2201-2209. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |