化工进展 ›› 2021, Vol. 40 ›› Issue (9): 4918-4930.DOI: 10.16085/j.issn.1000-6613.2021-0506
收稿日期:
2021-03-15
修回日期:
2021-06-09
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
张栋铭,焦纬洲
作者简介:
丁鑫(1995—),男,博士研究生。E-mail:基金资助:
DING Xin(), ZHANG Dongming(), JIAO Weizhou(), LIU Youzhi
Received:
2021-03-15
Revised:
2021-06-09
Online:
2021-09-05
Published:
2021-09-13
Contact:
ZHANG Dongming,JIAO Weizhou
摘要:
直接甲醇燃料电池(direct methanol fuel cells, DMFC)由于其高效、清洁等优点,成为替代化石能源的理想新能源装置。催化剂作为DMFC中重要的组成部分,通过降低反应活化能,解决甲醇需要高过电势才能被电氧化的问题。但是目前DMFC阳极催化剂存在催化活性低、抗CO毒性差以及成本较高等问题,限制了DMFC的商业化。本文介绍了甲醇的催化电氧化原理,从Pt基催化剂、非Pt基催化剂、催化剂载体三个方面对DMFC阳极催化剂国内外研究进展进行了综述。介绍了通过选择合适晶面、添加助催化剂、制备特殊形貌、选择合适的载体4种方法对提高催化剂性能、降低催化剂成本的研究现状。甲醇在Pt(100)晶面上的催化活性较好但是抗CO毒性较弱;根据双功能理论和电子调变理论,制备的Pt-M合金催化剂具有更高的抗CO毒性和甲醇催化活性;非Pt基催化剂的制备为降低催化剂成本提供了研究思路;选择合适的催化剂载体,利用载体与催化剂之间的相互作用,也成为解决DMFC阳极催化剂目前面临的易中毒、活性低、成本高等问题的解决方法。
中图分类号:
丁鑫, 张栋铭, 焦纬洲, 刘有智. 直接甲醇燃料电池阳极催化剂研究进展[J]. 化工进展, 2021, 40(9): 4918-4930.
DING Xin, ZHANG Dongming, JIAO Weizhou, LIU Youzhi. Research progress of anode catalysts for direct methanol fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4918-4930.
1 | JEERH G, ZHANG M F, TAO S W. Recent progress in ammonia fuel cells and their potential applications[J]. Journal of Materials Chemistry A, 2021, 9(2): 727-752. |
2 | WANG Y Q, AN N, WEN L, et al. Recent progress on the recycling technology of Li-ion batteries[J]. Journal of Energy Chemistry, 2021, 55: 391-419. |
3 | SHADIKE Z, TAN S, WANG Q C, et al. Review on organosulfur materials for rechargeable lithium batteries[J]. Materials Horizons, 2021, 8(2): 471-500. |
4 | JIANG Z P, ZHAO Y M, LU X, et al. Fullerenes for rechargeable battery applications: recent developments and future perspectives[J]. Journal of Energy Chemistry, 2021, 55: 70-79. |
5 | 鞠剑峰, 吴东辉. 直接甲醇燃料电池阳极催化剂的研究进展[J]. 化工进展, 2009, 28(4): 646-649. |
JU Jianfeng, WU Donghui. Development of anode catalysts for direct methanol fuel cell[J]. Chemical Industry and Engineering Progress, 2009, 28(4): 646-649. | |
6 | DAI H L, ZHANG G X, RAWACH D, et al. Polymer gel electrolytes for flexible supercapacitors: Recent progress, challenges, and perspectives[J]. Energy Storage Materials, 2021, 34: 320-355. |
7 | KODAMA K, NAGAI T, KUWAKI A, et al. Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles[J]. Nature Nanotechnology, 2021, 16(2): 140-147. |
8 | 王树博, 王要武, 谢晓峰, 等. 直接甲醇燃料电池阳极催化剂的制备[J]. 化工进展, 2006, 25(6): 658-662. |
WANG Shubo, WANG Yaowu, XIE Xiaofeng, et al. Progress in anode catalysts and preparation techniques for direct methanol fuel cells[J]. Chemical Industry and Engineering Progress, 2006, 25(6): 658-662. | |
9 | CYRIL P H, SARAVANAN G. Development of advanced materials for cleaner energy generation through fuel cells[J]. New Journal of Chemistry, 2020, 44(46): 19977-19995. |
10 | 唐志诚, 吕功煊. 直接甲醇燃料电池阳极电催化剂[J]. 化学进展, 2007, 19(9): 1301-1312. |
TANG Zhicheng, Gongxuan LYU. Anode electrocatalysts for direct methanol fuel cells[J]. Progress in Chemistry, 2007, 19(9): 1301-1312. | |
11 | CHENG T T, GYENGE E L. Efficient anodes for direct methanol and formic acid fuel cells: the synergy between catalyst and three-dimensional support[J]. Journal of the Electrochemical Society, 2008, 155(8): B819. |
12 | 上海市经济团体联合会, 上海市化学化工学会. 节能减排新途径与新技术[M]. 上海: 华东理工大学出版社, 2010: 250-251. |
Shanghai Federation of Economic Organizations, Shanghai Society of Chemistry and Chemical Industry. New ways and new technologies for energy saving and emission reduction[M]. Shanghai: East China University of Science and Technology Press, 2010: 250-251. | |
13 | JARVI T D, SRIRAMULU S, STUVE E M. Reactivity and extent of poisoning during methanol electro-oxidation on platinum (100) and (111): a comparative study[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 134(1/2): 145-153. |
14 | FERRIN P, MAVRIKAKIS M. Structure sensitivity of methanol electrooxidation on transition metals[J]. Journal of the American Chemical Society, 2009, 131(40): 14381-14389. |
15 | MIKITA K, NAKAMURA M, HOSHI N. In situ infrared reflection absorption spectroscopy of carbon monoxide adsorbed on Pt(S)-[n(100) × (110)] electrodes[J]. Langmuir, 2007, 23(17): 9092-9097. |
16 | BARONIA R, GOEL J, TIWARI S, et al. Efficient electro-oxidation of methanol using PtCo nanocatalysts supported reduced graphene oxide matrix as anode for DMFC[J]. International Journal of Hydrogen Energy, 2017, 42(15): 10238-10247. |
17 | MUTHUKUMAR V, CHETTY R. Impregnated electroreduced Pt on Ru/C as an anode catalyst for direct methanol fuel cells[J]. Journal of the Electrochemical Society, 2019, 166(15): F1173-F1179. |
18 | WANG Z B, YIN G P, LIN Y G. Synthesis and characterization of PtRuMo/C nanoparticle electrocatalyst for direct ethanol fuel cell[J]. Journal of Power Sources, 2007, 170(2): 242-250. |
19 | WANG Z B, ZUO P J, YIN G P. Effect of W on activity of Pt-Ru/C catalyst for methanol electrooxidation in acidic medium[J]. Journal of Alloys and Compounds, 2009, 479(1/2): 395-400. |
20 | JIANG S J, ZHU L, MA Y W, et al. Direct immobilization of Pt-Ru alloy nanoparticles on nitrogen-doped carbon nanotubes with superior electrocatalytic performance[J]. Journal of Power Sources, 2010, 195(22): 7578-7582. |
21 | LI B, HIGGINS D C, ZHU S M, et al. Highly active Pt-Ru nanowire network catalysts for the methanol oxidation reaction[J]. Catalysis Communications, 2012, 18: 51-54. |
22 | OH J Y, JEE S H, KAKATI N, et al. Hydrothermal synthesis of Pt-Ru-W anode catalyst supported on multi-walled carbon nanotubes for methanol oxidation fuel cell[J]. Japanese Journal of Applied Physics, 2010, 49(11): 115101. |
23 | PENG K, ZHANG W Q, BHUVANENDRAN N, et al. Pt-based (Zn, Cu) nanodendrites with enhanced catalytic efficiency and durability toward methanol electro-oxidation via trace Ir-doping engineering[J]. Journal of Colloid and Interface Science, 2021, 598: 126-135. |
24 | 王瑞红. 类铂材料在燃料电池中的应用及其与贵金属的协同效应[M]. 哈尔滨: 黑龙江大学出版社, 2017: 12. |
WANG Duanhong. Application of platinum-like materials in fuel cells and their synergistic effects with precious metals[M]. Harbin: Heilongjiang University Press, 2017: 12. | |
25 | 李文震, 孙公权, 严玉山, 等. 低温燃料电池担载型贵金属催化剂[J]. 化学进展, 2005, 17(5): 761-772. |
LI Wenzhen, SUN Gongquan, YAN Yushan, et al. Supported noble metal electrocatalysts in low temperature fuel cells[J]. Progress in Chemistry, 2005, 17(5): 761-772. | |
26 | MARTÍNEZ-HUERTA M V, TSIOUVARAS N, PEÑA M A, et al. Electrochemical activation of nanostructured carbon-supported PtRuMo electrocatalyst for methanol oxidation[J]. Electrochimica Acta, 2010, 55(26): 7634-7642. |
27 | RIGSBY M A, ZHOU W P, LEWERA A, et al. Experiment and theory of fuel cell catalysis: methanol and formic acid decomposition on nanoparticle Pt/Ru[J]. The Journal of Physical Chemistry C, 2008, 112(39): 15595-15601. |
28 | TENG X A, SHAN A X, ZHU Y C, et al. Promoting methanol-oxidation-reaction by loading PtNi nano-catalysts on natural graphitic-nano-carbon[J]. Electrochimica Acta, 2020, 353: 136542. |
29 | KANG D K, NOH C S, PARK S T, et al. The effect of PtRuW ternary electrocatalysts on methanol oxidation reaction in direct methanol fuel cells[J]. Korean Journal of Chemical Engineering, 2010, 27(3): 802-806. |
30 | WANG W, WANG R F, WANG H, et al. An advantageous method for methanol oxidation: design and fabrication of a nanoporous PtRuNi trimetallic electrocatalyst[J]. Journal of Power Sources, 2011, 196(22): 9346-9351. |
31 | LIANG Y M, ZHANG H M, TIAN Z Q, et al. Synthesis and structure-activity relationship exploration of carbon-supported PtRuNi nanocomposite as a CO-tolerant electrocatalyst for proton exchange membrane fuel cells[J]. The Journal of Physical Chemistry B, 2006, 110(15): 7828-7834. |
32 | YANG L X, ALLEN R G, SCOTT K, et al. A comparative study of PtRu and PtRuSn thermally formed on titanium mesh for methanol electro-oxidation[J]. Journal of Power Sources, 2004, 137(2): 257-263. |
33 | HUNT S T, MILINA M, ALBA-RUBIO A C, et al. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts[J]. Science, 2016, 352(6288): 974-978. |
34 | 靳选, 王宏, 葛传楠. 乙二醇高温还原制备燃料电池核壳结构Cu@Pt-Pd电极的研究[J]. 云南化工, 2019, 46(3): 63-65. |
JIN Xuan, WANG Hong, GE Chuannan. Preparation of core-shell Cu@Pt-Pd electrode for fuel cells by high temperature reduction of ethylene glycol[J]. Yunnan Chemical Technology, 2019, 46(3): 63-65. | |
35 | ZHAO H B, LI L, YANG J, et al. Co@Pt-Ru core-shell nanoparticles supported on multiwalled carbon nanotube for methanol oxidation[J]. Electrochemistry Communications, 2008, 10(10): 1527-1529. |
36 | PENG K, BHUVANENDRAN N, RAVICHANDRAN S, et al. Bimetallic Pt3Mn nanowire network structures with enhanced electrocatalytic performance for methanol oxidation[J]. International Journal of Hydrogen Energy, 2020, 45(55): 30455-30462. |
37 | YE W C, KOU H H, LIU Q Z, et al. Electrochemical deposition of Au-Pt alloy particles with cauliflower-like microstructures for electrocatalytic methanol oxidation[J]. International Journal of Hydrogen Energy, 2012, 37(5): 4088-4097. |
38 | 武繁华. 非晶态Ni-B-M纳米粒子在碱性介质中对甲醇的电催化氧化[D]. 太原: 太原理工大学, 2019. |
WU Fanhua. Electrocatalytic oxidation of methanol on amorphous Ni-B-M nanoparticles in alkaline media[D]. Taiyuan: Taiyuan University of Technology, 2019. | |
39 | MANSOR M, TIMMIATI S N, WONG W Y, et al. NiPd supported on mesostructured silica nanoparticle as efficient anode electrocatalyst for methanol electrooxidation in alkaline media[J]. Catalysts, 2020, 10(11): 1235. |
40 | TAN Q, SHU C Y, ABBOTT J, et al. Highly dispersed Pd-CeO2 nanoparticles supported on N-doped core-shell structured mesoporous carbon for methanol oxidation in alkaline media[J]. ACS Catalysis, 2019, 9(7): 6362-6371. |
41 | ASKARI M B, SALARIZADEH P, SEIFI M, et al. Ni/NiO coated on multi-walled carbon nanotubes as a promising electrode for methanol electro-oxidation reaction in direct methanol fuel cell[J]. Solid State Sciences, 2019, 97: 106012. |
42 | NAZAL M K, OLAKUNLE O S, AL-AHMED A, et al. Methanol electro-oxidation in alkaline medium by Ni based binary and ternary catalysts: effect of iron (Fe) on the catalyst performance[J]. Russian Journal of Electrochemistry, 2019, 55(2): 61-69. |
43 | LEVY R B, BOUDART M. Platinum-like behavior of tungsten carbide in surface catalysis[J]. Science, 1973, 181(4099): 547-549. |
44 | WEIGERT E C, ZELLNER M B, STOTTLEMYER A L, et al. A combined surface science and electrochemical study of tungsten carbides as anode electrocatalysts[J]. Topics in Catalysis, 2007, 46(3/4): 349-357. |
45 | SHENG T, LIN X, CHEN Z Y, et al. Methanol electro-oxidation on platinum modified tungsten carbides in direct methanol fuel cells: a DFT study[J]. Physical Chemistry Chemical Physics, 2015, 17(38): 25235-25243. |
46 | NIE M, DU S J, LI Q, et al. Tungsten carbide as supports for trimetallic AuPdPt electrocatalysts for methanol oxidation[J]. Journal of the Electrochemical Society, 2020, 167(4): 044510. |
47 | SINGH R N, SINGH A, MISHRA D, et al. Oxidation of methanol on perovskite-type La2-xSrxNiO4 (0 ≤ x ≤ 1) film electrodes modified by dispersed nickel in 1mol/L KOH[J]. Journal of Power Sources, 2008, 185(2): 776-783. |
48 | BALASUBRAMANIAN A, KARTHIKEYAN N, GIRIDHAR V V. Synthesis and characterization of LaNiO3- based platinum catalyst for methanol oxidation[J]. Journal of Power Sources, 2008, 185(2): 670-675. |
49 | RAGHUVEER V, RAVINDRANATHAN THAMPI K, XANTHOPOULOS N, et al. Rare earth cuprates as electrocatalysts for methanol oxidation[J]. Solid State Ionics, 2001, 140(3/4): 263-274. |
50 | YAQOOB L, NOOR T, IQBAL N, et al. Development of an efficient non-noble metal based anode electrocatalyst to promote methanol oxidation activity in DMFC[J]. ChemistrySelect, 2020, 5(20): 6023-6034. |
51 | NOOR T, ZAMAN N, NASIR H, et al. Electro catalytic study of NiO-MOF/rGO composites for methanol oxidation reaction[J]. Electrochimica Acta, 2019, 307: 1-12. |
52 | 张云松. 直接甲醇燃料电池电催化剂的制备及电化学性能研究[D]. 长沙: 湖南大学, 2016. |
ZHANG Yunsong. Synthesis and electrochemical performance investigation of electrocatalysts for direct methanol fuel cells[D]. Changsha: Hunan University, 2016. | |
53 | TENG X A, SHAN A X, ZHU Y C, et al. Promoting methanol-oxidation-reaction by loading PtNi nano-catalysts on natural graphitic-nano-carbon[J]. Electrochimica Acta, 2020, 353: 136542. |
54 | BELLO M, ZAIDI S M J, AL-AHMED A, et al. Pt-Ru nanoparticles functionalized mesoporous carbon nitride with tunable pore diameters for DMFC applications[J]. Microporous and Mesoporous Materials, 2017, 252: 50-58. |
55 | FOROOTAN FARD H, KHODAVERDI M, POURFAYAZ F, et al. Application of N-doped carbon nanotube-supported Pt-Ru as electrocatalyst layer in passive direct methanol fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45(46): 25307-25316. |
56 | DAS S, DUTTA K, KUNDU P P, et al. Nanostructured polyaniline: an efficient support matrix for platinum-ruthenium anode catalyst in direct methanol fuel cell[J]. Fuel Cells, 2018, 18(4): 369-378. |
57 | DAS S, DUTTA K, KUNDU P P. Sulfonated polypyrrole matrix induced enhanced efficiency of Ni nanocatalyst for application as an anode material for DMFCs[J]. Materials Chemistry and Physics, 2016, 176: 143-151. |
58 | HALLER G L, RESASCO D E. Metal-support interaction: group VIII metals and reducible oxides[J]. Advances in Catalysis, 1989, 36: 173-235. |
59 | 赵顺炜, 王耀琼, 高焕方, 等. 金属化合物作直接甲醇燃料电池阳极催化剂载体的研究进展[J]. 化工进展, 2017, 36(3): 965-972. |
ZHAO Shunwei, WANG Yaoqiong, GAO Huanfang, et al. Resent progress in metal compound supports of anode catalyst for direct methanol fuel cell[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 965-972. | |
60 | TAMAŠAUSKAITĖ-TAMAŠIŪNAITĖ L, BALČIŪNAITĖ A, VAICIUKEVIČIENĖ A, et al. Investigation of electrocatalytic activity of titania nanotube supported nanostructured Pt-Ni catalyst towards methanol oxidation[J]. Journal of Power Sources, 2013, 225: 20-26. |
61 | ABDULLAH M, KAMARUDIN S K, SHYUAN L K. TiO2 nanotube-carbon (TNT-C) as support for Pt-based catalyst for high methanol oxidation reaction in direct methanol fuel cell[J]. Nanoscale Res. Lett., 2016, 11(1): 553. |
62 | ZHENG Y P, ZHANG Z Y, ZHANG X, et al. Application of Pt-Co nanoparticles supported on CeO2-C as electrocatalyst for direct methanol fuel cell[J]. Materials Letters, 2018, 221: 301-304. |
63 | YOUSAF A B, IMRAN M, UWITONZE N, et al. Enhanced electrocatalytic performance of Pt3Pd1 alloys supported on CeO2/C for methanol oxidation and oxygen reduction reactions[J]. The Journal of Physical Chemistry C, 2017, 121(4): 2069-2079. |
64 | KIM I T, CHOI M, LEE H K, et al. Characterization of methanol-tolerant Pd-WO3 and Pd-SnO2 electrocatalysts for the oxygen reduction reaction in direct methanol fuel cells[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(3): 813-818. |
65 | XU M W, GAO G Y, ZHOU W J, et al. Novel Pd/β-MnO2 nanotubes composites as catalysts for methanol oxidation in alkaline solution[J]. Journal of Power Sources, 2008, 175(1): 217-220. |
66 | ZHOU C, PENG F, WANG H, et al. Facile preparation of an excellent Pt/RuO2-MnO2/CNTs nanocatalyst for anodes of direct methanol fuel cells[J]. Fuel Cells, 2011, 11(2): 301-308. |
67 | ZHANG J, TU J P, DU G H, et al. Pt supported self-assembled nest-like-porous WO3 hierarchical microspheres as electrocatalyst for methanol oxidation[J]. Electrochimica Acta, 2013, 88: 107-111. |
68 | PATEL P P, DATTA M K, JAMPANI P H, et al. High performance and durable nanostructured TiN supported Pt50-Ru50 anode catalyst for direct methanol fuel cell (DMFC)[J]. Journal of Power Sources, 2015, 293: 437-446. |
69 | MUSTHAFA O T M, SAMPATH S. High performance platinized titanium nitride catalyst for methanoloxidation[J]. Chem. Commun., 2008(1): 67-69. |
70 | AVASARALA B, HALDAR P. Durability and degradation mechanism of titanium nitride based electrocatalysts for PEM (proton exchange membrane) fuel cell applications[J]. Energy, 2013, 57: 545-553. |
71 | 胡洁琼, 谢明, 陈永泰, 等. Au-Pt-Ni三元催化剂体系纳米相图的研究进展[J]. 材料导报, 2020, 34(S2): 1338-1343. |
HU Jieqiong, XIE Ming, CHEN Yongtai, et al. Research progress on the nanophase diagram of Au-Pt-Ni catalyst system[J]. Materials Reports, 2020, 34(S2): 1338-1343. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[4] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[5] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[6] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[7] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[8] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[9] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[10] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[11] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[12] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[13] | 徐伟, 李凯军, 宋林烨, 张兴惠, 姚舜华. 光催化及其协同电化学降解VOCs的研究进展[J]. 化工进展, 2023, 42(7): 3520-3531. |
[14] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[15] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |