化工进展 ›› 2022, Vol. 41 ›› Issue (8): 4159-4172.DOI: 10.16085/j.issn.1000-6613.2022-0422
收稿日期:
2022-03-18
修回日期:
2022-04-14
出版日期:
2022-08-25
发布日期:
2022-08-22
通讯作者:
孟凡会,李忠
作者简介:
张鹏(1992—),男,博士研究生,研究方向为碳一催化转化制低碳烯烃。E-mail:基金资助:
ZHANG Peng(), MENG Fanhui(), YANG Guinan, LI Zhong()
Received:
2022-03-18
Revised:
2022-04-14
Online:
2022-08-25
Published:
2022-08-22
Contact:
MENG Fanhui,LI Zhong
摘要:
金属氧化物-分子筛(OX-ZEO)双功能催化剂可实现CO x 加氢制低碳烯烃的高选择性转化。本文概述了OX-ZEO催化CO x 加氢制低碳烯烃反应中金属氧化物的研究进展,通过对CO x 加氢制甲醇/乙烯反应热力学分析指出了“接力催化”的优势,重点讨论了金属氧化物的种类和组成、制备方法及金属氧化物和分子筛的“亲密度”对催化性能的影响,探讨了催化反应机理、氧空位的作用及抑制副反应的策略。分析了OX-ZEO催化反应面临的问题和挑战,展望了OX-ZEO催化体系的发展趋势,认为通过元素掺杂、助剂修饰、优化制备条件等可提高金属氧化物的氧空位含量,进而可提高催化活性,也可通过对金属氧化物进行表面疏水改性抑制副产物CO2,提高C原子利用率。
中图分类号:
张鹏, 孟凡会, 杨贵楠, 李忠. 金属氧化物在OX-ZEO催化剂中催化CO x 加氢制低碳烯烃研究进展[J]. 化工进展, 2022, 41(8): 4159-4172.
ZHANG Peng, MENG Fanhui, YANG Guinan, LI Zhong. Progress of metal oxide in OX-ZEO catalyst for CO x hydrogenation to light olefins[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4159-4172.
1 | ZHAO Zhitong, JIANG Jingyang, WANG Feng. An economic analysis of twenty light olefin production pathways[J]. Journal of Energy Chemistry, 2021, 56: 193-202. |
2 | TORRES GALVIS Hirsa M, BITTER Johannes H, KHARE Chaitanya B, et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(6070): 835-838. |
3 | ZHONG Liangshu, YU Fei, AN Yunlei, et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature, 2016, 538: 84-87. |
4 | TORRES GALVIS Hirsa M, DE JONG Krijn P. Catalysts for production of lower olefins from synthesis gas: a review[J]. ACS Catalysis, 2013, 3(9): 2130-2149. |
5 | ZHOU Wei, CHENG Kang, KANG Jincan, et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chemical Society Reviews, 2019, 48(12): 3193-3228. |
6 | PAN Xiulian, JIAO Feng, MIAO Dengyun, et al. Oxide-zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis[J]. Chemical Reviews, 2021, 121(11): 6588-6609. |
7 | CHENG Kang, GU Bang, LIU Xiaoliang, et al. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angewandte Chemie International Edition, 2016, 55(15): 4725-4728. |
8 | JIAO Feng, PAN Xiulian, GONG Ke, et al. Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate[J]. Angewandte Chemie International Edition, 2018, 57(17): 4692-4696. |
9 | LI Gen, JIAO Feng, PAN Xiulian, et al. Role of SAPO-18 acidity in direct syngas conversion to light olefins[J]. ACS Catalysis, 2020, 10(21): 12370-12375. |
10 | LIU Xiaoliang, ZHOU Wei, YANG Yudan, et al. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chemical Science, 2018, 9(20): 4708-4718. |
11 | WANG Sen, ZHANG Li, ZHANG Wenyu, et al. Selective conversion of CO2 into propene and butene[J]. Chem., 2020, 6(12): 3344-3363. |
12 | 杨浪浪, 王伟林, 孟凡会, 等. 分子筛在双功能催化剂中催化CO/CO2加氢研究进展[J]. 精细化工, 2020, 37(8): 1561-1566. |
YANG Langlang, WANG Weilin, MENG Fanhui, et al. Progress of zeolite in bifunctional catalysts for catalyzing CO/CO2 hydrogenation[J]. Fine Chemicals, 2020, 37(8): 1561-1566. | |
13 | JIAO Feng, LI Jinjing, PAN Xiulian, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068. |
14 | JIANG Xiao, NIE Xiaowa, GUO Xinwen, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chemical Reviews, 2020, 120(15): 7984-8034. |
15 | FUJIMOTO Kaoru, SAIMA Hitoshi, TOMINAGA Hiro-O. Synthesis gas conversion utilizing mixed catalyst composed of CO reducing catalyst and solid acid: IV. Selective synthesis of C2, C3, and C4 paraffins from synthesis gas[J]. Journal of Catalysis, 1985, 94(1): 16-23. |
16 | RAHMATMAND Behnaz, RAHIMPOUR Mohammad Reza, KESHAVARZ Peyman. Introducing a novel process to enhance the syngas conversion to methanol over Cu/ZnO/Al2O3 catalyst[J]. Fuel Processing Technology, 2019, 193: 159-179. |
17 | GAO Peng, DANG Shanshan, LI Shenggang, et al. Direct production of lower olefins from CO2 conversion via bifunctional catalysis[J]. ACS Catalysis, 2018, 8(1): 571-578. |
18 | DANG Shanshan, GAO Peng, LIU Ziyu, et al. Role of zirconium in direct CO2 hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts[J]. Journal of Catalysis, 2018, 364: 382-393. |
19 | FENG Wenhua, YU Mingming, WANG Lijun, et al. Insights into bimetallic oxide synergy during carbon dioxide hydrogenation to methanol and dimethyl ether over GaZrO x oxide catalysts[J]. ACS Catalysis, 2021, 11(8): 4704-4711. |
20 | ZHANG Peng, MA Lixuan, MENG Fanhui, et al. Boosting CO2 hydrogenation performance for light olefin synthesis over GaZrO x combined with SAPO-34[J]. Applied Catalysis B: Environmental, 2022, 305: 121042. |
21 | WANG Jijie, TANG Chizhou, LI Guanna, et al. High-performance MaZrO x (Ma = Cd, Ga) solid-solution catalysts for CO2 hydrogenation to methanol[J]. ACS Catalysis, 2019, 9(11): 10253-10259. |
22 | SANTOS Vera P, POLLEFEYT Glenn, YANCEY David F, et al. Direct conversion of syngas to light olefins (C2-C3) over a tandem catalyst CrZn-SAPO-34: tailoring activity and stability by varying the Cr/Zn ratio and calcination temperature[J]. Journal of Catalysis, 2020, 381: 108-120. |
23 | LIU Xiaoliang, WANG Mengheng, YIN Haoren, et al. Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34[J]. ACS Catalysis, 2020, 10(15): 8303-8314. |
24 | MOU Jun, FAN Xingqi, LIU Fei, et al. CO2 hydrogenation to lower olefins over Mn2O3-ZnO/SAPO-34 tandem catalysts[J]. Chemical Engineering Journal, 2021, 421: 129978. |
25 | MENG Fanhui, LI Xiaojing, ZHANG Peng, et al. Highly active ternary oxide ZrCeZnO x combined with SAPO-34 zeolite for direct conversion of syngas into light olefins[J]. Catalysis Today, 2021, 368: 118-125. |
26 | WANG Sen, WANG Pengfei, SHI Dezhi, et al. Direct conversion of syngas into light olefins with low CO2 emission[J]. ACS Catalysis, 2020, 10(3): 2046-2059. |
27 | DANG Shanshan, LI Shenggang, YANG Chengguang, et al. Selective transformation of CO2 and H2 into lower olefins over In2O3-ZnZrO x /SAPO-34 bifunctional catalysts[J]. ChemSusChem, 2019, 12(15): 3582-3591. |
28 | ZHANG Wenyu, WANG Sen, GUO Shujia, et al. Effective conversion of CO2 into light olefins over bifunctional catalyst consisting of La-modified ZnZrO x oxide and acidic zeolite[J]. Catalysis Science & Technology, 2022, 12(8): 2566-2577. |
29 | MENG Fanhui, LI Xiaojing, ZHANG Peng, et al. A facile approach for fabricating highly active ZrCeZnO x in combination with SAPO-34 for the conversion of syngas into light olefins[J]. Applied Surface Science, 2021, 542: 148713. |
30 | LI Zelong, WANG Jijie, QU Yuanzhi, et al. Highly selective conversion of carbon dioxide to lower olefins[J]. ACS Catalysis, 2017, 7(12): 8544-8548. |
31 | LI Jian, YU Tie, MIAO Dengyun, et al. Carbon dioxide hydrogenation to light olefins over ZnO-Y2O3 and SAPO-34 bifunctional catalysts[J]. Catalysis Communications, 2019, 129: 105711. |
32 | MARTIN Oliver, MART N Antonio J, MONDELLI Cecilia, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angewandte Chemie International Edition, 2016, 55(21): 6261-6265. |
33 | CHEN Tianyuan, CAO Chenxi, CHEN Tianbao, et al. Unraveling highly tunable selectivity in CO2 hydrogenation over bimetallic In-Zr oxide catalysts[J]. ACS Catalysis, 2019, 9(9): 8785-8797. |
34 | FREI Matthias S, MONDELLI Cecilia, CESARINI Alessia, et al. Role of zirconia in indium oxide-catalyzed CO2 hydrogenation to methanol[J]. ACS Catalysis, 2020, 10(2): 1133-1145. |
35 | GAO Peng, LI Shenggang, BU Xianni, et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst[J]. Nature Chemistry, 2017, 9(10): 1019-1024. |
36 | GAO Jiajian, JIA Chunmiao, LIU Bin. Direct and selective hydrogenation of CO2 to ethylene and propene by bifunctional catalysts[J]. Catalysis Science & Technology, 2017, 7(23): 5602-5607. |
37 | WANG Sen, WANG Pengfei, QIN Zhangfeng, et al. Enhancement of light olefin production in CO2 hydrogenation over In2O3-based oxide and SAPO-34 composite[J]. Journal of Catalysis, 2020, 391: 459-470. |
38 | PAN Yunxiang, MEI Donghai, LIU Changjun, et al. Hydrogen adsorption on Ga2O3 surface: a combined experimental and computational study[J]. Journal of Physical Chemistry C, 2011, 115(20): 10140-10146. |
39 | FORNERO Esteban L, BONIVARDI Adrian L, BALTANAS Miguel A. Isotopic study of the rates of hydrogen provision vs. methanol synthesis from CO2 over Cu-Ga-Zr catalysts[J]. Journal of Catalysis, 2015, 330: 302-310. |
40 | SHA Feng, TANG Chizhou, TANG Shan, et al. The promoting role of Ga in ZnZrO x solid solution catalyst for CO2 hydrogenation to methanol[J]. Journal of Catalysis, 2021, 404: 383-392. |
41 | ZHANG Peng, MENG Fanhui, LI Xiaojing, et al. Excellent selectivity for direct conversion of syngas to light olefins over a Mn-Ga oxide and SAPO-34 bifunctional catalyst[J]. Catalysis Science & Technology, 2019, 9(20): 5577-5581. |
42 | ZHANG Peng, MENG Fanhui, YANG Langlang, et al. Syngas to olefins over a CrMnGa/SAPO-34 bifunctional catalyst: effect of Cr and Cr/Mn ratio[J]. Industrial & Engineering Chemistry Research, 2021, 60(36): 13214-13222. |
43 | ZHU Yifeng, PAN Xiulian, JIAO Feng, et al. Role of manganese oxide in syngas conversion to light olefins[J]. ACS Catalysis, 2017, 7(4): 2800-2804. |
44 | LIU Jingge, HE Yurong, YAN Linlin, et al. Nano-sized ZrO2 derived from metal-organic frameworks and their catalytic performance for aromatic synthesis from syngas[J]. Catalysis Science & Technology, 2019, 9(11): 2982-2992. |
45 | WANG Yang, TAN Li, TAN Minghui, et al. Rationally designing bifunctional catalysts as an efficient strategy to boost CO2 hydrogenation producing value-added aromatics[J]. ACS Catalysis, 2019, 9(2): 895-901. |
46 | HUANG Zhen, WANG Sheng, QIN Feng, et al. Ceria-zirconia/zeolite bifunctional catalyst for highly selective conversion of syngas into aromatics[J]. ChemCatChem, 2018, 10(20): 4519-4524. |
47 | ZHOU Wei, SHI Shulin, WANG Yang, et al. Selective conversion of syngas to aromatics over a Mo-ZrO2/H-ZSM-5 bifunctional catalyst[J]. ChemCatChem, 2019, 11(6): 1681-1688. |
48 | RAVEENDRA G, MA Baorun, LIU Xiaohui, et al. Syngas to light olefin synthesis over La doped Zn x Al y O z composite and SAPO-34 hybrid catalysts[J]. Catalysis Science & Technology, 2021, 11(9): 3231-3240. |
49 | YANG Guinan, MENG Fanhui, ZHANG Peng, et al. Effects of preparation method and precipitant on Mn-Ga oxide in combination with SAPO-34 for syngas conversion into light olefins[J]. New Journal of Chemistry, 2021, 45(18): 7967-7976. |
50 | LI Na, JIAO Feng, PAN Xiulian, et al. Size effects of ZnO nanoparticles in bifunctional catalysts for selective syngas conversion[J]. ACS Catalysis, 2019, 9(2): 960-966. |
51 | FU Yi, NI Youming, CUI Wenhao, et al. Insights into the size effect of ZnCr2O4 spinel oxide in composite catalysts for conversion of syngas to aromatics[J]. Green Energy & Environment, 2021. . |
52 | LU Siyu, YANG Haiyan, ZHOU Zixuan, et al. Effect of In2O3 particle size on CO2 hydrogenation to lower olefins over bifunctional catalysts[J]. Chinese Journal of Catalysis, 2021, 42(11): 2038-2048. |
53 | LIU Zhaopeng, NI Youming, HU Zhongpan, et al. Insights into effects of ZrO2 crystal phase on syngas-to-olefin conversion over ZnO/ZrO2 and SAPO-34 composite catalysts[J]. Chinese Journal of Catalysis, 2022, 43(3): 877-884. |
54 | LUO Yaoya, WANG Sen, GUO Shujia, et al. Conversion of syngas into light olefins over bifunctional ZnCeZrO/SAPO-34 catalysts: regulation of the surface oxygen vacancy concentration and its relation to the catalytic performance[J]. Catalysis Science & Technology, 2021, 11(1): 338-348. |
55 | 罗耀亚, 王森, 郭淑佳, 等. 不同合成方法制备Zn x Ce(2- y)Zr y O4/SAPO-34催化剂及其合成气制低碳烯烃催化性能的研究[J]. 燃料化学学报, 2020, 48(5): 594-600. |
LUO Yaoya, WANG Sen, GUO Shujia, et al. Study on different synthesis methods of Zn x Ce(2- y)Zr y O4/SAPO-34 catalyst and its catalytic performance in syngas to low-carbon olefins[J]. Journal of Fuel Chemistry and Technology, 2020, 48(5): 594-600. | |
56 | WANG Yajing, ZHAN Weiteng, CHEN Zhijie, et al. Advanced 3D hollow-out ZnZrO@C combined with hierarchical zeolite for highly active and selective CO hydrogenation to aromatics[J]. ACS Catalysis, 2020, 10(13): 7177-7187. |
57 | LIU Jingge, HE Yurong, YAN LinLin, et al. Nano-ZrO2 as hydrogenation phase in bi-functional catalyst for syngas aromatization[J]. Fuel, 2020, 263: 116803. |
58 | NI Youming, LIU Yong, CHEN Zhiyang, et al. Realizing and recognizing syngas-to-olefins reaction via a dual-bed catalyst[J]. ACS Catalysis, 2019, 9(2): 1026-1032. |
59 | DING Yi, JIAO Feng, PAN Xiulian, et al. Effects of proximity-dependent metal migration on bifunctional composites catalyzed syngas to olefins[J]. ACS Catalysis, 2021, 11(15): 9729-9737. |
60 | WANG Yuhao, WANG Genyuan, VAN DER WAL Lars I, et al. Visualizing element migration over bifunctional metal-zeolite catalysts and its impact on catalysis[J]. Angewandte Chemie International Edition, 2021, 60(32): 17735-17743. |
61 | TAN Li, WANG Fan, ZHANG Peipei, et al. Design of a core-shell catalyst: an effective strategy for suppressing side reactions in syngas for direct selective conversion to light olefins[J]. Chemical Science, 2020, 11(16): 4097-4105. |
62 | LI Yangyang, HU Jun, XU Jie, et al. Activation of CO and surface carbon species for conversion of syngas to light olefins on ZnCrO x -Al2O3 catalysts[J]. Applied Surface Science, 2019, 494: 353-360. |
63 | WANG Chuanming, WANG Yangdong, XIE Zaiku. Methylation of olefins with ketene in zeotypes and its implications for the direct conversion of syngas to light olefins: a periodic DFT study[J]. Catalysis Science & Technology, 2016, 6(17): 6644-6649. |
64 | LIU Xiaoliang, WANG Mengheng, ZHOU Cheng, et al. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34[J]. Chemical Communications, 2018, 54(2): 140-143. |
65 | LIU Yi, WEN Cun, GUO Yun, et al. Mechanism of CO disproportionation on reduced ceria[J]. ChemCatChem, 2010, 2(3): 336-341. |
66 | ZHOU Cheng, SHI Jiaqing, ZHOU Wei, et al. Highly active ZnO-ZrO2 aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide[J]. ACS Catalysis, 2020, 10(1): 302-310. |
67 | SU Junjie, WANG Dong, WANG Yangdong, et al. Direct conversion of syngas into light olefins over zirconium-doped indium(Ⅲ) oxide and SAPO-34 bifunctional catalysts: design of oxide component and construction of reaction network[J]. ChemCatChem, 2018, 10(7): 1536-1541. |
68 | FU Xiaoyan, LI Jiayi, LONG Jun, et al. Understanding the product selectivity of syngas conversion on ZnO surfaces with complex reaction network and structural evolution[J]. ACS Catalysis, 2021, 11(19): 12264-12273. |
69 | ZHOU Wei, ZHOU Cheng, YIN Haoren, et al. Direct conversion of syngas into aromatics over a bifunctional catalyst: inhibiting net CO2 release[J]. Chemical Communications, 2020, 56(39): 5239-5242. |
70 | XU Yanfei, LI Xiangyang, GAO Junhu, et al. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products[J]. Science, 2021, 371(6529): 610-613. |
71 | TAN Li, ZHANG Peipei, CUI Yu, et al. Direct CO2 hydrogenation to light olefins by suppressing CO by-product formation[J]. Fuel Processing Technology, 2019, 196: 106174. |
[1] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[2] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[3] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[4] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[5] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[6] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[7] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[8] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[9] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[10] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[11] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[12] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
[13] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[14] | 董晓珊, 王建, 林法伟, 颜蓓蓓, 陈冠益. 基于钙钛矿氧化物的金属纳米粒子溶出策略:溶出过程、驱动力及控制策略[J]. 化工进展, 2023, 42(6): 3049-3065. |
[15] | 吕超, 张习文, 金理健, 杨林军. 新型两相吸收剂-离子液体系统高效捕获CO2[J]. 化工进展, 2023, 42(6): 3226-3232. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |