1 |
陈阳, 杨芊. “双碳”背景下现代煤化工高质量发展研究[J]. 煤炭加工与综合利用, 2022(1): 50-54.
|
|
CHEN Yang, YANG Qian. Research on high-quality development of modern coal chemical industry under background of “double carbon”[J]. Coal Processing & Comprehensive Utilization, 2022(1): 50-54.
|
2 |
王辉. 高炉煤气干法精脱硫技术研究[J]. 当代化工研究, 2023(18): 119-121.
|
|
WANG Hui. Study on fine desulphurization technology of blast furnace gas[J]. Modern Chemical Research, 2023(18): 119-121.
|
3 |
王泽鑫. 改性氧化锌基脱硫剂制备及脱硫性能的研究[D]. 太原: 太原理工大学, 2018.
|
|
WANG Zexin. Study on the preparation of modified zinc oxide based sorbent and its performance of removing sulfide[D]. Taiyuan: Taiyuan University of Technology, 2018.
|
4 |
RODRIGUEZ Jose A, MAITI Amitesh. Adsorption and decomposition of H2S on MgO(100), NiMgO(100), and ZnO(0001) surfaces: A first-principles density functional study[J]. The Journal of Physical Chemistry B, 2000, 104(15): 3630-3638.
|
5 |
李俏春, 郭恩惠, 李阳, 等. 类水滑石衍生锌基复合氧化物的硫化再生行为[J]. 化工进展, 2021, 40(11): 6278-6286.
|
|
LI Qiaochun, GUO Enhui, LI Yang, et al. Desulfurization and regeneration behaviors of zinc-based composite oxides derived from hydrotalcite[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6278-6286.
|
6 |
IKENAGA Na-oki, OHGAITO Yousuku, MATSUSHIMA Hiroaki, et al. Preparation of zinc ferrite in the presence of carbon material and its application to hot-gas cleaning[J]. Fuel, 2004, 83(6): 661-669.
|
7 |
CHEAH Singfoong, CARPENTER Daniel L, MAGRINI-BAIR Kimberly A. Review of mid- to high-temperature sulfur sorbents for desulfurization of biomass- and coal-derived syngas[J]. Energy & Fuels, 2009, 23(11): 5291-5307.
|
8 |
LIU Bingsi, WAN Zhengyong, ZHAN Yueping, et al. Desulfurization of hot coal gas over high-surface-area LaMeO x /MCM-41 sorbents[J]. Fuel, 2012, 98: 95-102.
|
9 |
MUREDDU M, FERINO I, ROMBI E, et al. ZnO/SBA-15 composites for mid-temperature removal of H2S: Synthesis, performance and regeneration studies[J]. Fuel, 2012, 102: 691-700.
|
10 |
HUSSAIN Murid, ABBAS Naseem, FINO Debora, et al. Novel mesoporous silica supported ZnO adsorbents for the desulphurization of biogas at low temperatures[J]. Chemical Engineering Journal, 2012, 188: 222-232.
|
11 |
贾磊, 李玉红, 张赛赛, 等. 原位制备再生型纳米氧化锌高温煤气脱硫剂[J]. 天然气化工(C1化学与化工), 2017, 42(4): 34-39.
|
|
JIA Lei, LI Yuhong, ZHANG Saisai, et al. In-situ preparation of regenerable nano-zinc oxide sorbent for hot coal gas desulfurization[J]. Natural Gas Chemical Industry, 2017, 42(4): 34-39.
|
12 |
史磊. 微波原位制备ZnO/MCM-41中高温煤气脱硫剂及其性能的研究[D]. 太原: 太原理工大学, 2018.
|
|
SHI Lei. The study on desulfurization performance of ZnO/MCM-41 sorbent prepared by microwave assisted in-situ method for hot coal gas[D]. Taiyuan: Taiyuan University of Technology, 2018.
|
13 |
PARK No-Kuk, LEE Jong Dae, LEE Tae Jin, et al. The preparation of a high surface area metal oxide prepared by a matrix-assisted method for hot gas desulphurization[J]. Fuel, 2005, 84(17): 2165-2171.
|
14 |
SASAOKA Eiji, TANIGUCHI Kazuo, UDDIN Md Azhar, et al. Characterization of reaction between ZnO and COS[J]. Industrial & Engineering Chemistry Research, 1996, 35(7): 2389-2394.
|
15 |
WU Mengmeng, ZHANG Minxuan, WANG Xiaowen, et al. Functionalized Zn-based desulfurizer with ordered mesoporous structure based on insights into sulfur-release mechanism during hot coal gas desulfurization[J]. Chemical Engineering Journal, 2023, 477: 146909.
|
16 |
谢巍, 常丽萍, 余江龙, 等. 煤气净化中H2S干法脱除的研究进展[J]. 化工学报, 2006, 57(9): 2012-2020.
|
|
XIE Wei, CHANG Liping, YU Jianglong, et al. Research progress of removal of H2S from coal gas by dry method[J]. Journal of Chemical Industry and Engineering, 2006, 57(9): 2012-2020.
|
17 |
杨梦滋, 段新伟, 冯宇, 等. ZnO/MCM-41煤气脱硫剂脱硫过程COS生成行为及Co助剂的影响[J]. 低碳化学与化工, 2023, 48(4): 55-62.
|
|
YANG Mengzi, DUAN Xinwei, FENG Yu, et al. COS formation behavior and influence of Co additive of ZnO/MCM-41 coal gas desulfurizer in desulfurization process[J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(4): 55-62.
|
18 |
YU Xiang, GAO Yang, SUN Shicheng, et al. Magnetic and electric properties of Co doped ZnO films via in situ growth[J]. Physica B: Condensed Matter, 2023, 649: 414493.
|
19 |
LI Qiaochun, WANG Xiaowen, ZHANG Ran, et al. Insights into the effects of metal-ion doping on the structure and hot-coal-gas desulfurization properties of Zn-based sorbents supported on SBA-15[J]. Fuel, 2022, 315: 123198.
|
20 |
YANG Chao, WANG Jian, FAN Huiling, et al. Contributions of tailored oxygen vacancies in ZnO/Al2O3 composites to the enhanced ability for H2S removal at room temperature[J]. Fuel, 2018, 215: 695-703.
|
21 |
ZHAO Xin, HUANG Lei, LI Hongrui, et al. Promotional effects of zirconium doped CeVO4 for the low-temperature selective catalytic reduction of NO x with NH3 [J]. Applied Catalysis B: Environmental, 2016, 183: 269-281.
|
22 |
FUKUDA Kenzo, DOKIYA Masayuki, KAMEYAMA Tetsuya, et al. Catalytic activity of metal sulfides for the reaction, H2S+CO=H2+COS[J]. Journal of Catalysis, 1977, 49(3): 379-382.
|
23 |
Hee Kwon JUN, LEE Tae Jin, Si Ok RYU, et al. A study of Zn-Ti-based H2S removal sorbents promoted with cobalt oxides[J]. Industrial & Engineering Chemistry Research, 2001, 40(16): 3547-3556.
|
24 |
李俏春. SBA-15负载锌基氧化物的煤气脱硫与再生行为研究[D]. 太原: 太原理工大学, 2021.
|
|
LI Qiaochun. Study on desulfurization and regeneration behavior of coal gas with SBA-15 loaded zinc-based oxides[D]. Taiyuan: Taiyuan University of Technology, 2021.
|
25 |
ZHANG Xingyan, WEI Lu, GUO Xin. Ultrathin mesoporous NiMoO4-modified MoO3 core/shell nanostructures: Enhanced capacitive storage and cycling performance for supercapacitors[J]. Chemical Engineering Journal, 2018, 353: 615-625.
|
26 |
LIN Yi-Hsing, CHEN Yen-Chiao, CHU Hsin. The mechanism of coal gas desulfurization by iron oxide sorbents[J]. Chemosphere, 2015, 121: 62-67.
|
27 |
WU Mengmeng, LI Teng, LI Hongyu, et al. Desulfurization of hot coal gas over regenerable low-cost Fe2O3/mesoporous Al2O3 prepared by the sol-gel method[J]. Energy & Fuels, 2017, 31(12): 13921-13932.
|