化工进展 ›› 2022, Vol. 41 ›› Issue (2): 1043-1053.DOI: 10.16085/j.issn.1000-6613.2021-0556
徐铭骏1,2(), 郭兆春3, 李立1,2, 朱紫琦1,2, 张倩1,2, 洪俊明1,2(
)
收稿日期:
2021-03-19
修回日期:
2021-04-14
出版日期:
2022-02-05
发布日期:
2022-02-23
通讯作者:
洪俊明
作者简介:
徐铭骏(1998—),男,硕士研究生,主要研究方向为水处理高级氧化。E-mail:基金资助:
XU Mingjun1,2(), GUO Zhaochun3, LI Li1,2, ZHU Ziqi1,2, ZHANG Qian1,2, HONG Junming1,2(
)
Received:
2021-03-19
Revised:
2021-04-14
Online:
2022-02-05
Published:
2022-02-23
Contact:
HONG Junming
摘要:
过碳酸钠是过氧化氢与碳酸钠的加成化合物,具有在存储、运输和使用过程中安全稳定的优点。本文采用共沉淀-高温煅烧法制备纳米片状Mn2O3@α-Fe3O4,活化过碳酸钠(SPC)产生自由基氧化降解偶氮染料活性黑5(RBK5)。采用透射电子显微镜(TEM)、X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)、傅里叶变换红外光谱仪(FTIR)、X射线光电子能谱(XPS)及比表面积测试(BET)表征制备的纳米片状Mn2O3@α-Fe3O4催化剂,分别探究催化剂投加量、过碳酸钠浓度、初始pH及RBK5溶液浓度对降解效率的影响。当催化剂投加量为0.3g/L、过碳酸钠浓度为1.0mmol/L、初始pH为3、反应时间为90min时,RBK5的降解效率达88%,反应过程符合拟一级动力学(R2>0.9)。Mn2O3@α-Fe3O4/过碳酸钠体系中起氧化降解作用的活性物种为·OH、CO
中图分类号:
徐铭骏, 郭兆春, 李立, 朱紫琦, 张倩, 洪俊明. 纳米片状Mn2O3@α-Fe3O4活化过碳酸盐降解偶氮染料[J]. 化工进展, 2022, 41(2): 1043-1053.
XU Mingjun, GUO Zhaochun, LI Li, ZHU Ziqi, ZHANG Qian, HONG Junming. Degradation of azo dyes by sodium percarbonate activated with nanosheet Mn2O3@α-Fe3O4[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1043-1053.
催化剂投加量/g·L-1 | K/min-1 | R2 |
---|---|---|
0.1 | 0.0078 | 0.926 |
0.2 | 0.0210 | 0.973 |
0.3 | 0.0272 | 0.953 |
0.4 | 0.0303 | 0.955 |
表1 不同催化剂投加量下RBK5的降解动力学参数
催化剂投加量/g·L-1 | K/min-1 | R2 |
---|---|---|
0.1 | 0.0078 | 0.926 |
0.2 | 0.0210 | 0.973 |
0.3 | 0.0272 | 0.953 |
0.4 | 0.0303 | 0.955 |
过碳酸钠浓度/mmol·L-1 | K/min-1 | R2 |
---|---|---|
1 | 0.0272 | 0.953 |
2 | 0.0254 | 0.953 |
3 | 0.0235 | 0.900 |
4 | 0.0025 | 0.986 |
表2 不同过碳酸钠浓度下RBK5的降解动力学参数
过碳酸钠浓度/mmol·L-1 | K/min-1 | R2 |
---|---|---|
1 | 0.0272 | 0.953 |
2 | 0.0254 | 0.953 |
3 | 0.0235 | 0.900 |
4 | 0.0025 | 0.986 |
pH | K/min-1 | R2 |
---|---|---|
3 | 0.0272 | 0.953 |
5 | 0.0038 | 0.961 |
7 | 0.0025 | 0.985 |
9 | 0.0006 | 0.936 |
表3 不同初始pH下RBK5的降解动力学参数
pH | K/min-1 | R2 |
---|---|---|
3 | 0.0272 | 0.953 |
5 | 0.0038 | 0.961 |
7 | 0.0025 | 0.985 |
9 | 0.0006 | 0.936 |
RBK5浓度/mmol·L-1 | K/min-1 | R2 |
---|---|---|
5 | 0.0522 | 0.964 |
10 | 0.0272 | 0.953 |
20 | 0.0191 | 0.934 |
30 | 0.0093 | 0.936 |
表4 不同RBK5浓度下的降解动力学参数
RBK5浓度/mmol·L-1 | K/min-1 | R2 |
---|---|---|
5 | 0.0522 | 0.964 |
10 | 0.0272 | 0.953 |
20 | 0.0191 | 0.934 |
30 | 0.0093 | 0.936 |
1 | WU J N, WANG T W. Ozonation of aqueous azo dye in a semi-batch reactor[J]. Water Research, 2001, 35(4): 1093-1099. |
2 | BANERJEE P, DASGUPTA S, DE S. Removal of dye from aqueous solution using a combination of advanced oxidation process and nanofiltration[J]. Journal of Hazardous Materials, 2007, 140(1/2): 95-103. |
3 | 王艳, 宋祖德, 冯明明, 等. 铁氧化物联合低含量亚铁离子催化H2O2降解偶氮染料活性黑5[J]. 水处理技术, 2014, 40(2): 35-38. |
WANG Yan, SONG Zude, FENG Mingming, et al. Degradation of azo dye reactive black 5 by low ferrous ions concentration catalyzed H2O2 in combination with waste iron oxide[J]. Technology of Water Treatment, 2014, 40(2): 35-38. | |
4 | HUNG C M, HUANG C P, CHEN C W, et al. Activation of percarbonate by water treatment sludge-derived biochar for the remediation of PAH-contaminated sediments[J]. Environmental Pollution, 2020, 265: 114914. |
5 | FU X R, GU X G, LU S G, et al. Benzene depletion by Fe2+-catalyzed sodium percarbonate in aqueous solution[J]. Chemical Engineering Journal, 2015, 267: 25-33. |
6 | VIISIMAA M, GOI A. Use of hydrogen peroxide and percarbonate to treat chlorinated aromatic hydrocarbon-contaminated soil[J]. Journal of Environmental Engineering and Landscape Management, 2014, 22(1): 30-39. |
7 | SAJJADI S, KHATAEE A, DARVISHI CHESHMEH SOLTANI R, et al. Implementation of magnetic Fe3O4@ZIF-8 nanocomposite to activate sodium percarbonate for highly effective degradation of organic compound in aqueous solution[J]. Journal of Industrial and Engineering Chemistry, 2018, 68: 406-415. |
8 | DANISH M, GU X G, LU S G, et al. Efficient transformation of trichloroethylene activated through sodium percarbonate using heterogeneous zeolite supported nano zero valent iron-copper bimetallic composite[J]. Chemical Engineering Journal, 2017, 308: 396-407. |
9 | VIGNESH R H, SANKAR K V, AMARESH S, et al. Synthesis and characterization of MnFe2O4 nanoparticles for impedometric ammonia gas sensor[J]. Sensors and Actuators B: Chemical, 2015, 220: 50-58. |
10 | 李立, 吴丽颖, 董正玉, 等. 高晶度Mn-Fe LDH催化剂活化过一硫酸盐降解偶氮染料RBK5[J]. 环境科学, 2020, 41(6): 2736-2745. |
LI Li, WU Liying, DONG Zhengyu, et al. Degradation of RBK5 by high crystallinity Mn-Fe LDH catalyst activating peroxymonosulfate[J]. Environmental Science, 2020, 41(6): 2736-2745. | |
11 | 佘月城, 董正玉, 吴丽颖, 等. MnFe2O4活化过一硫酸盐降解废水中LAS[J]. 中国环境科学, 2019, 39(8): 3323-3331. |
SHE Yuecheng, DONG Zhengyu, WU Liying, et al. Degradation of LAS in wastewater by peroxymonosulfate activated by MnFe2O4[J]. China Environmental Science, 2019, 39(8): 3323-3331. | |
12 | DU J K, XIAO G F, XI Y X, et al. Periodate activation with manganese oxides for sulfanilamide degradation[J]. Water Research, 2020, 169: 115278. |
13 | ZHENG H, BAO J G, HUANG Y, et al. Efficient degradation of atrazine with porous sulfurized Fe2O3 as catalyst for peroxymonosulfate activation[J]. Applied Catalysis B: Environmental, 2019, 259: 118056. |
14 | CHEN L, JIANG X, XIE R Z, et al. A novel porous biochar-supported Fe-Mn composite as a persulfate activator for the removal of acid red 88[J]. Separation and Purification Technology, 2020, 250: 117232. |
15 | CHEN Z Q, WANG L Y, XU H D, et al. Efficient heterogeneous activation of peroxymonosulfate by modified CuFe2O4 for degradation of tetrabromobisphenol A[J]. Chemical Engineering Journal, 2020, 389: 124345. |
16 | WAN Z, WANG J L. Degradation of sulfamethazine antibiotics using Fe3O4-Mn3O4 nanocomposite as a Fenton-like catalyst[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(4): 874-883. |
17 | MA Z, ZHAO D, CHANG Y, et al. Synthesis of MnFe2O4@Mn-Co oxide core-shell nanoparticles and their excellent performance for heavy metal removal[J]. Dalton Transactions, 2013, 42(39): 14261-14267. |
18 | MAGAGULA B, NHLAPO N, FOCKE W W. Mn2Al-LDH- and Co2Al-LDH-stearate as photodegradants for LDPE film[J]. Polymer Degradation and Stability, 2009, 94(6): 947-954. |
19 | WANG G, ZHAO D Y, KOU F Y, et al. Removal of norfloxacin by surface Fenton system(MnFe2O4/H2O2): kinetics, mechanism and degradation pathway[J]. Chemical Engineering Journal, 2018, 351: 747-755. |
20 | XU X J, YANG Y, JIA Y F, et al. Heterogeneous catalytic degradation of 2,4-dinitrotoluene by the combined persulfate and hydrogen peroxide activated by the as-synthesized Fe-Mn binary oxides[J]. Chemical Engineering Journal, 2019, 374: 776-786. |
21 | WU L Y, YU Y B, ZHANG Q, et al. A novel magnetic heterogeneous catalyst oxygen-defective CoFe2O4-x for activating peroxymonosulfate[J]. Applied Surface Science, 2019, 480: 717-726. |
22 | WU L Y, ZHANG Q, HONG J M, et al. Degradation of bisphenol A by persulfate activation via oxygen vacancy-rich CoFe2O4-x[J]. Chemosphere, 2019, 221: 412-422. |
23 | 王艳, 尹超, 戴明星, 等. Fe/Mn/Al2O3催化H2O2降解偶氮染料废水的研究[J]. 应用化工, 2013, 42(11): 2002-2004. |
WANG Yan, YIN Chao, DAI Mingxing, et al. Degradation of azo dyes wastewater by Fe/Mn/Al2O3 catalytic H2O2[J]. Applied Chemical Industry, 2013, 42(11): 2002-2004. | |
24 | LYU Y C, LYU S G, TANG P, et al. Degradation of trichloroethylene in aqueous solution by sodium percarbonate activated with Fe(Ⅱ)-citric acid complex in the presence of surfactant Tween-80[J]. Chemosphere, 2020, 257: 127223. |
25 | 徐劼, 王琳, 陈家斌, 等. 磁性Fe3O4-CuO非均相活化过碳酸钠降解AO7[J]. 环境科学, 2020, 41(4): 1734-1742. |
XU Jie, WANG Lin, CHEN Jiabin, et al. Degradation of AO7 with magnetic Fe3O4-CuO heterogeneous catalyzed sodium percarbonate system[J]. Environmental Science, 2020, 41(4): 1734-1742. | |
26 | FU X R, GU X G, LU S G, et al. Enhanced degradation of benzene in aqueous solution by sodium percarbonate activated with chelated- Fe(Ⅱ)[J]. Chemical Engineering Journal, 2016, 285: 180-188. |
27 | LIN K Y A, LIN J T, LIN Y F. Heterogeneous catalytic activation of percarbonate by ferrocene for degradation of toxic amaranth dye in water[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 144-149. |
28 | GAO J, DUAN X D, O’SHEA K, et al. Degradation and transformation of bisphenol A in UV/sodium percarbonate: dual role of carbonate radical anion[J]. Water Research, 2020, 171: 115394. |
29 | LIANG H Y, ZHANG Y Q, HUANG S B, et al. Oxidative degradation of p-chloroaniline by copper oxidate activated persulfate[J]. Chemical Engineering Journal, 2013, 218: 384-391. |
30 | WAN Z, WANG J L. Degradation of sulfamethazine using Fe3O4-Mn3O4/reduced graphene oxide hybrid as Fenton-like catalyst[J]. Journal of Hazardous Materials, 2017, 324: 653-664. |
31 | 于永波, 黄湾, 董正玉, 等. N原子杂化石墨烯高效活化过一硫酸盐降解RBk5染料废水[J]. 环境科学, 2019, 40(7): 3154-3161. |
YU Yongbo, HUANG Wan, DONG Zhengyu, et al. Degradation of RBk5 with peroxymonosulfate efficiently activated by N-doped graphene[J]. Environmental Science, 2019, 40(7): 3154-3161. | |
32 | LI Z, LUO S Q, YANG Y, et al. Highly efficient degradation of trichloroethylene in groundwater based on peroxymonosulfate activation by bentonite supported Fe/Ni bimetallic nanoparticle[J]. Chemosphere, 2019, 216: 499-506. |
33 | DONG Z Y, ZHANG Q, CHEN B Y, et al. Oxidation of bisphenol A by persulfate via Fe3O4-α-MnO2 nanoflower-like catalyst: mechanism and efficiency[J]. Chemical Engineering Journal, 2019, 357: 337-347. |
34 | Abdellatif EL-GHENYMY, CENTELLAS Francesc, GARRIDO Jose Antonio, et al. Decolorization and mineralization of Orange G azo dye solutions by anodic oxidation with a boron-doped diamond anode in divided and undivided tank reactors[J]. Electrochimica Acta, 2014, 130: 568-576. |
35 | CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. |
36 | SONI B D, RUPARELIA J P. Decolourization and mineralization of reactive black-5 with transition metal oxide coated electrodes by electrochemical oxidation[J]. Procedia Engineering, 2013, 51: 335-341. |
[1] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[2] | 汪鹏, 张洋, 范兵强, 何登波, 申长帅, 张贺东, 郑诗礼, 邹兴. 高碳铬铁盐酸浸出过程工艺及动力学[J]. 化工进展, 2023, 42(S1): 510-517. |
[3] | 刘阳, 王云刚, 修浩然, 邹立, 白彦渊. 基于动力学分析的核桃壳最佳炭化工艺[J]. 化工进展, 2023, 42(S1): 94-103. |
[4] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[5] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[6] | 王俊杰, 潘艳秋, 牛亚宾, 俞路. 分子水平催化重整装置模型构建及应用[J]. 化工进展, 2023, 42(7): 3404-3412. |
[7] | 赵毅, 杨臻, 张新为, 王刚, 杨旋. 不同裂缝损伤和愈合温度条件下沥青自愈合行为的分子模拟[J]. 化工进展, 2023, 42(6): 3147-3156. |
[8] | 曾天续, 张永显, 严渊, 刘宏, 马娇, 党鸿钟, 吴新波, 李维维, 陈永志. 羟胺对硝化菌活性及其动力学参数的影响[J]. 化工进展, 2023, 42(6): 3272-3280. |
[9] | 李瑞东, 黄辉, 同国虎, 王跃社. 原油精馏塔中铵盐吸湿特性及其腐蚀行为[J]. 化工进展, 2023, 42(6): 2809-2818. |
[10] | 张成松, 张静, 龚斌, 李明洋, 袁佳新, 李宏业. 自吸射流柔性搅拌桨振动特性[J]. 化工进展, 2023, 42(4): 1728-1738. |
[11] | 葛伟童, 廖亚龙, 李明原, 嵇广雄, 郗家俊. Pd-Fe/MWCNTs双金属催化剂制备及其脱氯动力学[J]. 化工进展, 2023, 42(4): 1885-1894. |
[12] | 王唯, 张东旭, 李遵照, 王晓霖, 黄启玉. 油包水乳状液体系中水合物生长行为研究进展[J]. 化工进展, 2023, 42(3): 1155-1166. |
[13] | 李芸, 崔楠, 熊星星, 黄志远, 王东亮, 许丹, 李军, 李泽兵. 稀土Er(Ⅲ)对短程硝化性能的影响及其抑制动力学特性[J]. 化工进展, 2023, 42(3): 1659-1668. |
[14] | 闫兴清, 戴行涛, 喻健良, 李岳, 韩冰, 胡军. 高压氢气泄漏射流研究进展[J]. 化工进展, 2023, 42(3): 1118-1128. |
[15] | 宋叶, 陈玉卓, 宋云彩, 冯杰. 有机固废合成气原位净化催化剂设计及反应器分析[J]. 化工进展, 2023, 42(3): 1383-1396. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 131
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 281
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |