化工进展 ›› 2022, Vol. 41 ›› Issue (8): 4147-4158.doi: 10.16085/j.issn.1000-6613.2021-2140
收稿日期:
2021-10-18
修回日期:
2022-01-14
出版日期:
2022-08-25
发布日期:
2022-08-22
通讯作者:
周书葵
E-mail:duanyi1987@163.com;zhoushukui@usc.edu.cn
作者简介:
段毅(1987—),男,博士,工程师,研究方向为水质净化与水污染控制等。E-mail:基金资助:
DUAN Yi(), ZOU Ye, ZHOU Shukui(
), YANG Liu
Received:
2021-10-18
Revised:
2022-01-14
Online:
2022-08-25
Published:
2022-08-22
Contact:
ZHOU Shukui
E-mail:duanyi1987@163.com;zhoushukui@usc.edu.cn
摘要:
单原子催化剂(SACs)是一种将金属以原子态负载于载体上的新型材料,具有原子利用率高、催化活性强和易回收等优点,使其在催化降解有机污染物方面备受关注。本文介绍了SACs的催化影响因素,总结了SACs催化降解有机污染物在环境领域中的应用。此外,着重综述了不同过渡金属(Fe、Co、Mn、Cu等)单原子催化剂在基于双氧水或过硫酸盐的高级氧化技术中的催化机理,单原子金属(M)一般与N键合形成活性位点M—N x,活化氧化剂生成自由基或单线态氧,高效降解有机污染物。最后,提出未来SACs在催化降解有机污染物的研究方向是合成金属负载量高、稳定性高、pH适用范围更广的SACs,以及根据SACs的结构-性能关系和催化机理,对目标污染物设计特定催化剂。
中图分类号:
段毅, 邹烨, 周书葵, 杨柳. 过渡金属单原子催化剂活化H2O2/PMS/PDS降解有机污染物的研究进展[J]. 化工进展, 2022, 41(8): 4147-4158.
DUAN Yi, ZOU Ye, ZHOU Shukui, YANG Liu. Progress in the degradation of organic pollutants by H2O2/PMS/PDS activated by transition metal single-atom catalysts[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4147-4158.
表1
单原子催化剂用于高级氧化中降解有机污染物的应用"
金属 | 催化剂/g·L-1 | 合成方法 | 有机物及浓度 /mg·L-1 | 氧化剂及浓度 /mmol·L-1 | 循环次数 (效率) | 降解效率 /%(min) | 主要活性基团 | 参考 文献 |
---|---|---|---|---|---|---|---|---|
Fe | Fe x Mo1-x S2(0.1) | 水热解法 | PPA(20) | PDS(1) | 5(62.1%) | 90(30) | SO | [ |
Fe/MnO2(0.2) | 热处理法 | MB(20) | H2O2(4.4) | — | 82(80) | ·OH | [ | |
Fe-N-C(0.02) | 球磨法 | 2,4-DCP(3.3) | PDS(0.2) | — | 90(60) | Fe(Ⅴ) | [ | |
Fe3O4/MIL-101(1) | 超声法 | OPD(50) | H2O2(0.66) | 5(95%) | 97.79(25) | ·OH | [ | |
FePC/石墨烯(0.2) | 煅烧酸洗法 | 苯酚(50) | H2O2(4.4) | 5(55%) | 77.1(180) | ·OH | [ | |
Fe-g-C3N4(0.2) | 高温热解法 | MB(20) | H2O2(77) | — | 99.16(80) | ·OH、1O2 | [ | |
FeSA-N/C(0.15) | 热处理法 | BPA(20) | PMS(11.77) | 5(81%) | 99.3(20) | 1O2 | [ | |
SA Fe-g-C3N4(0.1) | 高温煅烧法 | TC(50) | PMS(0.5) | 4(91%) | 93.29(40) | ·OH、SO | [ | |
Co | SA Co-N/C(0.05) | 高温煅烧法 | NPX(10) | PMS(0.5) | 4(96%) | 100(50) | ·OH、SO | [ |
Co-N-C(0.5) | 煅烧酸洗法 | BPA(80) | PMS(0.98) | 3(96.3%) | 100(60) | 1O2 | [ | |
Co-C-N(0.5) | 模板蚀刻法 | AO7(50) | PMS(0.1) | 6(99.3%) | 100(10) | SO | [ | |
SA Co-N-C(0.1) | 热解法 | CQP(10) | PMS(1) | 3(80%) | 98(20) | SO | [ | |
BCN/CoN(0.03) | 高温煅烧法 | TC(50) | PMS(8.82) | 5(100%) | 100(60) | 1O2 | [ | |
FeCo-NC-2(0.1) | 热处理法 | BPA(20) | PMS(0.65) | 8(85%) | 98(60) | SO | [ | |
Mn | Mn-ISAs@CN(0.2) | 热解法 | BPA(20) | PMS(0.65) | 5(80%) | 90(60) | ·OH | [ |
Mn-CN(0.1) | 热解法 | OA(10) | H2O2(—) | 5(82%) | 100(40) | ·OH | [ | |
SA-Mn/NG(0.1) | 高温煅烧法 | SMX(10) | PMS(1) | 4(84%) | 97(40) | ·OH、SO | [ | |
SA-Mn/g-C3N4(0.1) | 高温煅烧法 | TBBPA(50) | PMS(5) | 5(93%) | 100(30) | 1O2、SO | [ | |
Cu | Cu-C3N4(1) | 热解法 | RhB(10) | H2O2(29.4) | — | 99.97(60) | ·OH | [ |
SA-Cu/rGO(0.1) | 球磨法 | SMX(10) | PMS(1.3) | 5(91.6%) | 99.6(60) | ·OH、SO | [ | |
SA-Cu@NBC(0.1) | 高温煅烧法 | BPA(20) | PMS(11.77) | 4(97%) | 100(60) | SO | [ | |
双金属 | Co/Fe-N-C(0.5) | 热解法 | 苯酚(100) | PDS(10) | 5(70.4%) | 79.2(120) | SO | [ |
Fe-Ce/g-C3N4(0.5) | 高温煅烧法 | MB(200) | H2O2(4.4) | 3(90%) | 100(40) | ·OH、·OOH | [ | |
FeBi-NC(0.03) | 热解法 | RhB(30) | PMS(4.41) | 5(99%) | 100(5) | ·OH、SO | [ | |
Fe/Cu-N-C(0.1) | 热解法 | CAP(20) | PDS(5) | 5(90.8%) | 90.8(60) | ·OH、SO | [ | |
Pt | Pt/Al2O3(0.2) | 热处理法 | 1,4-D(20) | H2O2(3.5) | 4(76%) | 95(60) | SO | [ |
Ag | Ag/mpg-C3N4(0.1) | 高温煅烧法 | BPA(20) | PMS(1) | 4(76%) | 98(60) | SO | [ |
1 | CHENG Min, ZENG Guangming, HUANG Danlian, et al. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review[J]. Chemical Engineering Journal, 2016, 284: 582-598. |
2 | PETRIE B, BARDEN R, KASPZYK-HORDERN B. A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring[J]. Water Research, 2015, 72: 3-27. |
3 | TRAN N H, REINHARD M, GIN K Y H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions: a review[J]. Water Research, 2018, 133: 182-207. |
4 | FLYTZANI-STEPHANOPOULOS M. Gold atoms stabilized on various supports catalyze the water-gas shift reaction[J]. Accounts of Chemical Research, 2014, 47(3): 783-792. |
5 | WANG Xun, PENG Qing, LI Yadong. Interface-mediated growth of monodispersed nanostructures[J]. Accounts of Chemical Research, 2007, 40(8): 635-643. |
6 | CHEN Guangxu, XU Chaofa, HUANG Xiaoqing, et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts[J]. Nature Materials, 2016, 15(5): 564-569. |
7 | DENG Dehui, NOVOSELOV K S, FU Qiang, et al. Catalysis with two-dimensional materials and their heterostructures[J]. Nature Nanotechnology, 2016, 11(3): 218-230. |
8 | ZHAO Guofeng, YANG Fan, CHEN Zongjia, et al. Metal/oxide interfacial effects on the selective oxidation of primary alcohols[J]. Nature Communications, 2017, 8: 14039. |
9 | JIN Huanyu, GUO Chunxian, LIU Xin, et al. Emerging two-dimensional nanomaterials for electrocatalysis[J]. Chemical Reviews, 2018, 118(13): 6337-6408. |
10 | JIAO Long, JIANG Hailong. Metal-organic-framework-based single-atom catalysts for energy applications[J]. Chem, 2019, 5(4): 786-804. |
11 | YANG Xiaofeng, WANG Aiqin, QIAO Botao, et al. Single-atom catalysts: a new frontier in heterogeneous catalysisy[J]. Accounts of Chemical Research, 2013, 46(8): 1740-1748. |
12 | WEON S, HUANG Dahong, RIGBY K, et al. Environmental materials beyond and below the nanoscale: single-atom catalysts[J]. ACS ES&T Engineering, 2021, 1(2): 157-172. |
13 | HUANG Bingkun, WU Zelin, ZHOU Hongyu, et al. Recent advances in single-atom catalysts for advanced oxidation processes in water purification[J]. Journal of Hazardous Materials, 2021, 412: 125253. |
14 | SHANG Yanan, XU Xing, GAO Baoyu, et al. Single-atom catalysis in advanced oxidation processes for environmental remediation[J]. Chemical Society Reviews, 2021, 50(8): 5281-5322. |
15 | NEYENS E, BAEYENS J. A review of classic Fenton’s peroxidation as an advanced oxidation technique[J]. Journal of Hazardous Materials, 2003, 98(1/2/3): 33-50. |
16 | 韩旭, 漆舒羽, 张锋伟, 等. 原子级单分散Fe催化剂的高效合成及在可见光下染料降解性能的研究[J].山西大学学报(自然科学版), 2020, 43(3): 552-558. |
HAN Xu, QI Shuyu, ZHANG Fengwei, et al. Study on high-efficiency synthesis of monodisperse Fe catalyst and properties of visible light degradation[J]. Journal of Shanxi University(Natural Science Edition), 2020, 43(3): 552-558. | |
17 | YIN Yu, SHI Lei, LI Wenlang, et al. Boosting Fenton-like reactions via single atom Fe catalysis[J]. Environmental Science & Technology, 2019, 53(19): 11391-11400. |
18 | GAO Yaowen, ZHU Yue, Lai LYU, et al. Electronic structure modulation of graphitic carbon nitride by oxygen doping for enhanced catalytic degradation of organic pollutants through peroxymonosulfate activation[J]. Environmental Science & Technology, 2018, 52(24): 14371-14380. |
19 | YAO Yunjin, YIN Hongyu, GAO Mengxue, et al. Electronic structure modulation of covalent organic frameworks by single-atom Fe doping for enhanced oxidation of aqueous contaminants[J]. Chemical Engineering Science, 2019, 209: 115211. |
20 |
JIANG Ning, XU Haodan, WANG Lihong, et al. Nonradical oxidation of pollutants with single-atom-Fe(![]() ![]() |
21 | HUANG Lizhi, WEI Xiuli, GAO Enlai, et al. Single Fe atoms confined in two-dimensional MoS2 for sulfite activation: a biomimetic approach towards efficient radical generation[J]. Applied Catalysis B: Environmental, 2020, 268: 118459. |
22 | ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38(13): 3705-3712. |
23 | LIU Wengang, ZHANG Leilei, YAN Wensheng, et al. Single-atom dispersed Co-N-C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes[J]. Chemical Science, 2016, 7(9): 5758-5764. |
24 | CHEN Mantang, WANG Nan, ZHU Lihua. Single-atom dispersed Co-N-C: a novel adsorption-catalysis bifunctional material for rapid removing bisphenol A[J]. Catalysis Today, 2020, 348: 187-193. |
25 | 徐劼, 王柯晴, 田丹, 等. 单原子Co-C-N催化过一硫酸盐降解金橙Ⅱ[J]. 中国环境科学, 2021, 41(1): 151-160. |
XU Jie, WANG Keqing, TIAN Dan, et al. Degradation of AO7 with peroxymonosulfate catalyzed by Co-C-N single atom[J]. China Environmental Science, 2021, 41(1): 151-160. | |
26 | CHU Chiheng, YANG Ji, ZHOU Xuechen, et al. Cobalt single atoms on tetrapyridomacrocyclic support for efficient peroxymonosulfate activation[J]. Environmental Science & Technology, 2021, 55(2): 1242-1250. |
27 | YANG Jingren, ZENG Deqian, ZHANG Qinggang, et al. Single Mn atom anchored on N-doped porous carbon as highly efficient Fenton-like catalyst for the degradation of organic contaminants[J]. Applied Catalysis B: Environmental, 2020, 279: 119363. |
28 | ZHONG Yuanhong, LIANG Xiaoliang, HE Zisen, et al. The constraints of transition metal substitutions (Ti, Cr, Mn, Co and Ni) in magnetite on its catalytic activity in heterogeneous Fenton and UV/Fenton reaction: from the perspective of hydroxyl radical generation[J]. Applied Catalysis B: Environmental, 2014, 150/151: 612-618. |
29 | GUO Zhuang, XIE Yongbing, XIAO Jiadong, et al. Single-atom Mn-N4 site-catalyzed peroxone reaction for the efficient production of hydroxyl radicals in an acidic solution[J]. Journal of the American Chemical Society, 2019, 141(30): 12005-12010. |
30 | 柯倩. 过渡金属单原子负载石墨相氮化碳的制备及其降解污染物的应用研究[D]. 金华: 浙江师范大学, 2020. |
KE Qian. Preparation of graphitic carbon nitride supported by transition mental single atom and application of pollutants degradation[D]. Jinhua: Zhejiang Normal University, 2020. | |
31 | XU Jinwei, ZHENG Xueli, FENG Zhiping, et al. Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2 [J]. Nature Sustainability, 2021, 4(3): 233-241. |
32 | CHEN Feng, WU Xilin, YANG Liu, et al. Efficient degradation and mineralization of antibiotics via heterogeneous activation of peroxymonosulfate by using graphene supported single-atom Cu catalyst[J]. Chemical Engineering Journal, 2020, 394: 124904. |
33 | 邓方鑫. 钴铁双金属单原子催化剂活化过硫酸盐处理含酚废水的研究[D]. 湘潭: 湘潭大学, 2020. |
DENG Fangxin. Research on treatment of phenolic wastewater by catalyzed peroxydisulfate activation with isolated diatomic Co-Fe metal-nitrogen sites[D]. Xiangtan: Xiangtan University, 2020. | |
34 | CHEN Qiumeng, LIU Yuan, LU Yuwan, et al. Atomically dispersed Fe/Bi dual active sites single-atom nanozymes for cascade catalysis and peroxymonosulfate activation to degrade dyes[J]. Journal of Hazardous Materials, 2022, 422: 126929. |
35 | WU Huihui, YAN Jingjing, XU Xin, et al. Synergistic effects for boosted persulfate activation in a designed Fe-Cu dual-atom site catalyst[J]. Chemical Engineering Journal, 2022, 428: 132611. |
36 | 梁言, 王婷雯, 赵永琴, 等. Fe-Ce/g-C3N4芬顿催化剂的制备及其降解有机污染物性能研究[J]. 现代化工, 2021, 41(3): 190-195. |
LIANG Yan, WANG Tingwen, ZHAO Yongqin, et al. Preparation of Fenton catalyst Fe-Ce/g-C3N4 and its performance for degradation of organic pollutants[J]. Modern Chemical Industry, 2021, 41(3): 190-195. | |
37 | 陈枫. 碳材料负载过渡金属单原子催化剂应用于水中微污染物的催化降解研究[D]. 金华: 浙江师范大学, 2020. |
CHEN Feng. Synthesis of tranition metal single atom-doped carbon materials catalysts and applied to the degradation of micro-pollutants in water[D]. Jinhua: Zhejiang Normal University, 2020. | |
38 | HUANG Dahong, DE VERA G A, CHU Chiheng, et al. Single-atom Pt catalyst for effective C-F bond activation via hydrodefluorination[J]. ACS Catalysis, 2018, 8(10): 9353-9358. |
39 | FENG Yong, LEE Poheng, WU Deli, et al. Surface-bound sulfate radical-dominated degradation of 1, 4-dioxane by alumina-supported palladium (Pd/Al2O3) catalyzed peroxymonosulfate[J]. Water Research, 2017, 120: 12-21. |
40 | WANG Yanbin, ZHAO Xu, CAO Di, et al. Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid[J]. Applied Catalysis B: Environmental, 2017, 211: 79-88. |
41 | XUE Yudong, PHAM N N T, NAM G, et al. Persulfate activation by ZIF-67-derived cobalt/nitrogen-doped carbon composites: kinetics and mechanisms dependent on persulfate precursor[J]. Chemical Engineering Journal, 2021, 408: 127305. |
42 | QI Yuanfeng, LI Jing, ZHANG Yanqing, et al. Novel lignin-based single atom catalysts as peroxymonosulfate activator for pollutants degradation: role of single cobalt and electron transfer pathway[J]. Applied Catalysis B: Environmental, 2021, 286: 119910. |
43 | ZHANG Danyu, YIN Kai, TANG Yanhong, et al. Hollow sea-urchin-shaped carbon-anchored single-atom iron as dual-functional electro-Fenton catalysts for degrading refractory thiamphenicol with fast reaction kinetics in a wide pH range[J]. Chemical Engineering Journal, 2022, 427: 130996. |
44 | YANG Ting, FAN Shisuo, LI Yang, et al. Fe-N/C single-atom catalysts with high density of Fe-N x sites toward peroxymonosulfate activation for high-efficient oxidation of bisphenol A: electron-transfer mechanism[J]. Chemical Engineering Journal, 2021, 419: 129590 |
45 | ZHANG Longshuai, JIANG Xunheng, ZHONG Ziai, et al. Carbon nitride supported high-loading Fe single-atom catalyst for activation of peroxymonosulfate to generate 1O2 with 100% selectivity[J]. Angewandte Chemie International Edition, 2021, 60(40): 21751-21755. |
46 | PAN Jingwen, GAO Baoyu, DUAN Pijun,et al. Improving peroxymonosulfate activation by copper ion-saturated adsorbent-based single atom catalysts for the degradation of organic contaminants: electron-transfer mechanism and the key role of Cu single atoms[J]. Journal of Materials Chemistry A, 2021, 9(19): 11604-11613. |
47 | ZHAO Xue, LI Xue, ZHU Zhu, et al. Single-atom Co embedded in BCN matrix to achieve 100% conversion of peroxymonosulfate into singlet oxygen[J]. Applied Catalysis B: Environmental, 2022, 300: 120759. |
48 | PENG Xiaoming, WU Jianqun, ZHAO Zilong, et al. Activation of peroxymonosulfate by single atom Co-N-C catalysts for high-efficient removal of chloroquine phosphate via non-radical pathways: electron-transfer mechanism[J]. Chemical Engineering Journal, 2022, 429: 132245. |
49 | ZHAO Shiyong, CHEN Guangxu, ZHOU Guangmin, et al. A universal seeding strategy to synthesize single atom catalysts on 2D materials for electrocatalytic applications[J]. Advanced Functional Materials, 2020, 30(6): 1906157. |
50 | CHEN Zhe, ZHAO Jingxiang, CABRERA C R, et al. Computational screening of efficient single-atom catalysts based on graphitic carbon nitride (g-C3N4) for nitrogen electroreduction[J]. Small Methods, 2019, 3(6): 1800368. |
51 | PENG Xiaoming, WU Jianqun, ZHAO Zilong, et al. Activation of peroxymonosulfate by single-atom Fe-g-C3N4 catalysts for high efficiency degradation of tetracycline via nonradical pathways: role of high-valent iron-oxo species and Fe-N x sites[J]. Chemical Engineering Journal, 2022, 427: 130803. |
52 | ZHAO Chaocheng, DONG Pei, LIU Zongmei, et al. Facile synthesis of Fe3O4/MIL-101 nanocomposite as an efficient heterogeneous catalyst for degradation of pollutants in Fenton-like system[J]. RSC Advances, 2017, 7(39): 24453-24461. |
53 | HUANG Ruting, LIU Yanyu, CHEN Zhiwen, et al. Fe-species-loaded mesoporous MnO2 superstructural requirements for enhanced catalysis[J]. ACS Applied Materials & Interfaces, 2015, 7(7): 3949-3959. |
54 | WANG Qinglong, LI Haiyan, YANG Jinghe, et al. Iron phthalocyanine-graphene donor-acceptor hybrids for visible-light-assisted degradation of phenol in the presence of H2O2 [J]. Applied Catalysis B: Environmental, 2016, 192: 182-192. |
55 | AN Sufeng, ZHANG Guanghui, WANG Tingwen, et al. High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes[J]. ACS Nano, 2018, 12(9): 9441-9450. |
56 | LI Xuning, HUANG Xiang, XI Shibo, et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis[J]. Journal of the American Chemical Society, 2018, 140(39): 12469-12475. |
[1] | 马静, 马子然, 林德海, 马少丹, 王宝冬. 活化液助溶剂对再生脱硝催化剂性能的影响[J]. 化工进展, 2022, 41(8): 4173-4180. |
[2] | 常耀萍, 官修帅, 郑谦, 靳山彪, 张长明, 张小超. 水热法制备3D花球状Bi2SiO5及其光催化油酸酯化反应[J]. 化工进展, 2022, 41(8): 4181-4191. |
[3] | 李艳平, 严大洲, 杨涛, 温国胜, 韩治成. 硅基电子气去除甲基氯硅烷的分子动力学模拟[J]. 化工进展, 2022, 41(8): 4375-4385. |
[4] | 冯颖, 赵孟杰, 崔倩, 解玉鞠, 张建伟, 董鑫. 分子模拟技术在壳聚糖功能材料开发和应用中的研究进展[J]. 化工进展, 2022, 41(8): 4241-4253. |
[5] | 岳瑶, 蒲梦凡, 王文瑞, 赵俭波, 曹辉. 聚天冬氨酸凝胶的制备及生物降解性[J]. 化工进展, 2022, 41(8): 4491-4497. |
[6] | 陆诗建, 刘玲, 刘滋武, 郭伯文, 俞徐林, 梁艳, 赵东亚, 朱全民. AEP-DPA-CuO相变纳米流体吸收CO2稳定性[J]. 化工进展, 2022, 41(8): 4555-4561. |
[7] | 伊学农, 李京梅, 高玉琼. 紫外-高铁酸盐体系氧化降解水中的萘普生[J]. 化工进展, 2022, 41(8): 4562-4570. |
[8] | 徐虎, 郭泓凯, 柴昌盛, 郝相忠, 杨子元, 徐卫军. 碳纤维类材料用于电芬顿体系电极的研究现状[J]. 化工进展, 2022, 41(7): 3707-3718. |
[9] | 汪潇, 金彪, 张小婷, 张建武, 王宇斌, 苑冬冬, 杨留栓. 氯盐体系下阳离子对脱硫石膏晶须水热结晶的影响及其机理[J]. 化工进展, 2022, 41(7): 3957-3965. |
[10] | 鲍艳, 郑茜, 郭茹月. 柔性可降解压力传感器关键制备材料的研究进展[J]. 化工进展, 2022, 41(7): 3624-3635. |
[11] | 毕可鑫, 邱彤. 深入探索智能算法与反应网络研究的融合[J]. 化工进展, 2022, 41(6): 2818-2825. |
[12] | 田追, 张震, 卢嫚, 杨斌, 杨金辉, 周书葵, 魏柏, 李聪. 新型除氟吸附材料的研究进展[J]. 化工进展, 2022, 41(6): 3051-3062. |
[13] | 袁晓露, 李宝霞, 黄雅燕, 杨宇成, 叶静, 张娜, 张学勤, 郑秉得, 肖美添. 海藻酸钠微囊的制备及应用进展[J]. 化工进展, 2022, 41(6): 3103-3112. |
[14] | 陈彰旭, 陈冰冰, 王荣财, 叶晨光, 郑炳云. β-NaYF4:Yb3+,Tm3+/g-C3N4复合水凝胶材料的制备及其应用[J]. 化工进展, 2022, 41(6): 3146-3154. |
[15] | 廖兵, 胥雯, 叶秋月. 活化过碳酸盐及过氧碳酸氢盐在水处理领域中的研究进展[J]. 化工进展, 2022, 41(6): 3235-3248. |
|