化工进展 ›› 2019, Vol. 38 ›› Issue (05): 2461-2470.DOI: 10.16085/j.issn.1000-6613.2018-1576
黄智辉1,2,3(),纪志永1,2,3(),陈希2,3,郭小甫2,3,王士钊2,3,袁俊生1,2,3
收稿日期:
2018-08-01
修回日期:
2018-10-22
出版日期:
2019-05-05
发布日期:
2019-05-05
通讯作者:
纪志永
作者简介:
黄智辉(1993—),男,博士研究生,研究方向为环境化学。E-mall:<email>cmhzh@163.com</email>。
基金资助:
Zhihui HUANG1,2,3(),Zhiyong JI1,2,3(),Xi CHEN2,3,Xiaofu GUO2,3,Shizhao WANG2,3,Junsheng YUAN1,2,3
Received:
2018-08-01
Revised:
2018-10-22
Online:
2019-05-05
Published:
2019-05-05
Contact:
Zhiyong JI
摘要:
基于硫酸根自由基(sulfate radical,SO4 -·)氧化原理的活化过硫酸盐(persulfate,PS)氧化法是近年来高级氧化工艺(advanced oxidation process,AOP)的研究热点,以经济、高效、环境友好、安全稳定的优势在水处理、环境保护等领域开辟了新的思路。此前,学者们发现过硫酸盐高级氧化根据活化反应条件(如温度、光照、pH、过渡金属及催化剂等)的不同,会产生不同的自由基参与氧化反应,对降解结果也会产生不同程度的影响。本文根据相关自由基氧化机理,从产生硫酸根自由基的单一氧化、复杂活化体系硫酸根自由基与其他自由基复合氧化以及强化降解等方面,分析了近几年国内外学者对过硫酸盐降解典型有机污染物的研究及在催化剂开发方面所做的工作,指出了许多新颖的过硫酸盐活化手段及其降解效果与不足,并就未来的发展进行了展望,以期为过硫酸盐氧化法未来更好地发展和应用探索出路。
中图分类号:
黄智辉, 纪志永, 陈希, 郭小甫, 王士钊, 袁俊生. 过硫酸盐高级氧化降解水体中有机污染物研究进展[J]. 化工进展, 2019, 38(05): 2461-2470.
Zhihui HUANG, Zhiyong JI, Xi CHEN, Xiaofu GUO, Shizhao WANG, Junsheng YUAN. Degradation of organic pollutants in water by persulfate advanced oxidation[J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2461-2470.
污染物 | 活化手段 | 氧化剂/ 污染物 (摩尔比) | 反应时间 /min | 去除率/% | 初始 pH | 最适pH | pH范围 | 主要氧化物质 | 文献 |
---|---|---|---|---|---|---|---|---|---|
norfloxacin | 磁性纳米粒子 | 66.67 | 60 | 90 | 4 | 4,6.7 | 4,6.7,9 | SO4 -·,·OH | [ |
chloramphenicol | UV | 33.33 | 120 | 79.8 | 3 | 3 | 3~11 | SO4 -· | [ |
tetracycline | magnetic Ag/AgCl/zeolite | 22.22 | 120 | 100 | 3.5 | 3.5 | 3.5~7.5 | SO4 -·,·O2 - | [ |
tetracycline | AC@Fe3O4 | 441.18 | 240 | 99.8 | 3 | 3 | 3~7 | SO4 -· | [ |
sulfaclozine | UV/TiO3 | 100 | 60 | 99 | 7,11 | 11 | 7,11 | SO4 -·,·OH | [ |
sulfaclozine | UV | 200 | 60 | 80 | 7,11 | 7,11 | 7,11 | SO4 -·,·OH | [ |
sulfaclozine | 太阳光 | 200 | 60 | 84 | 7 | SO4 -·,·OH | [ | ||
sulfaclozine | Fe(Ⅱ) | 200 | 60 | 60 | 7 | SO4 -·,·OH | [ | ||
cefixime | UV/zeolite-TiO2 | 1818.18 | 40 | 59 | 7 | SO4 -·,·OH | [ | ||
phenazopyridine | UV/zeolite-TiO2 | 106.38 | 30 | 70 | 7 | SO4 -·,·OH | [ | ||
reactive black 5 | UV/zeolite-TiO2 | 2000 | 40 | 92 | 7 | SO4 -·,·OH | [ | ||
acid orange 7 | Vis/MIL-53(Fe) | 40 | 50 | 99 | 3 | 3 | 3,6,7,9 | SO4 -·,·OH | [ |
orange G | WMF/Fe0 | 10 | 8 | 98 | 3 | 3 | 3~10 | SO4 -· | [ |
caffeine | WMF/Fe0 | 25 | 50 | 98 | 7 | SO4 -· | [ | ||
4-nitrophenol | WMF/Fe0 | 25 | 60 | 96 | 7 | SO4 -· | [ | ||
benzotriazole | WMF/Fe0 | 25 | 80 | 90 | 7 | SO4 -· | [ | ||
diuron | WMF/Fe0 | 25 | 30 | 92 | 7 | SO4 -· | [ | ||
naphthol blue black | 超声 | 259.03 | 20 | 92 | 6 | SO4 -· | [ | ||
rhodamine B | 超声/FeSO4 | 1300 | 6 | 99 | 3 | 3 | 3~11 | SO4 -·,·OH | [ |
amaranth | 二茂铁 | 12.21 | 60 | 99 | 5 | 3~6 | 3~11 | SO4 -· | [ |
2,4,4'-trichlorobiphenyl | V2O3 | 256.41 | 240 | 100 | 5.9 | 5.9 | 5.9,7.4,8.4 | SO4 -· | [ |
perfluorooctanoic acid | 铁改性硅藻土 | 12500 | 360 | 50 | 12 | 12 | 3,9,12 | SO4 -·,·O2 - | [ |
perfluorooctanoic acid | UV | 100 | 360 | 83.3 | 4 | SO4 -· | [ | ||
decabromodiphenyl ether | Fe(Ⅱ) | 19183.40 | 360 | 53 | 3 | 3 | 3~9 | SO4 -· | [ |
decabromodiphenyl ether | 热 | 23979.25 | 360 | 53.8 | 5 | 5 | 3~9 | SO4 -· | [ |
p-chloroaniline | 黄铁矿(FeS2) | 5 | 60 | 100 | 3 | 3 | 3~11 | SO4 -·,·OH,·O2 - | [ |
triclosan | 热 | 5 | 48 | 100 | 3 | 3,5 | 3~11 | SO4 -· | [ |
4-tert-butylphenol | 正方针铁矿 | 20 | 120 | 90 | 4.7 | 无影响 | SO4 -·,·O2 - | [ | |
4-tert-butylphenol | 水铁矿 | 20 | 300 | 60 | 4.7 | 3.2 | 3.2~8 | SO4 -·,·O2 - | [ |
4-tert-butylphenol | Fe(Ⅲ) | 20 | 180 | 62 | 2.4 | 2.4 | 2.4~5 | SO4 -·,·O2 - | [ |
EDTA | UV | 60 | 40 | 100 | 2 | 2,4,6,8 | 2,4,6,8,10 | SO4 -· | [ |
triton X-45 | Al0 | 73.61 | 90 | 100 | 3 | SO4 -·,·OH | [ | ||
bisphenol A | 零价铁 | 28.54 | 60 | 100 | 5 | SO4 -· | [ | ||
phenol | 纳米金刚石 | 30.58 | 20 | 100 | 11 | 11 | 2~11 | SO4 -·,·OH | [ |
表1 活化方法、pH、氧化剂比例对过硫酸盐氧化的影响汇总
污染物 | 活化手段 | 氧化剂/ 污染物 (摩尔比) | 反应时间 /min | 去除率/% | 初始 pH | 最适pH | pH范围 | 主要氧化物质 | 文献 |
---|---|---|---|---|---|---|---|---|---|
norfloxacin | 磁性纳米粒子 | 66.67 | 60 | 90 | 4 | 4,6.7 | 4,6.7,9 | SO4 -·,·OH | [ |
chloramphenicol | UV | 33.33 | 120 | 79.8 | 3 | 3 | 3~11 | SO4 -· | [ |
tetracycline | magnetic Ag/AgCl/zeolite | 22.22 | 120 | 100 | 3.5 | 3.5 | 3.5~7.5 | SO4 -·,·O2 - | [ |
tetracycline | AC@Fe3O4 | 441.18 | 240 | 99.8 | 3 | 3 | 3~7 | SO4 -· | [ |
sulfaclozine | UV/TiO3 | 100 | 60 | 99 | 7,11 | 11 | 7,11 | SO4 -·,·OH | [ |
sulfaclozine | UV | 200 | 60 | 80 | 7,11 | 7,11 | 7,11 | SO4 -·,·OH | [ |
sulfaclozine | 太阳光 | 200 | 60 | 84 | 7 | SO4 -·,·OH | [ | ||
sulfaclozine | Fe(Ⅱ) | 200 | 60 | 60 | 7 | SO4 -·,·OH | [ | ||
cefixime | UV/zeolite-TiO2 | 1818.18 | 40 | 59 | 7 | SO4 -·,·OH | [ | ||
phenazopyridine | UV/zeolite-TiO2 | 106.38 | 30 | 70 | 7 | SO4 -·,·OH | [ | ||
reactive black 5 | UV/zeolite-TiO2 | 2000 | 40 | 92 | 7 | SO4 -·,·OH | [ | ||
acid orange 7 | Vis/MIL-53(Fe) | 40 | 50 | 99 | 3 | 3 | 3,6,7,9 | SO4 -·,·OH | [ |
orange G | WMF/Fe0 | 10 | 8 | 98 | 3 | 3 | 3~10 | SO4 -· | [ |
caffeine | WMF/Fe0 | 25 | 50 | 98 | 7 | SO4 -· | [ | ||
4-nitrophenol | WMF/Fe0 | 25 | 60 | 96 | 7 | SO4 -· | [ | ||
benzotriazole | WMF/Fe0 | 25 | 80 | 90 | 7 | SO4 -· | [ | ||
diuron | WMF/Fe0 | 25 | 30 | 92 | 7 | SO4 -· | [ | ||
naphthol blue black | 超声 | 259.03 | 20 | 92 | 6 | SO4 -· | [ | ||
rhodamine B | 超声/FeSO4 | 1300 | 6 | 99 | 3 | 3 | 3~11 | SO4 -·,·OH | [ |
amaranth | 二茂铁 | 12.21 | 60 | 99 | 5 | 3~6 | 3~11 | SO4 -· | [ |
2,4,4'-trichlorobiphenyl | V2O3 | 256.41 | 240 | 100 | 5.9 | 5.9 | 5.9,7.4,8.4 | SO4 -· | [ |
perfluorooctanoic acid | 铁改性硅藻土 | 12500 | 360 | 50 | 12 | 12 | 3,9,12 | SO4 -·,·O2 - | [ |
perfluorooctanoic acid | UV | 100 | 360 | 83.3 | 4 | SO4 -· | [ | ||
decabromodiphenyl ether | Fe(Ⅱ) | 19183.40 | 360 | 53 | 3 | 3 | 3~9 | SO4 -· | [ |
decabromodiphenyl ether | 热 | 23979.25 | 360 | 53.8 | 5 | 5 | 3~9 | SO4 -· | [ |
p-chloroaniline | 黄铁矿(FeS2) | 5 | 60 | 100 | 3 | 3 | 3~11 | SO4 -·,·OH,·O2 - | [ |
triclosan | 热 | 5 | 48 | 100 | 3 | 3,5 | 3~11 | SO4 -· | [ |
4-tert-butylphenol | 正方针铁矿 | 20 | 120 | 90 | 4.7 | 无影响 | SO4 -·,·O2 - | [ | |
4-tert-butylphenol | 水铁矿 | 20 | 300 | 60 | 4.7 | 3.2 | 3.2~8 | SO4 -·,·O2 - | [ |
4-tert-butylphenol | Fe(Ⅲ) | 20 | 180 | 62 | 2.4 | 2.4 | 2.4~5 | SO4 -·,·O2 - | [ |
EDTA | UV | 60 | 40 | 100 | 2 | 2,4,6,8 | 2,4,6,8,10 | SO4 -· | [ |
triton X-45 | Al0 | 73.61 | 90 | 100 | 3 | SO4 -·,·OH | [ | ||
bisphenol A | 零价铁 | 28.54 | 60 | 100 | 5 | SO4 -· | [ | ||
phenol | 纳米金刚石 | 30.58 | 20 | 100 | 11 | 11 | 2~11 | SO4 -·,·OH | [ |
1 | GLAZE W H . Drinking-water treatment with ozone[J]. Environmental Science & Technology, 1987, 21(3): 224-230. |
2 | 张旋, 王启山 . 高级氧化技术在废水处理中的应用[J]. 水处理技术, 2009, 35(3): 24-28. |
ZHANG Xuan , WANG Qishan . Application of advanced oxidation technologies in wastewater treatment[J]. Technology of Water Treatment, 2009, 35(3): 24-28. | |
3 | MARRONE P A , HONG G T . Corrosion control methods in supercritical water oxidation and gasification[J].The Journal of Supercritical Fluids, 2009, 51(2): 83-103. |
4 | WANG J , WANG S . Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. |
5 | HOUSE D A . Kinetics and mechanism of oxidations by peroxydisulfate[J]. Chemical Reviews, 1961, 62(3): 185-203. |
6 | ANIPSITAKIS G P , DIONYSIOU D D . Transition metal/UV-based advanced oxidation technologies for water decontamination[J]. Applied Catalysis B: Environmental, 2004, 54(3): 155-163. |
7 | ANIPSITAKIS G P , DIONYSIOU D D . Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38(13): 3705-3712. |
8 | NETA P , HUIE R E , ROSS A B . Rate constants for reactions of inorganic radicals in aqueous-solution[J]. Journal of Physical & Chemical Reference Date, 1988, 17(3): 1027-1284. |
9 | HOELDERICH W F , KOLLMER F . Oxidation reactions in the synthesis of fine and intermediate chemicals using environmentally benign oxidants and the right reactor system [J]. Pure and Applied Chemistry, 2000, 72: 1273-1287. |
10 | XU Z , SHAN C , XIE B , et al . Decomplexation of Cu(Ⅱ)-EDTA by UV/Persulfate and UV/H2O2: efficiency and mechanism[J]. Applied Catalysis B: Environmental, 2016, 200: 439-447. |
11 | KUSIC H , PETERNEL I , KOPRIVANAC N , et al . Ironactivated persulfate oxidation of an azo dye in model wastewater: influence of iron activator type on process optimization[J]. Journal of Environmental Chemical Engineering, 2011, 137 (6): 454: 463. |
12 | OH S Y, KANG S G , CHIU P C . Degradation of 2,4-dinitrotoluene by persulfate activated with zero-valent iron[J]. Science of the Total Environment, 2010, 408(16): 3464-3468. |
13 | LIANG C J , GUO Y Y . Mass transfer and chemical oxidation of naphthalene particles with zerovalent iron activated persulfate [J]. Environmental Science & Technology, 2010, 44(21): 8203-8208. |
14 | LE C , WU J H , LI P , et al . Decolorization of anthraquinone dye reactive blue 19 by the combination of persulfate and zero-valent iron[J]. Water Science and Technology, 2011, 64(3): 754-759. |
15 | HUSSAIN I , ZHANG Y , HUANG S , et al . Degradation of pchloroaniline by persulfate activated with zero-valent iron[J]. Chemical Engineering Journal, 2012, 203: 269-276. |
16 | XIONG X M , SUN B , ZHANG J , et al . Activating persulfate by Fe0 coupling with weak magnetic field: performance and mechanism [J]. Water Research, 2014, 62: 53-62. |
17 | GIRIT B , DURSUN D , OLMEZHANCI T , et al . Treatment of aqueous bisphenol A using nano-sized zero-valent iron in the presence of hydrogen peroxide and persulfate oxidants.[J]. Water Science & Technology, 2015, 71(12): 1859-1868. |
18 | ARSLANALATON I , OLMEZHANCI T , GENÇ B , et al . Advanced oxidation of the commercial nonionic surfactant octylphenol polyethoxylate Triton™ X-45 by the persulfate/UV-C process: effect of operating parameters and kinetic evaluation[J]. Frontiers in Chemistry, 2013, 1: 4. |
19 | LIU C S , SHIH K , SUN C X , et al . Oxidative degradation of propachlor by ferrous and copper ion activated persulfate[J]. Science of the Total Environment, 2012, 416: 507-512. |
20 | 吴丽颖, 王炳煌, 张圆春,等 . 凝胶球负载零价铁活化过硫酸盐降解偶氮染料废水[J]. 化工进展, 2017, 36(6): 2318-2324. |
21 | WU Liying , WANG Binghuang , ZHANG Yuanchun , et al . Degradation of Reactive Black 5 (RBK5) by gelatin balls loading iron activating sodium persulfate[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2318-2324. |
22 | WU Y , PRULHO R , BRIGANTE M , et al . Activation of persulfate by Fe(Ⅲ) species: implications for 4-tert-butylphenol degradation[J]. Journal of Hazardous Materials, 2017, 322: 380-386. |
23 | COPE V W , CHEN S N , Hoffman M Z . Intermediates in the photochemistry of of carbonato-amine complexes of cobalt(Ⅲ). Carbonate(-) radicals and the aquocarbonato complex[J]. Journal of the American Chemical Society, 1973, 95(10): 3116-3121. |
24 | LIN K A , LIN J , JOCHEMS A P . Oxidation of amaranth dye by persulfate and peroxymonosulfate activated by ferrocene [J]. Journal of Chemical Technology & Biotechnology, 2017, 92: 163–172. |
25 | TANC Q , FU D F , GAO N Y , et al . Kinetic degradation of chloramphenicol in water byUV/persulfate system[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332: 406-412. |
26 | BENNEDSEN L R , MUFF J , SØGAARD E G . Influence of chloride and carbonates on the reactivity of activated persulfate[J]. Chemosphere, 2012, 86(11): 1092-1097. |
27 | DENG J , SHAO Y , GAO N , et al . Degradation of the antiepileptic drug carbamazepine upon different UV-based advanced oxidation processes in water[J]. Chemical Engineering Journal, 2013, 222: 150-158. |
28 | QIAN Y J , GUO X , ZHANG Y L , et al . Perfluorooctanoic acid degradation using UV−persulfate process: modeling of the degradation and chlorate formation[J]. Environmental Science & Technology, 2016, 50: 772-781. |
29 | FANG G , GAO J , DIONYSIOU D D , et al . Activation of persulfate by quinones: free radical reactions and implication forthe degradation of PCBs[J]. Environmental Science & Technology, 2013, 47(9): 4605−4611. |
30 | AHMAD M , TEEL A L , WATTS R J . Mechanism of persulfate activation by phenols[J]. Environmental Science & Technology, 2013, 47(11): 5864-5871. |
31 | GRACA C , VELOSA A C , TEIXEIRA A C . Amicarbazone degradation by UVA-activated persulfate in the presence of hydrogen peroxide or Fe2+ [J]. Catalysis Today, 2017, 280: 80-85. |
32 | KEEN O S , LOVE N G , LINDEN K G . The role of effluent nitrate in trace organic chemical oxidation during UV disinfection[J]. Water Research, 2012, 46(16): 5224-5234. |
33 | LIANG C , WANG Z S , BRUELL C J . Influence of pH on persulfate oxidation of TCE at ambient temperatures[J]. Chemosphere, 2007, 66(1): 106-113. |
34 | PENNINGTON D E , HAIM A . Stoichiometry and mechanism of the chromium(Ⅱ)-peroxydisulfate reaction[J]. Journal of the American Chemical Society, 1968, 90(14): 3700-3704. |
35 | NORMAN R O C , STOREY P M , WEST P R . Electron spin resonance studies. Part . Reactions of the sulphate radical anion with organic compounds[J]. Journal of the Chemical Society B: Physical Organic, 1970: 1087-1095. |
36 | HAYON E , TREININ A , WILF J . Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO2 -, SO3 -, SO4 -, and SO5 - radicals[J]. Journal of the American Chemical Society, 1972, 94(1): 47-57. |
37 | BABU K A , SATHISH K P S , SAMBANDAM A , et al . Sonochemical degradation of Rhodamine B using oxidants, hydrogen peroxide/peroxydisulfate/peroxymonosulfate, with Fe2+ ion: proposed pathway and kinetics[J]. Environmental Engineering Science, 2015, 32(2): 1-12. |
38 | FANG G D , DIONYSIOU D D , WANG Y , et al . Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics.[J]. Journal of Hazardous Materials, 2012, 227/228(43): 394-401. |
39 | ISMAIL L , FERRONATO C , FINE L , et al . Elimination of sulfaclozine from water with SO4 ·− radicals: evaluation of different persulfate activation methods[J]. Applied Catalysis B: Environmental, 2016, 201: 573-581. |
40 | DING D , LIU C , JI Y , et al . Mechanism insight of degradation of norfloxacin by magnetite nanoparticles activated persulfate: identification of radicals and degradation pathway[J]. Chemical Engineering Journal, 2017, 308: 330-339. |
41 | FANG G , WU W , LIU C , et al . Activation of persulfate with vanadium species for PCBs degradation: a mechanistic study[J]. Applied Catalysis B: Environmental, 2016, 202: 1-11. |
42 | GAO Y , LI S , LI Y , et al . Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate[J]. Applied Catalysis B: Environmental, 2017, 202: 165-174. |
43 | AHMAD M . Innovative oxidation pathways for the treatment of traditional and emerging contaminants[D]. Washington: Washington State University, 2012. |
44 | ZHANG Y , TRAN H P , HUSSAIN I , et al . Degradation of p-chloroaniline by pyrite in aqueous solutions[J]. Chemical Engineering Journal, 2015, 279: 396-401. |
45 | ZHANG Y , TRAN H P , DU X , et al . Efficient pyrite activating persulfate process for degradation of p-chloroaniline in aqueous systems: a mechanistic study[J]. Chemical Engineering Journal, 2017, 308: 1112-1119. |
46 | LIU M , HOU L , LI Q , et al . Heterogeneous degradation of tetracycline by magnetic Ag/AgCl/modified zeolite X–persulfate system under visible light[J]. RSC Advances, 2016, 6(42): 35216-35227. |
47 | ESKANDARIAN M R , FAZLI M , RASOULIFARD M H , et al . Decomposition of organic chemicals by zeolite-TiO2, nanocomposite supported onto low density polyethylene film under UV-LED powered by solar radiation[J]. Applied Catalysis B: Environmental, 2016, 183: 407-416. |
48 | FERKOUS H , MEROUANI S , HAMDAOUI O , et al . Persulfate-enhanced sonochemical degradation of naphthol blue black in water: evidence of sulfate radical formation.[J]. Ultrasonics Sonochemistry, 2016, 34: 580-587. |
49 | ARSLAN-ALATON I , OLMEZ-HANCI T , KHOEI S , et al . Oxidative degradation of Triton X-45 using zero valent aluminum in the presence of hydrogen peroxide, persulfate and peroxymonosulfate[J]. Catalysis Today, 2017, 280: 199-207. |
50 | PENG H , ZHANG W , LIU L , et al . Degradation performance and mechanism of decabromodiphenyl ether (BDE209) by ferrous-activated persulfate in spiked soil[J]. Chemical Engineering Journal, 2016, 307: 750-755. |
51 | CAI J , ZHOU M , YANG W , et al . Degradation and mechanism of 2,4-dichlorophenoxyacetic acid (2,4-D) by thermally activated persulfate oxidation[J]. Chemosphere, 2018, 212: 784-793. |
52 | GAO H , CHEN J , ZHANG Y , et al . Sulfate radicals induced degradation of Triclosan in thermally activated persulfate system[J]. Chemical Engineering Journal, 2016, 306: 522-530. |
53 | WANG Z , YUAN R , GUO Y , et al . Effects of chloride ions on bleaching of azo dyes by Co2+/oxone reagent: kinetic analysis[J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 1083-1087. |
54 | FAN Y , JI Y , KONG D , et al . Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process[J]. Journal of Hazardous Materials, 2015, 300: 39-47. |
55 | PENG H , ZHANG W , XU L , et al . Oxidation and mechanism of decabromodiphenyl ether (BDE209) by thermally activated persulfate (TAP) in a soil system[J]. Chemical Engineering Journal, 2016, 306: 226-232. |
56 | NIE M , YANG Y , ZHANG Z , et al . Degradation of chloramphenicol by thermally activated persulfate in aqueous solution[J]. Chemical Engineering Journal, 2014, 246: 373-382. |
57 | TAN C , GAO N , YANG D , et al . Degradation of antipyrine by UV, UV/H2O2 and UV/PS[J]. Journal of Hazardous Materials, 2013, 260(18): 1008-1016. |
58 | JAFARI A J , KAKAVANDI B , JAAFARZADEH N , et al . Heterogeneous Fenton-like catalytic oxidation of tetracycline by AC@Fe3O4 as a heterogeneous persulfate activator: adsorption and degradation studies[J]. Journal of Industrial & Engineering Chemistry, 2017, 45: 323-333. |
59 | DUAN X , SUN H , KANG J , et al . Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons[J]. ACS Catalysis, 2015, 5: 4629-4636. |
60 | DUAN X , SU C , ZHOU L , et al . Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds[J]. Applied Catalysis B: Environmental, 2016, 194: 7-15. |
61 | CELYNA K O , WASIU A L , PRINCE A N , et al . Degradation of PFOA by hydrogen peroxide and persulfate activated by iron-modified diatomite[J]. Applied Catalysis B: Environmental, 2016, 192: 253-259. |
62 | HORI H , HAYAKAWA E , EINAGA H , ET AL . Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches[J]. Environmental Science & Technology, 2004, 38(22): 6118-6124. |
63 | LIOU J S C , SZOSTEK B , DERITO C M , et al . Investigating the biodegradability of perfluorooctanoic acid[J]. Chemosphere, 2010, 80(2): 176-183. |
64 | SMITH B A , TEEL A L , WATTS R J . Identification of the reactive oxygen species responsible for carbon tetrachloride degradation in modified Fenton's systems[J]. Environmental Science & Technology, 2004, 38(20): 5465-5469. |
65 | LIU C M , DIAO Z H , HUO W Y , et al . Simultaneous removal of Cu2+ and bisphenol A by a novel biochar-supported zero valent iron from aqueous solution: Synthesis, reactivity and mechanism[J]. Environmental Pollution, 2018, 239: 698-705. |
[1] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[2] | 徐伟, 李凯军, 宋林烨, 张兴惠, 姚舜华. 光催化及其协同电化学降解VOCs的研究进展[J]. 化工进展, 2023, 42(7): 3520-3531. |
[3] | 孙千千, 刘阵, 李瑞, 张溪, 杨明德, 吴玉龙. 低温水热耦合亚铁离子活化过硫酸盐提高剩余污泥的脱水性能[J]. 化工进展, 2023, 42(2): 595-602. |
[4] | 章萍萍, 丁书海, 高晶晶, 赵敏, 俞海祥, 刘玥宏, 谷麟. 碳量子点修饰半导体复合光催化剂降解水中有机污染物[J]. 化工进展, 2023, 42(10): 5487-5500. |
[5] | 刘怡璇, 林跃朝, 马伟芳. 可见光催化降解水中卤代有机污染物的研究进展[J]. 化工进展, 2022, 41(S1): 571-579. |
[6] | 伊学农, 李京梅, 高玉琼. 紫外-高铁酸盐体系氧化降解水中的萘普生[J]. 化工进展, 2022, 41(8): 4562-4570. |
[7] | 段毅, 邹烨, 周书葵, 杨柳. 过渡金属单原子催化剂活化H2O2/PMS/PDS降解有机污染物的研究进展[J]. 化工进展, 2022, 41(8): 4147-4158. |
[8] | 徐虎, 郭泓凯, 柴昌盛, 郝相忠, 杨子元, 徐卫军. 碳纤维类材料用于电芬顿体系电极的研究现状[J]. 化工进展, 2022, 41(7): 3707-3718. |
[9] | 廖兵, 胥雯, 叶秋月. 活化过碳酸盐及过氧碳酸氢盐在水处理领域中的研究进展[J]. 化工进展, 2022, 41(6): 3235-3248. |
[10] | 徐天缘, 郑茜, 王连娟, 陈婷, 魏鑫鹏. 焦粉高效活化过硫酸盐对苯胺的降解性能[J]. 化工进展, 2022, 41(6): 3314-3323. |
[11] | 李坡, 张珊珊, 施锦秋, 高航, 王明新. 活化过硫酸盐修复苯胺污染地下水及其环境风险[J]. 化工进展, 2022, 41(5): 2753-2760. |
[12] | 寇悦, 陈宇, 叶黄凡, 王庆宏, 陈春茂. 炼化含盐污水处理全过程有机污染物降解特征[J]. 化工进展, 2022, 41(4): 2202-2208. |
[13] | 许泽涛, 曹怡婷, 王俏, 王志红. 固相钴基催化剂活化过一硫酸盐在水处理中的研究进展[J]. 化工进展, 2022, 41(2): 730-739. |
[14] | 徐铭骏, 郭兆春, 李立, 朱紫琦, 张倩, 洪俊明. 纳米片状Mn2O3@α-Fe3O4活化过碳酸盐降解偶氮染料[J]. 化工进展, 2022, 41(2): 1043-1053. |
[15] | 齐亚兵. 活化过硫酸盐高级氧化法降解抗生素的研究进展[J]. 化工进展, 2022, 41(12): 6627-6643. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |