化工进展 ›› 2024, Vol. 43 ›› Issue (6): 2928-2939.DOI: 10.16085/j.issn.1000-6613.2023-2211
• 化工过程与装备 • 上一篇
周爱国1,2(), 郑家乐1,2(), 杨川箬1,2, 杨小艺3, 赵俊德1,2, 李兴春1,2
收稿日期:
2023-12-15
修回日期:
2024-03-20
出版日期:
2024-06-15
发布日期:
2024-07-02
通讯作者:
郑家乐
作者简介:
周爱国(1963—),男,教授级高级工程师,研究方向为CCUS全产业链技术。E-mail:zhou65@petrochina.com.cn。
基金资助:
ZHOU Aiguo1,2(), ZHENG Jiale1,2(), YANG Chuanruo1,2, YANG Xiaoyi3, ZHAO Junde1,2, LI Xingchun1,2
Received:
2023-12-15
Revised:
2024-03-20
Online:
2024-06-15
Published:
2024-07-02
Contact:
ZHENG Jiale
摘要:
直接空气捕集(DAC)是一种能够从大气中捕集二氧化碳的技术。本文介绍了DAC技术的发展历程、技术优缺点和发展前景,根据预测,到2050年,全球每年需要从大气中捕集超过9.8亿吨二氧化碳。综述了DAC技术的政策支持与资金投入现状,美国、加拿大、欧盟和英国等在内的国家和地区已经成为DAC技术研究、开发、示范和部署方面的先行者。分析了主流的DAC技术路线及其在工业化进程中的进展,目前最大的DAC工厂捕集量为4000t/a,并且正在规划建设百万吨级的商业化项目。指出了DAC技术需要关注的研究方向,未来应将重点放在技术的大规模部署、碳市场机制的建立和国际合作的加强上。需要进一步研究和发展DAC设备和系统,以降低成本、提高效率,并开发碳定价、碳交易和碳抵消等机制为DAC项目提供经济激励,促进投资和市场参与,同时加强国际合作,从而推动该技术的快速发展。
中图分类号:
周爱国, 郑家乐, 杨川箬, 杨小艺, 赵俊德, 李兴春. 直接空气二氧化碳捕集技术工业化进展[J]. 化工进展, 2024, 43(6): 2928-2939.
ZHOU Aiguo, ZHENG Jiale, YANG Chuanruo, YANG Xiaoyi, ZHAO Junde, LI Xingchun. Industrial progress in direct air CO2 capture technology[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2928-2939.
政策与基金 | 具体内容 |
---|---|
美国 | |
45Q法案 | 该法案将为DAC提供180USD/tCO2的税收抵免。 |
加州低碳燃料标准 | 世界上任何地方的DAC项目符合碳捕获和封存协议的要求,就有资格获得LCFS积分。2020年,LCFS积分的平均交易价格约为200USD/tCO2。 |
基础设施投资与就业法案 | 该法案提供35亿美元的资金用于建立四个DAC中心(每年1×106t CO2及以上)以及相关的运输和储存基础设施。DAC项目还有资格获得法案中约5亿美元的额外资金支持。 |
负碳计划 | 该计划旨在促进采用创新技术和方法,在未来十年内以低于100USD/tCO2的价格从大气中移除二氧化碳,并实现大规模部署。 |
能源部资助计划 | 该计划宣布了多个专门针对DAC的资金计划,金额分别为2200万美元、1500万美元、2400万美元和1450万美元。 |
加拿大 | |
气候行动与意识基金 | 该基金将投资1.64亿美元用于支持旨在减少加拿大温室气体排放的项目,包括DAC技术。 |
“净零加速器”计划 | 该计划旨在通过提供总额为64亿美元的资金,在未来七年内支持工业部门的脱碳工作。其中,DAC结合二氧化碳利用被视为一种能够提供低碳产品的有效途径。 |
清洁燃料标准 | 该标准要求液体燃料供应商逐步减少其生产和销售的燃料的碳强度。低碳强度燃料包括通过BECCS和DAC等制造的燃料。 |
自然资源部2021年预算 | 在未来七年内,将拨款2.54亿美元用于资助研发和开发工作,以提高包括DAC在内的CCUS的商业可行性。 |
欧盟 | |
欧洲地平线 | 该计划是欧盟主要的研究和创新资助计划,总预算约为1130亿美元,DAC技术是支持方向之一。 |
创新基金 | 该基金总预算约为118亿美元,旨在支持包括CCUS和DAC技术在内的低碳技术和过程创新。 |
可持续碳循环通讯 | 该文件详细说明了一项增加大气中碳移除的战略。根据文件建议,到2030年,每年应从空气中捕集5×106t二氧化碳。 |
英国 | |
温室气体移除竞赛 | 该竞赛将为能够从大气中去除温室气体的技术提供资金支持,总预算高达1.37亿美元。 |
净零战略 | 该战略旨在到2050年通过DAC和BECCS移除(7.5~8.1)×107t二氧化碳。此外,DAC技术可能会获得2.48亿美元用于支持可持续航空燃料的生产。 |
表1 不同国家和地区的主要DAC政策与基金支持
政策与基金 | 具体内容 |
---|---|
美国 | |
45Q法案 | 该法案将为DAC提供180USD/tCO2的税收抵免。 |
加州低碳燃料标准 | 世界上任何地方的DAC项目符合碳捕获和封存协议的要求,就有资格获得LCFS积分。2020年,LCFS积分的平均交易价格约为200USD/tCO2。 |
基础设施投资与就业法案 | 该法案提供35亿美元的资金用于建立四个DAC中心(每年1×106t CO2及以上)以及相关的运输和储存基础设施。DAC项目还有资格获得法案中约5亿美元的额外资金支持。 |
负碳计划 | 该计划旨在促进采用创新技术和方法,在未来十年内以低于100USD/tCO2的价格从大气中移除二氧化碳,并实现大规模部署。 |
能源部资助计划 | 该计划宣布了多个专门针对DAC的资金计划,金额分别为2200万美元、1500万美元、2400万美元和1450万美元。 |
加拿大 | |
气候行动与意识基金 | 该基金将投资1.64亿美元用于支持旨在减少加拿大温室气体排放的项目,包括DAC技术。 |
“净零加速器”计划 | 该计划旨在通过提供总额为64亿美元的资金,在未来七年内支持工业部门的脱碳工作。其中,DAC结合二氧化碳利用被视为一种能够提供低碳产品的有效途径。 |
清洁燃料标准 | 该标准要求液体燃料供应商逐步减少其生产和销售的燃料的碳强度。低碳强度燃料包括通过BECCS和DAC等制造的燃料。 |
自然资源部2021年预算 | 在未来七年内,将拨款2.54亿美元用于资助研发和开发工作,以提高包括DAC在内的CCUS的商业可行性。 |
欧盟 | |
欧洲地平线 | 该计划是欧盟主要的研究和创新资助计划,总预算约为1130亿美元,DAC技术是支持方向之一。 |
创新基金 | 该基金总预算约为118亿美元,旨在支持包括CCUS和DAC技术在内的低碳技术和过程创新。 |
可持续碳循环通讯 | 该文件详细说明了一项增加大气中碳移除的战略。根据文件建议,到2030年,每年应从空气中捕集5×106t二氧化碳。 |
英国 | |
温室气体移除竞赛 | 该竞赛将为能够从大气中去除温室气体的技术提供资金支持,总预算高达1.37亿美元。 |
净零战略 | 该战略旨在到2050年通过DAC和BECCS移除(7.5~8.1)×107t二氧化碳。此外,DAC技术可能会获得2.48亿美元用于支持可持续航空燃料的生产。 |
吸附剂种类 | 优势 | 劣势 |
---|---|---|
炭基吸附剂 | 原料来源广泛,成本低廉,稳定性高 | 吸附容量低 |
纳米氧化铝 | 制备简单,低亲水性和高耐热性 | 吸附容量低,解吸温度高,耗能大 |
沸石吸附剂 | 原料来源广泛,成本低廉 | 水分会降低其CO2吸附能力或提高其解吸温度 |
MOFs | 比表面积高,孔隙率高,结构可调 | 价格高昂,遇水结构易塌陷 |
固态胺吸附剂 | 比表面积高、孔径可调控 | 有机胺接枝率和负载牢固性有待提高 |
变湿吸附剂 | 变湿过程能耗低 | 吸附容量低 |
表2 不同吸附材料性能对比及优缺点
吸附剂种类 | 优势 | 劣势 |
---|---|---|
炭基吸附剂 | 原料来源广泛,成本低廉,稳定性高 | 吸附容量低 |
纳米氧化铝 | 制备简单,低亲水性和高耐热性 | 吸附容量低,解吸温度高,耗能大 |
沸石吸附剂 | 原料来源广泛,成本低廉 | 水分会降低其CO2吸附能力或提高其解吸温度 |
MOFs | 比表面积高,孔隙率高,结构可调 | 价格高昂,遇水结构易塌陷 |
固态胺吸附剂 | 比表面积高、孔径可调控 | 有机胺接枝率和负载牢固性有待提高 |
变湿吸附剂 | 变湿过程能耗低 | 吸附容量低 |
循环工艺 | 代表公司 | 优点 | 缺点 |
---|---|---|---|
变温真空吸附 | Antecy;Climeworks | 工艺简单 | 再生周期长、能耗高 |
蒸汽辅助变温真空吸附 | 莫纳什大学;中国石油集团 | 再生温度低、能耗低 | 吸附剂需耐水、控制复杂 |
变湿吸附 | Infinitree;浙江大学 | 工艺简单、能耗低 | 产品CO2浓度低 |
表3 不同吸附循环工艺的优缺点
循环工艺 | 代表公司 | 优点 | 缺点 |
---|---|---|---|
变温真空吸附 | Antecy;Climeworks | 工艺简单 | 再生周期长、能耗高 |
蒸汽辅助变温真空吸附 | 莫纳什大学;中国石油集团 | 再生温度低、能耗低 | 吸附剂需耐水、控制复杂 |
变湿吸附 | Infinitree;浙江大学 | 工艺简单、能耗低 | 产品CO2浓度低 |
指标 | 固体吸附法 | 碱液吸收法 |
---|---|---|
捕集能耗/GJ·(tCO2)-1 | 7.2~9.5 | 5.5~8.8 |
热耗占比/% | 75~80 | 80~100 |
电耗占比/% | 20~25 | 0~20 |
再生温度/℃ | 80~100 | 900 |
当前处理规模/tCO2·a-1 | 4000 | 365 |
耗水量/tH2O·(tCO2)-1 | -2~0 | 0~50 |
占地面积/km2·(MtCO2)-1 | 1.2~1.7 | 0.4 |
生命周期碳排放/tCO2·(tCO2)-1 | 0.03~0.91 | 0.1~0.4 |
表 4 固体吸附法和碱液吸收法技术特点
指标 | 固体吸附法 | 碱液吸收法 |
---|---|---|
捕集能耗/GJ·(tCO2)-1 | 7.2~9.5 | 5.5~8.8 |
热耗占比/% | 75~80 | 80~100 |
电耗占比/% | 20~25 | 0~20 |
再生温度/℃ | 80~100 | 900 |
当前处理规模/tCO2·a-1 | 4000 | 365 |
耗水量/tH2O·(tCO2)-1 | -2~0 | 0~50 |
占地面积/km2·(MtCO2)-1 | 1.2~1.7 | 0.4 |
生命周期碳排放/tCO2·(tCO2)-1 | 0.03~0.91 | 0.1~0.4 |
1 | 魏科, 包庆. 透视全球变暖的气候大师[J]. 科学, 2022, 74(1): 45-49. |
WEI Ke, BAO Qing. Climate Masters beyond global warming[J]. Science, 2022, 74(1): 45-49, 4. | |
2 | Science and Technology Daily. 421ppm! Atmospheric carbon dioxide concentration reached a new high in May[EB/OL]. (2022-06-08) [2023-11-15]. . |
3 | The United Nations. United Nations Framework Convention on Climate Change (1992)[EB/OL]. (1992-05-19) [2023-11-15]. . |
4 | The United Nations. United Nations COP26: Coexisting on earth, collaborating for earth[EB/OL]. (2023-11-30) [2023-11-15]. . |
5 | Intergovernmental Panel on Climate Change. AR6 Synthesis Report: climate change 2023[EB/OL]. [2023-11-15]. . |
6 | 廖昌建,张可伟,王晶 等.直接空气捕集二氧化碳技术研究进展[J].化工进展, 2024,43(4):2046-2063. |
LIAO Chanjian, ZHANG Kewei, WANG Jing, et al. Research progress in direct air capture of carbon dioxide technology[J]. Chemical Industry and Engineering Progress, 2024,43(4):2046-2063. | |
7 | LACKNER Klaus, ZIOCK Hans, GRIMES Patrick. Carbon dioxide extraction from air: is it an option? [R]. Los Alamos: Los Alamos National Laboratory, 1999. |
8 | KEITH David W. Why capture CO2 from the atmosphere?[J]. Science, 2009, 325(5948): 1654-1655. |
9 | HOUSE Kurt Zenz, BACLIG Antonio C, RANJAN Manya, et al. Economic and energetic analysis of capturing CO2 from ambient air[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(51): 20428-20433. |
10 | American Physical Society. Assessment Casts Doubt on Utility of Direct Air Capture of CO2 [EB/OL]. (2011-06-05) [2023-11-15]. . |
11 | Climeworks, Inc. Arctic Fox: The world’s first direct air capture facility combined with CO₂ storage[EB/OL]. (2017-10-05) [2023-11-15]. . |
12 | International Energy Agency. Direct Air Capture[EB/OL]. (2023-07-11) [2023-11-15]. . |
13 | Massachusetts Institute of Technology. 10 Breakthrough Technologies 2019[EB/OL]. (2019-04-27) [2023-11-15]. . |
14 | Climeworks, Inc. Climeworks’ Journey Towards Removing Billions of Tons of CO₂ from the Air[EB/OL]. [2023-11-15]. . |
15 | Carbon Engineering ULC. Direct Air Capture of CO2 [EB/OL]. [2023-11-15]. . |
16 | Climeworks, Inc. Orca: The First Large-Scale Plant[EB/OL]. (2021-09-08) [2023-11-15]. . |
17 | International Energy Agency. Direct Air Capture: A key technology for net zero[EB/OL]. (2022-04-01) [2023-11-15]. . |
18 | 朱炫灿, 葛天舒, 吴俊晔, 等. 吸附法碳捕集技术的规模化应用和挑战[J]. 科学通报, 2021, 66(22): 2861-2877. |
ZHU Xuancan, GE Tianshu, WU Junye, et al. Large-scale applications and challenges of adsorption-based carbon capture technologies[J]. Chinese Science Bulletin, 2021, 66(22): 2861-2877. | |
19 | JOSHUA Lear .US Senators reintroduce 45Q tax credit bill for carbon capture[J].SNL Energy Coal Report, 2017, 13(28): 22-23. |
20 | International Energy Agency. Section 45Q Credit for Carbon Oxide Sequestration[EB/OL]. (2023-08-21) [2023-11-15]. . |
21 | California Air Resources Board. Low Carbon Fuel Standard[EB/OL]. [2023-11-15]. . |
22 | Congress of the United States. H.R.3684-Infrastructure Investment and Jobs Act [EB/OL]. (2021-11-15) [2023-11-15]. . |
23 | Government of Canada. Climate Action and Awareness Fund[EB/OL]. (2023-09-01) [2023-11-15]. . |
24 | Government of Canada. Net Zero Accelerator Initiative[EB/OL]. (2023-03-15) [2023-11-15]. . |
25 | Government of Canada. Clean Fuel Regulations[EB/OL]. (2023-02-17) [2023-11-15]. . |
26 | Commission Europa. Horizon Europe: Research and innovation funding program until 2027[EB/OL]. [2023-11-15]. . |
27 | Commission Europa. European Green Deal: Commission proposals to remove, recycle and sustainably store carbon[EB/OL]. (2021-12-15) [2023-11-15]. . |
28 | Commission Europa. Innovation Fund: Deploying innovative net-zero technologies for climate neutrality[EB/OL]. [2023-11-15]. . |
29 | Kingdom United. Direct Air Capture and other Greenhouse Gas Removal technologies competition[EB/OL]. (2022-07-08) [2023-11-15]. . |
30 | Kingdom United. Net Zero Strategy: Build Back Greener[EB/OL]. (2022-04-05) [2023-11-15]. . |
31 | 孔祥如, 张肖阳, 孙鹏翔, 等. 直接空气捕碳固体多孔材料的研究进展[J]. 化工进展, 2023, 42(3): 1471-1483. |
KONG Xiangru, ZHANG Xiaoyang, SUN Pengxiang, et al. Research progress of solid porous materials for direct CO2 capture from air[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1471-1483. | |
32 | 陆诗建, 张娟娟, 刘玲, 等. 工业源二氧化碳捕集技术进展与发展趋势[J]. 现代化工, 2022, 42(11): 59-64. |
LU Shijian, ZHANG Juanjuan, LIU Ling, et al. Progress and development trend of industry-sourced carbon dioxide capture technology[J]. Modern Chemical Industry, 2022, 42(11): 59-64. | |
33 | AZARABADI Habib, LACKNER Klaus S. A sorbent-focused techno-economic analysis of direct air capture[J]. Applied Energy, 2019, 250: 959-975. |
34 | SUTHERLAND Brandon R. Pricing CO2 direct air capture[J]. Joule, 2019, 3(7): 1571-1573. |
35 | LIN Jianbin, NGUYEN Tai T T, VAIDHYANATHAN Ramanathan, et al. A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture[J]. Science, 2021, 374(6574): 1464-1469. |
36 | GAO Wanlin, LIANG Shuyu, WANG Rujie, et al. Industrial carbon dioxide capture and utilization: state of the art and future challenges[J]. Chemical Society Reviews, 2020, 49(23): 8584-8686. |
37 | BHARGAVA REDDY M SAI, PONNAMMA Deepalekshmi, SADASIVUNI Kishor Kumar, et al. Carbon dioxide adsorption based on porous materials[J]. RSC Advances, 2021, 11(21): 12658-12681. |
38 | SINGH Gurwinder, LEE Jangmee, KARAKOTI Ajay, et al. Emerging trends in porous materials for CO2 capture and conversion[J]. Chemical Society Reviews, 2020, 49(13): 4360-4404. |
39 | KUMAR Santosh, SRIVASTAVA Rohit, Joonseok KOH. Utilization of zeolites as CO2 capturing agents: Advances and future perspectives[J]. Journal of CO2 Utilization, 2020, 41: 101251. |
40 | REGE Salil U, YANG Ralph T. A novel FTIR method for studying mixed gas adsorption at low concentrations: H2O and CO2 on NaX zeolite and γ-alumina[J]. Chemical Engineering Science, 2001, 56(12): 3781-3796. |
41 | GARGIULO Nicola, PEPE Francesco, CAPUTO Domenico. CO2 adsorption by functionalized nanoporous materials: A review[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(2): 1811-1822. |
42 | BONENFANT Danielle, KHAROUNE Mourad, NIQUETTE Patrick, et al. Advances in principal factors influencing carbon dioxide adsorption on zeolites[J]. Science and Technology of Advanced Materials, 2008, 9(1): 013007. |
43 | FU Donglong, PARK Youngkyu, DAVIS Mark E. Confinement effects facilitate low-concentration carbon dioxide capture with zeolites[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(39): e2211544119. |
44 | DING Meili, FLAIG Robinson W, JIANG Hailong, et al. Carbon capture and conversion using metal-organic frameworks and MOF-based materials[J]. Chemical Society Reviews, 2019, 48(10): 2783-2828. |
45 | WANG Qi, ASTRUC Didier. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis[J]. Chemical Reviews, 2020, 120(2): 1438-1511. |
46 | LIU Jia, WEI Yajuan, ZHAO Yanli. Trace carbon dioxide capture by metal-organic frameworks[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 82-93. |
47 | LIN Ruibiao, XIANG Shengchang, ZHOU Wei, et al. Microporous metal-organic framework materials for gas separation[J]. Chem, 2020, 6(2): 337-363. |
48 | Kai LYU, FICHTER Sebastian, GU Mei, et al. An updated status and trends in actinide metal-organic frameworks (An-MOFs): From synthesis to application[J]. Coordination Chemistry Reviews, 2021, 446: 214011. |
49 | ZHANG Rui, WANG Xiaoxing, LIU Shimin, et al. Discovering inherent characteristics of polyethylenimine-functionalized porous materials for CO2 capture[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36515-36524. |
50 | LIU Fenglei, CHEN Shuixia, GAO Yanting. Synthesis of porous polymer based solid amine adsorbent: Effect of pore size and amine loading on CO2 adsorption[J]. Journal of Colloid and Interface Science, 2017, 506: 236-244. |
51 | SHEN Zhangfeng, CAI Qing, YIN Chaochuang, et al. Facile synthesis of silica nanosheets with hierarchical pore structure and their amine-functionalized composite for enhanced CO2 capture[J]. Chemical Engineering Science, 2020, 217: 115528. |
52 | LAI Qinghua, KONG Lingli, GONG Weibo, et al. Low-energy-consumption and environmentally friendly CO2 capture via blending alcohols into amine solution[J]. Applied Energy, 2019, 254: 113696. |
53 | PATEL Hasmukh A, BYUN Jeehye, YAVUZ Cafer T. Carbon dioxide capture adsorbents: Chemistry and methods[J]. ChemSusChem, 2017, 10(7): 1303-1317. |
54 | WANG Tao, LACKNER Klaus S, WRIGHT Allen. Moisture swing sorbent for carbon dioxide capture from ambient air[J]. Environmental Science & Technology, 2011, 45(15): 6670-6675. |
55 | 王涛, 董昊, 侯成龙, 等. 直接空气捕集CO2吸附剂综述[J]. 浙江大学学报(工学版), 2022, 56(3): 462-475. |
WANG Tao, DONG Hao, HOU Chenglong, et al. Review of CO2 direct air capture adsorbents[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(3): 462-475. | |
56 | Climeworks, Inc. Mammoth: our newest direct air capture and storage facility[EB/OL]. (2022-06-28) [2023-11-15]. . |
57 | GEBALD C, REPOND N, WURZBACHER J A. Steam assisted vacuum desorption process for carbon dioxide capture: US 10279306[P]. 2019-05-07. |
58 | WIJESIRI Romesh P, KNOWLES Gregory P, YEASMIN Hasina, et al. Desorption process for capturing CO2 from air with supported amine sorbent[J]. Industrial & Engineering Chemistry Research, 2019, 58(34): 15606-15618. |
59 | 郑家乐, 赵兴雷, 李兴春, 等. 一种流化床吸附法直接空气捕集系统与方法:CN117358012A[P]. 2024-01-09. |
ZHENG Jiale, ZHAO Xinglei, LI Xingchun, etc. A direct air capture system and method using fluidized bed adsorption: CN117358012A[P]. 2024-01-09. | |
60 | SHI Xiaoyang, XIAO Hang, KANAMORI Kohei, et al. Moisture-Driven CO2 Sorbents[J]. Joule, 2020, 4(8): 1823-1837. |
61 | 侯成龙. 季铵修饰聚合物的制备及空气二氧化碳捕集性能研究[D]. 杭州: 浙江大学, 2021. |
HOU Chenglong. Synthesis of quaternary ammonium functionalized polymers and their application in direct air capture[D].Hangzhou: Zhejiang University, 2021. | |
62 | KEITH David W, HOLMES Geoffrey, ANGELO David ST, et al. A process for capturing CO2 from the atmosphere[J]. Joule, 2018, 2(8): 1573-1594. |
63 | ZHAO Xinglei, LIU Na, WANG Yundong, et al. Study on the mechanism and energy consumption of CO2 regeneration process by membrane electrolysis[J]. Industrial & Engineering Chemistry Research, 2011, 50(14): 8620-8631. |
64 | LIU Na, ZHAO Xinglei, WANG Yundong, et al. Electrolytic regeneration of decarbonising potassium carbonate solution[J]. Chinese Journal of Chemical Engineering, 2010, 18(4): 538-543. |
[1] | 刘克峰, 刘陶然, 蔡勇, 胡雪生, 董卫刚, 周华群, 高飞. 二氧化碳捕集技术研究和工程示范进展[J]. 化工进展, 2024, 43(6): 2901-2914. |
[2] | 冯勇强, 王洁茹, 王超娴, 李芳, 苏婉婷, 孙宇, 赵彬然. γ-Al2O3 负载的Ni、Fe、Cu对介质阻挡放电等离子体转化CO2/CH4的影响[J]. 化工进展, 2024, 43(5): 2705-2713. |
[3] | 解仲凯, 施伟东. 电荷极化光催化剂光转化二氧化碳制多碳化学品的研究进展[J]. 化工进展, 2024, 43(5): 2714-2722. |
[4] | 周运桃, 王洪星, 李新刚, 崔丽凤. CeO2载体在CO2加氢制甲醇中的应用和研究进展[J]. 化工进展, 2024, 43(5): 2723-2738. |
[5] | 苗诒贺, 王耀祖, 刘雨杭, 朱炫灿, 李佳, 于立军. 添加剂改性固态胺吸附剂用于碳捕集的研究进展[J]. 化工进展, 2024, 43(5): 2739-2759. |
[6] | 黄澎, 邹颖, 王宝焕, 王逍妍, 赵勇, 梁鑫, 胡迪. 二氧化碳电催化还原反应制合成气催化剂研究进展[J]. 化工进展, 2024, 43(5): 2760-2775. |
[7] | 卢欣欣, 蔡东仁, 詹国武. 基于固体前体构建集成催化剂及CO2加氢研究进展[J]. 化工进展, 2024, 43(5): 2786-2802. |
[8] | 武西宁, 张宁, 秦佳敏, 徐龙, 魏朝阳, 马晓迅. 低冷量下强化CO2吸收的甲醇基纳米流体性能[J]. 化工进展, 2024, 43(5): 2811-2822. |
[9] | 李海鹏, 吴桐, 王琪, 郜时旺, 王晓龙, 李旭, 高新华, 年佩, 魏逸彬. 透水NaA分子筛膜强化的CO2加氢高效制甲醇[J]. 化工进展, 2024, 43(5): 2834-2842. |
[10] | 王东亮, 李婧玮, 孟文亮, 杨勇, 周怀荣, 范宗良. 二氧化碳加氢制甲醇过程碳氢利用率的影响因素与工艺优化分析[J]. 化工进展, 2024, 43(5): 2843-2850. |
[11] | 李晶莹, 马龙飞, 潘一搏, 卢山, 张红娟, 徐龙, 马晓迅. 焦炉煤气脱碳法及甲烷化法制液化天然气的生命周期环境影响分析[J]. 化工进展, 2024, 43(5): 2872-2879. |
[12] | 庞淑馨, 王昊, 王健宇, 朱卡克, 刘志成. 基于Aspen Plus的甲烷联合重整制合成气过程热力学计算[J]. 化工进展, 2024, 43(5): 2890-2900. |
[13] | 高凡翔, 刘阳, 张贵泉, 秦锋, 姚建涛, 金辉, 师进文. 燃煤烟气湿法协同脱硫脱碳技术研究进展[J]. 化工进展, 2024, 43(5): 2324-2342. |
[14] | 江安迪, 丁雪兴, 王世鹏, 丁俊华, 力宁. 超临界CO2干气密封热动力学性能研究进展[J]. 化工进展, 2024, 43(5): 2354-2369. |
[15] | 李娜, 赵婉彤, 凌丽霞, 王宝俊, 章日光. RhCu催化剂中限域环境调控合成气转化生成CH x 反应性能[J]. 化工进展, 2024, 43(5): 2684-2695. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |